
DORMER > PRAMET

ФРЕЗЕРОВАНИЕ 2021 — 2022

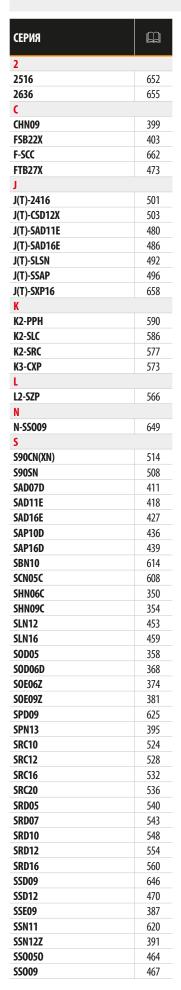
ФРЕЗЕРОВАНИЕ – СОДЕРЖАНИЕ		
ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG ISO 13399		□ 6
инструкция	IPIE	12
ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА	НОЛИТН ФРЕЗЫ	19
ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ	МОНОЛИТНЫЕ ФРЕЗЫ	117
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ	M	201
БОРФРЕЗЫ		212
РЕЗЬБОФРЕЗЫ		292
инструкция		314
НАВИГАТОР	M	326
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ	инами	347
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ	ТАСТ	407
длиннокромочные фрезы	Z	477
дисковые фрезы	4bIM	\$ 506
КОПИРОВАЛЬНЫЕ ФРЕЗЫ	MEHI	4 519
высокоподачные фрезы	ФРЕЗЫ СО СМЕННЫМИ ПЛАСТ	4 611
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ	391 (43
ДРУГИЕ ПЛАСТИНЫ	ФРЕ	4 665
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ		4 689

DORMER

МОНОЛИТНЫЕ ФРЕЗЫ – АЛФАВИТНЫЙ УКАЗАТЕЛЬ

СЕРИЯ	
C	
C110	126
C122	144
C123	130
C126	128
C135	133
C139	132
C159	141
C167	143
C246	151
C247	149
C273	152
C295	154
C299	146
C305	138
C306	134
C333	155
C336	142
C346	145
C352	140
C353	135
C367	137
C400	162
C403	164
C407	159
C413	163
C428	157
C492	158
C500	165
C505	166
C700	176
C710	175
C800	167
C801	170
C810	168
C820	178
C822	177
C825	169
C830	173
C831	174
C835	172
C837	171
C907	147
C908	160
C920	148
C922	156
C948	161
D	
D200	180
D400	190
D402	192
D420	191
D422	193
D745	182
D747	184
D750	188
D751	189
D752	186
D753	187
D763	181

	IVIO
СЕРИЯ	Щ
J	
J200	298
J205	299
J210	300
J215 J220	301
J225	303
J235	304
J245	305
J260	307
J280	306
P	205
P100 P101	285
P501	274
P505	275
P507	276
P509	277
P511	278
P513	279
P515	280
P521	281
P523 P601	282
P605	261
P607	262
P609	263
P611	264
P613	265
P615	266
P621	267
P701 P703	251 252
P705	253
P707	254
P709	255
P711	256
P713	257
P715	258
P721	259
P801 P801C	230
P803	232
P803C	233
P805	234
P805C	235
P807	236
P807C	237
P809	238
P811 P811C	239
P813	241
P813C	242
P815	243
P815C	244
P817	245
P819	246
P821	247
P821C	248
P823 P825	249 250
. 023	230


СЕРИЯ	Ш
P831	268
P833	269
P835	270
P837	271
P841	272
P842	273
P843	
	283
P844	284
P880	287
P890	288
\$	
S216	50
S217	51
S218	52
S219	53
S225	54
S226	55
S227	56
S229	57
S231	58
S233	59
S260	60
S262	61
S264	63
S501	102
S511	103
S521	64
S523	65
S524	67
S525	68
S526	69
S527	70
S529	71
S531	72
S533	73
S534	74
S535	75
S536	76
S561	77
S610	
	79
S611	80
S612 S614	87
	81
S629	82
S637	78
S638	83
\$650	84
S654	85
S662	86
S710	28
S713	29
S714	30
S715	31
S716	32
S717	33
S718	34
S722HB	35
S739	48
S740	49
S761	36
S763	37
· ·-	

S763

СЕРИЯ	Ф
\$765	38
S765HB	39
S766	40
S767	41
S768	42
S770HB	43
S771HB	44
S772HB	45
S773HB	46
S791	47
S802HA	88
S802HB	89
S803HA	93
S803HB	94
S804HA	98
S804HB	99
S812HA	90
S812HB	91
S813HA	95
S813HB	96
S814HA	100
S814HB	101
S822	92
S823	97
S902	104
S903	106
S904	108
S922	105
S933	107
S944	109
S991	110

PRAMET

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ – АЛФАВИТНЫЙ УКАЗАТЕЛЬ

СЕРИЯ	
STN10	444
STN16	448
SVC22C	602
SWN04C	605
SZD07	631
SZD09	635
SZD12	639

PRAMET

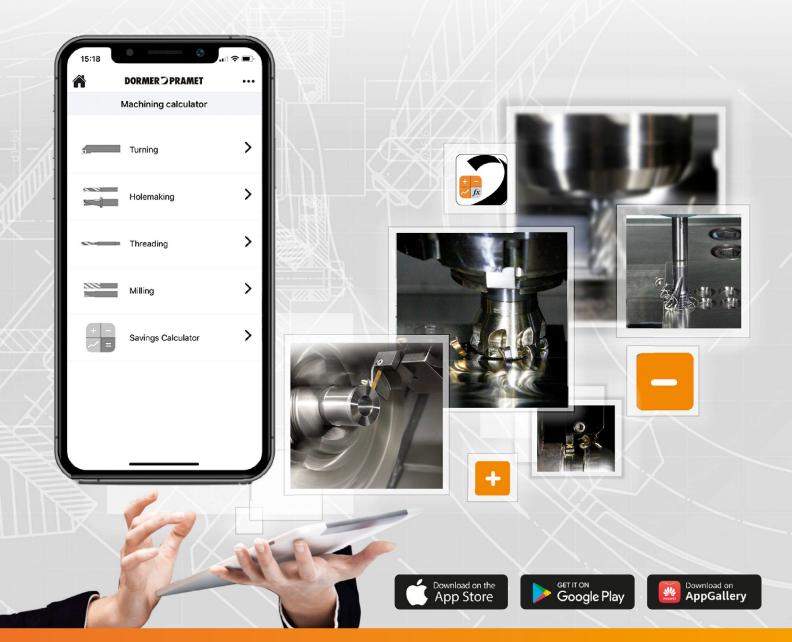
СМЕННЫЕ МНОГОГРАННЫЕ ПЛАСТИНЫ – АЛФАВИТНЫЙ УКАЗАТЕЛЬ

СЕРИЯ	
A	
ADEX 07-FA	414
ADEX 07-HF	413
ADEX 11-FA	423, 483
ADEX 11-HF	422
ADEX 16	430, 489
ADEX 16-FA	432, 489
ADEX 16-HF	431
ADKT 15	668
ADKX 15	668
ADMX 07	412
ADMX 11 ADMX 16	420, 481
ANHX 10	428, 487 616
APET 15	497
APET 16-FA	441
APEW 15	497
APKT 10	437
APKT 10-FA	437
APKT 16	440
APMT 16	669
В	
BNGX 10	615
C	
CCMX	663
CNHQ	516
CNHX 05	609
CNM	670
H	400
HNEF 09	400
HNGX 06 HNGX 09	351 355
HNMF 09	401
L	101
LC	579, 587
LC 12-CH	580
LC 12-RE	581
LNET 16	493
LNGU 12	456
LNGU 16	461
LNGU 16-FA	462
LNGX 12	454
LNGX 12-FA	456
LNMU 16	460
ODEW 06	260
ODKT 05IM	369 359
ODMT 05	670
ODMT 05IM	360
ODMT 06	369
ODMX 06	370
0EHT 06	375
OEHT 06-FA	376
OEHT 09	382
OFKR 07	671
P	
PDKT 09	628
PDKX 09	626
PDMW 09	628
PDMX 09	627
PNMQ 13	396
4	

CIVILINIBIL IVINO	IOIF
СЕРИЯ	
PNMU 13	396
PPH	592
PPHF	593
PPHT	593
R	
RC	578
RCMT 10	525
RCMT 12	529
RCMT 16	533
RCMT 20	537
RDET	671
RDEX	672
RDGT 07	544
RDGT 10 RDGT 12	550 556
RDGT 12IM	360
RDGT 16	562
RDHT 07-FA	545
RDHT 10-FA	550
RDHT 12-FA	556
RDHT 16-FA	562
RDHX 05	541
RDHX 07	544
RDHX 10	549
RDHX 12	555
RDHX 16	561
RDHX 20	672
RDMT 07	545
RDMT 10	551
RDMT 12	557
RDMT 12IM	361
RDMT 16	563
RDMX 10	549
RDMX 12	555
RDMX 16	561
REHT 16	3//
REHT 24 RPET 12	383 673
RPET 15	370
RPEW 12	673
RPEW 15	371
RPEX	674
S	
SBKX 22	404
SBMR 22	404
SDEW 09	647
SDEX 09	647
SDGX 12	504
SDKT 12IM	362
SDMT 12	471
SDMT 12IM	362
SDMX 12	504
SEEN	674
SEER	675
SEET 09	388
SEET 12	676
SEET 12-FA	676
SEET 12-PM	677
SEEW 12	677
SEMT 09	389

SFCN

678


СЕРИЯ	
SNET 13	494
SNGX 11	621
SNGX 13	493
SNHF	678
SNHN	679
SNHQ AZ	510
SNHQTRL	511
SNKT 12	393
SNKX	679
SNMT 12	392
SNUN	680
SOMT 05	465
SOMT 09	468, 650
SPET 12	498
SPET 12 AD	
	498
SPEW 12 AD	499
SPGN	680
SPGN 25 DZ	681
SPKN	681
SPKR	682
SPKX	683
SPUN	683
T	
TBMR 27	474
TCMT	653, 656
TNGX 10	445
TNGX 10-FA	446
TNGX 16	449
TNGX 16-FA	450
TNJF	684
TPCN 16	685
TPKN	685
TPKR	686
TPUN	687
V	
VCGT 22-FA	609, 688
W	007,000
WNHX 04	606
X	000
XDHW	688
XEHT 06	376
XEHT 09	383
XNGX 06	352
XNGX 09 XNGX 13	356
	397
XNHQ	516
XP	574
XPHT 16	659
XPHT 16-FA	660
Z	
ZDCW 07	632
ZDCW 09	636
ZDEW 12	640
ZP	568

DORMER PRAMET

PASHAR O5PA5OTKA

В нашем приложении Calculator можно сделать расчеты для самых популярных видов металлообработки: точение, фрезерование, обработка отверстий и резьбы. Доступно в любом магазине приложений. **Simply Reliable.**

ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG

КЛАССИФИКАЦИЯ ОБРАБАТЫВАЕМЫХ MATEPИAЛOB DORMER PRAMET

Группы обрабатываемых материалов «WMG» используются для простого и надежного выбора режущего инструмента с оптимальными режимами резания для конкретной заготовки. Dormer Pramet разделяет основные материалы заготовок на шесть групп по цвету:

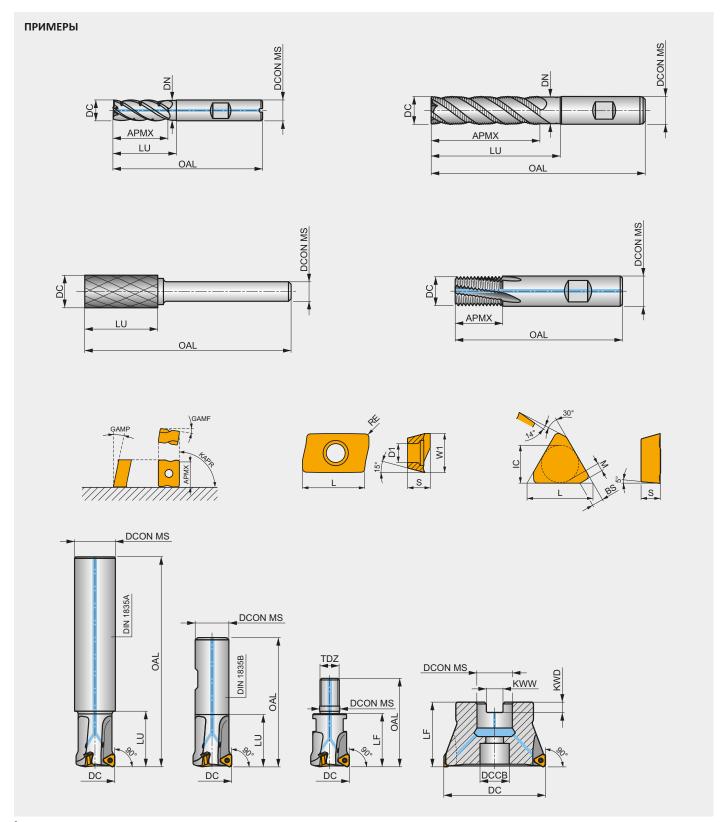
- Синий: конструкционные стали (Р группа)
- Желтый: нержавеющие стали (М группа)
- Красный: чугун (К группа)
- Зеленый: цветные сплавы (N группа)
- Коричневый: жаропрочные и титановые сплавы (S группа)
- Серый: твердые материалы (Н группа)

Каждая из этих групп делится на подгруппы с учетом состава и структуры материала. Так, например, группа конструкционных сталей Р делится на четыре подгруппы:

- Р1 автоматные стали
- Р2 углеродистые стали
- Р3 легированные стали
- Р4 инструментальные стали

Окончательное деление учитывает свойства материала заготовки: твердость и предел прочности. Это делается для более точной рекомендации по выбору инструмента и режимов резания.

Таблица на следующей странице дает описание каждой группы обрабатываемых материалов с обозначениями.


ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG

Группа	a ISO	WMC	G (Группы обрабатываемых материалов)		Твердость (НВ или HRC)	Предел прочности (МПа)	Примеры материалов
		P1.1		С повышенным содержанием серы	< 240 HB	≤ 830	A11, A12
P1	P1	P1.2	Автоматные стали (углеродистые стали с увеличенной обрабатываемостью резанием)	С повышенным содержанием серы и фосфора	< 180 HB	≤ 620	A30, A35
	P1.3	(углеродистые стали с увеличенной обрабатываемостью резанием)	С повышенным содержанием серы, фосфора и свинца	< 180 HB	≤ 620	AC14, AC40	
	P2.1		Содержание углерода <0,25%	< 180 HB	≤ 620	Ст1кп, Ст2пс, Ст3сп	
	P2 P2 P3	P2.2	Нелегированные стали	Содержание углерода <0,55%	< 240 HB	≤ 830	Сталь 40, Сталь 45
D		P2.3	- (низко-, средне- и высокоуглеродистые стали)	Содержание углерода >0,55%	< 300 HB	≤ 1030	Сталь 58, Сталь 60
P		P3.1		Отожженные	< 180 HB	≤ 620	15Г, 15X
		P3.2	Легированные стали	Закаленные и отпущенные	180 – 260 HB	> 620 ≤ 900	16XCH, 20XФA, 40X
		P3.3	- (углеродистые стали со степенью легирования ≤10 %)		260 - 360 HB	> 900 ≤ 1240	60С2А, 50ХФА
		P4.1		Отожженные	< 26 HRC	≤ 900	У8Г, У10, У12А
	P4	P4.2	Инструментальные стали	Закаленные и отпущенные	26 – 39 HRC	> 900 ≤ 1240	ХВ4Ф, 6Х4М2ФС, ХВГ
		P4.3	(твердые стали для инструмента, штампов и пресс-форм)		39 – 45 HRC	> 1240 ≤ 1450	75ХСМФ, 90ХМФ
	144	M1.1	Ферритные нержавеющие стали		< 160 HB	≤ 520	04X17T, 08X13
	M1	M1.2	(неупрочняемые термообработкой стали с повышенным содержанием хром	na)	160 – 220 HB	> 520 ≤ 700	08Х18ГБ, 12Х17
		M2.1		Отожженные	< 200 HB	≤ 670	15X11MΦ, 20X13
	M2	M2.2	Мартенситные нержавеющие стали	Закаленные и отпущенные	200 – 280 HB	> 670 ≤ 950	30X13, 40X13
8.4		M2.3	(упрочняемые термообработкой стали с повышенным содержанием хрома)	После старения	280 – 380 HB	> 950 ≤ 1300	65X13, 95X18
M		M3.1			< 200 HB	≤ 750	02X18H11, 06X18H11
	M3	M3.2	Аустенитные нержавеющие стали		200 – 260 HB	> 750 ≤ 870	08X18H10, 12X18H10T
		M3.3	(с повышенным содержанием хрома и никеля)		260 – 300 HB		10X17H13M3T, 20X13H4Г9
		M4.1	Аустенитно-ферритные (дуплекс) или супераустенитные нержавеющие стали		< 300 HB	≤ 990	03X22H6M2, 08X21H6M2T
	M4	M4.2	Аустенитные дисперсионно твердеющие нержавеющие стали		300 – 380 HB	≤ 1320	03Х21Н21М4ГБ
		K1.1	пустенитые дисперсионно твердеющие периавеющие стали	Ферритный или феррито-перлитный	< 180 HB	≤ 190	C410, C415
	K1	K1.2	Серый чугун	Феррито-перлитный или перлитный	180 – 240 HB	> 190 ≤ 310	C420, C425
	KI	K1.2	(с пластинчатым графитом)	Перлитный	240 – 280 HB	> 310 ≤ 390	C430, C435
		K2.1		•	< 160 HB	≥ 310 ≤ 330 ≤ 400	K430-6, K435-10
	VΣ		Ковкий чугун	Ферритный			
	K2	K2.2	(с компактным хлопьевидным графитом)	Ферритный или перлитный	160 – 200 HB	> 400 ≤ 550	K445-7, K450-5
		K2.3		Перлитный	200 – 240 HB	> 550 ≤ 660	K460-3, K470-2
	1/2	K3.1	Высокопрочный чугун	Ферритный	< 180 HB	≤ 560	B435, B440
1/	К3	K3.2	(с шаровидным графитом)	Ферритный или перлитный	180 – 220 HB	> 560 ≤ 680	B450,B460
K		K3.3		Перлитный	220 – 260 HB	> 680 ≤ 800	B470, B480
		K4.1	Аустенитный серый чугун (легированный чугун с аустенитным пластинчатым г		< 180 HB	≤ 190	ЧН11Г7Ш, ЧН15Д3Ш
	1/4	K4.2	4.3 AVITAUMITULIÄ BLICOKONDOUULIÄ IUVIUI		< 240 HB	≤ 740	ЧН19ХЗШ, ЧН2ОД2Ш
	K4				< 280 HB	> 840 ≤ 980	ЧХ22С
		K4.4	(легированный чугун с ферритно-аустенитной структурой)		280 – 320 HB		4X28
		K4.5				> 1130 ≤ 1280	ЧХ32
	1/5	K5.1		Ферритный	< 180 HB	≤ 400	ЧВГ30
	K5	K5.2	Чугун с вермикулярным графитом	Феррито-перлитный	180 – 220 HB	> 400 ≤ 450	ЧВГ40
		K5.3		Перлитный	220 – 260 HB	> 450 ≤ 500	ЧВГ45
	114	N1.1	Чистый алюминий и деформируемые алюминиевые сплавы		< 60 HB	≤ 240	A7, A35
	N1	N1.2	Деформируемые алюминиевые сплавы	Средней твердости	60 – 100 HB		АД35, АМг2
		N1.3		Повышенной твердости		> 400 ≤ 590	АК6, Д16
		N2.1			< 75 HB	≤ 240	АЛ6, АМг6Л
	N2	N2.2	Алюминиевые литейные сплавы		75 – 90 HB	> 240 ≤ 270	AK5M4, AM5
N.I.		N2.3			90 – 140 HB	> 270 ≤ 440	АМ4.5Кд, ВАЛ12
N		N3.1	Легкообрабатываемые медные сплавы		-	-	M16, M3p
	N3	N3.2	Медные сплавы с хорошей и средней обрабатываемостью, образующие коротк		-	-	Л60, ЛЦ40С
		N3.3	Медные сплавы со средней и плохой обрабатываемостью, образующие длинну	ю стружку	-	-	БрА9Ж4, БрНБТ
		N4.1	2 Термореактивные полимеры		-	-	Акрил, эластомер, ПТФЭ
	N4	N4.2			-	-	Эпоксидные и полиэфирные смолы
		N4.3				-	Стеклопластик, углепластик, текстолит
	N5	N5.1	Графит		-	-	ГСМ-1, ЭУЗ-М, ГТ-2
		S1.1	51.1		< 200 HB	≤ 660	BT1-0, B _T 1-1
	S1				200 – 280 HB	> 660 ≤ 950	0T4, BT14
	c 52	S1.3			280 – 360 HB	> 950 ≤ 1200	BT16, BT22
-		S2.1	— Жаропрочные сплавы на основе железа		< 200 HB	≤ 690	10Х23Н18, 08Х16Н13М2Б
5	32	S2.2	Жаропрочные сплавы на основе никеля		200 – 280 HB	> 690 ≤ 970	45X14H14B2M, 16X11H2B2MΦ
	S3	S3.1			< 280 HB	≤ 940	ХН70Ю (ЭИ652), ХН60ВТ (ЭИ868)
	33		паропро пос сплаво на основе пинели		280 – 360 HB	> 940 ≤ 1200	ХН70ВМТЮ (ЭИ617), ХН65ВМТЮ
S4		S4.1	# ## ## ## ## ## ## ## ## ## ## ## ## #		< 240 HB	≤ 800	ЛК4
	J-1	S4.2	марипричные сплавы на основе кооальта		240 – 320 HB	> 800 ≤ 1070	K49X20B15H10
	H1	H1.1	Закаленный и отпущенный чугун		< 440 HB	-	чхз, чюхш
	H2	H2.1	Зэхэланный пугун		< 55 HRC	-	4X16
	пZ	H2.2	Закаленный чугун		> 55 HRC	-	4C13
Н	шэ	H3.1	22K2DOUULIO CT2DU < SSUDC		< 51 HRC	-	5XHB
	Н3	H3.2	Закаленные стали <55HRC		51 – 55 HRC	-	75XM
		H4.1	Закаленные стали >55HRC		55 – 59 HRC	-	11М5Ф, 9ХВГ
	H4						

ПАРАМЕТРЫ РЕЖУЩЕГО ИНСТРУМЕНТА СОГЛАСНО ISO 13399

Все режущие инструменты имеют конструктивные параметры, определяемые стандартом ISO 13399. Ниже представлены основные параметры режущего инструмента, используемые в этом каталоге.

ISO 13399 это международный стандарт, регламентирующий информацию о режущем инструменте. Стандарт обеспечивает представление информации в нейтральном формате, который не зависит от определенной системы или фирмы-производителя. Однозначное определение параметров инструмента в соответствии со стандартом, который может быть обработан любым ПО, повышает качество связи между системами и обеспечивает беспрепятственный обмен электронными данными. Используя единый язык обмена данными, можно повысить эффективность и качество сбора информации. Время обработки существенно сокращается, что позволит быстро и удобно ориентироваться в ассортименте режущего инструмента, который состоит из более чем 40,000 позиций. При использовании системы, совместимой со стандартом ISO13399, отпадает необходимость ручного ввода данных из каталога через компьютер в систему.

ПАРАМЕТРЫ РЕЖУЩЕГО ИНСТРУМЕНТА СОГЛАСНО ISO 13399

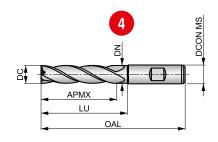
ISO 13399	Описание
APMX	Максимальная глубина резания
BD	Диаметр корпуса
BDX	Максимальный диаметр корпуса
ВСН	Длина фаски
BS	Длина подчищающей кромки Wiper
CBDP	Глубина соединительного отверстия
CDI	Диаметр резания пластины
CDX	Максимальная глубина канавки или паза
CW	Ширина канавки или паза
CZC MS	Размер конуса Морзе
D1	Диаметр отверстия пластины
DAH4	Диаметр отверстия под головку винта
DAH5	Диаметр отверстия под головку винта
DAH6	Диаметр отверстия под головку винта
DBC1	Диаметр окружности болтов
DBC2	Диаметр окружности болтов
DBC4	Диаметр окружности болтов
DBC5	Диаметр окружности болтов
DBC6	Диаметр окружности болтов
DC	Диаметр резания
DCB	Диаметр соединительного отверстия
DCCB	Диаметр отверстия под винт
DCN	Минимальный диаметр резания
DCON MS	Диаметр соединения со стороны станка
DCX	Максимальный диаметр резания
DHUB	Диаметр соединения оправки
DN	Диаметр шейки
GAMF	Радиальный передний угол
GAMP	Осевой передний угол

ISO 13399	Описание
CHW	Ширина фаски
IC	Диаметр вписанной окружности
INSD	Диаметр пластины
INSL	Длина пластины
KAPR	Главный угол в плане
KWD	Глубина шпоночного паза
KWW	Ширина шпоночного паза
L	Длина режущей кромки
LB	Длина корпуса
LE	Эффективная длина режущей кромки
LF	Функциональная длина
LH	Длина головки
LU	Рабочая длина (тах рекомендуемая)
LUX	Максимальная рабочая длина
M	Размер М
NOF	Число стружечных канавок
OAL	Общая длина
P	Шаг зубьев
PRFA	Угол профиля
PRFRAD(2)	Радиус профиля
RE	Радиус при вершине
S	Толщина пластины
S1	Общая толщина пластины
TDZ	Размер резьбы
TP	Шаг резьбы
TPI	Количество витков на дюйм
W1	Ширина пластины
ZNP	Число периферийных режущих кромок

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА И БЫСТРОРЕЖУЩЕЙ СТАЛИ

		ФРЕЗЕРОВАНИЕ – СОДЕРЖАНИЕ
□ 6		ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG ISO 13399
12	ЫE	инструкция
<u></u> 19	ИТН ЗЪІ	ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА
4 117	МОНОЛИТНЫЕ ФРЕЗЫ	ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ
201	MO	ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
<u></u> 212		БОРФРЕЗЫ
<u></u> 292		РЕЗЬБОФРЕЗЫ
A 314		инструкция
₽ 326	M	НАВИГАТОР
<u></u> 347	ТИНАМИ	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ
407	IACT	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ
477	ИП	ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ
□ 506	IbIM	ДИСКОВЫЕ ФРЕЗЫ
<u></u> 519	ФРЕЗЫ СО СМЕННЫМИ ПЛАС	копировальные фрезы
<u></u> 611	OCN	ВЫСОКОПОДАЧНЫЕ ФРЕЗЫ
<u></u> 643	3bl C	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ
<u></u> 665	ФРЕ	ДРУГИЕ ПЛАСТИНЫ
<u></u> 689		ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

2


DORMER

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

Обозначение	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
8	(дюйм)	(MM)	(MM)	(мм)	9 _(MM)		(MM)	(MM)
2732.0	-	2.00	6.00	10.00	54.0	4	_	-
C2732.5	_	2.50	6.00	12.00	56.0	4	_	
2733.0	_	3.00	6.00	12.00	56.0	4	_	-
C2731/8 ²⁾	1/8	3.18	6.00	15.00	59.0	4	_	-
2733.5	_	3.50	6.00	15.00	59.0	4	_	-
2734.0	_	4.00	6.00	19.00	63.0	4	_	-
C2734.5	-	4.50	6.00	19.00	63.0	4	_	-
C2733/16 ²⁾	3/16	4.76	6.00	24.00	68.0	4	_	-
C2735.0	_	5.00	6.00	24.00	68.0	4	_	-
C2735.5	-	5.50	6.00	24.00	68.0	4	_	-
C2736.0	_	6.00	6.00	24.00	68.0	4	_	-
C2731/4 ²⁾	1/4	6.35	10.00	30.00	80.0	4	_	-
C2737.0	-	7.00	10.00	30.00	80.0	4	_	-
C2738.0	-	8.00	10.00	38.00	88.0	4	_	-
C2739.0	-	9.00	10.00	38.00	88.0	4	_	-
C2733/8 ²⁾	3/8	9.52	10.00	45.00	95.0	4	54.50	9.50
C27310.0	_	10.00	10.00	45.00	95.0	4	54.50	9.50
C27311.0	_	11.00	12.00	45.00	102.0	4	_	-
C27312.0	_	12.00	12.00	53.00	110.0	4	64.50	11.50
C2731/2 ²⁾	1/2	12.70	12.00	53.00	110.0	4	64.50	11.50
27313.0	_	13.00	12.00	53.00	110.0	4	64.50	11.50
C27314.0	-	14.00	12.00	53.00	110.0	4	64.50	11.50
C27315.0	_	15.00	12.00	53.00	110.0	4	64.50	11.50
(2735/8 ²⁾	5/8	15.88	16.00	63.00	123.0	4	74.50	15.50
C27316.0	_	16.00	16.00	63.00	123.0	4	74.50	15.50

МОНОЛИТНЫЕ ФРЕЗЫ – ОБЗОР

Поз.	Описание	Поз.	Описание
1	Серия	6	Технологические возможности
2	Описание	7	Область применения, рекомендуемая скорость резания и индекс подачи
3	Изображение	8	Обозначение
4	Схематический чертеж	9	Размеры
5	Особенности		

Применение

Основное применение

Возможное применение

Материал инструмента

НМ	Твердый сплав	HSS-E	Быстрорежущая сталь с кобальтом
HSS-E PM	Порошковая быстрорежущая сталь с кобальтом	HSS	Быстрорежущая сталь

Профил	іь режущих кромок		
N	Для общего применения и обработки материалов низкой или высокой прочности	NR Стружколомающая геометрия с крупным шагом и скругленным профилем	Крупный шаг
W	Для обработки мягких цветных сплавов	HRA Стружколомающая геометрия с мелким шагом и ассиметричным профилем	Мелкий шаг
FS	Стружколомающая геометрия для получистовой обработки	VRA Стружколомающая геометрия с крупным шагом и ассиметричным профилем	
NF	Стружколомающая геометрия с крупным шагом	w NRA Стружколомающая геометрия с крупным шагом для обработки цветных сплавов	

Количество зубьев (Число стружечных канавок)

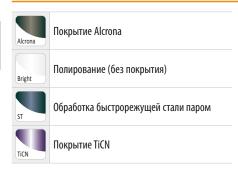
количе	ство зубьев (Число стружечных канавок)				
NOF 1	1 зуб	NOF 4-5	45 зубьев	NOF 16-24	1624 зуба
NOF 2	2 зуба	NOF 5	5 зубьев	28-44 NOF	2844 зуба
NOF 3	3 зуба	NOF 4-6	46 зубьев	32-100 NOF	32100 зубьев
NOF 3#	3 зуба с переменным шагом	NOF 4-8	48 зубьев	48-200 NOF	48200 зубьев
NOF 3-4	34 зуба	NOF 6-8	68 зубьев	100-140 NOF	100140 зубьев
NOF 3-5	35 зубьев	NOF 6-12	612 зубьев	110-180 NOF	110180 зубьев
NOF 3-6	36 зубьев	NOF 8	8 зубьев	130-220 NOF	130220 зубьев
NOF 4	4 зуба	NOF 8-12	812 зубьев	160-350 NOF	160350 зубьев
NOF 4#	4 зуба с переменным шагом	NOF 10-12	1012 зубьев		

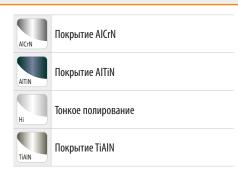
Длина режущей части Особо короткая Средняя Особо длинная Короткая Длинная Угол подъема стружечной канавки λ 25° λ 40° λ Переменный угол подъема спирали Спираль с углом 25° Спираль с углом 40° # λ 0° λ 28° λ 45° Прямые канавки с углом 0° Спираль с углом 28° Спираль с углом 45° λ 10° λ 30° λ 50° Спираль с углом 10° Спираль с углом 30° Спираль с углом 50° λ 12° λ 34° Спираль с углом 12° Спираль с углом 34°

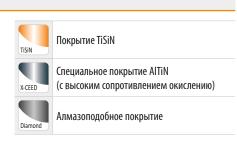
Спираль с углом 35°

λ 35°

Радиальный передний угол (GAMF)


Спираль с углом 15°


λ 15°


γ -26°	Радиальный передний угол -26°	γ 5°	Радиальный передний угол 5°	γ 13°	Радиальный передний угол 13°
γ -10°	Радиальный передний угол -10°	γ 7°	Радиальный передний угол 7°	γ 15°	Радиальный передний угол 15°
γ -6°	Радиальный передний угол -6°	8°	Радиальный передний угол 8°	γ 18°	Радиальный передний угол 18°
γ 0°	Радиальный передний угол 0°	9°	Радиальный передний угол 9°	γ 20°	Радиальный передний угол 20°
γ 3°	Радиальный передний угол 3°	γ 10°	Радиальный передний угол 10°	γ 25°	Радиальный передний угол 25°
γ 4°	Радиальный передний угол 4°	γ 12°	Радиальный передний угол 12°		

Хвостовик		
Uилиндрический хвостовик DIN 1835A	Х ВОСТОВИК С РЕЗЬБОЙ DIN 1835D	Цилиндрический хвостовик DIN 6535 НА
В рим 1835 Хвостовик Weldon DIN 1835В или с резьбой D	ZBOCTOBИК Weldon DIN 1835В	DIN 6535HB XBOCTOBUK Weldon DIN 6535 HB

Покрытие

Допуск на диаметр резания

DC d11	d11 — Стандартный промышленный допуск (ширина поля допуска зависит от диаметра)
DC	e8 — Стандартный промышленный допуск
e8	(ширина поля допуска зависит от диаметра)
DC	h9 — Стандартный промышленный допуск
h9	(ширина поля допуска зависит от диаметра)
DC	h10 — Стандартный промышленный допуск
h10	(ширина поля допуска зависит от диаметра)

DC k10	k10 — Стандартный промышленный допуск (ширина поля допуска зависит от диаметра)
DC k12	k12 — Стандартный промышленный допуск (ширина поля допуска зависит от диаметра)

Направление обработки

Радиальное

Радиальное, Диагональное

Радиальное, Диагональное, Осевое

Радиальное

Стандарт инструмента

BS 122/4	BS 122/4 Стандарт на фрезы с резьбовым хвостовиком	DIN 1880	DIN 1880 Стандарт на насадные цилиндрические фрезы	DIN 851	DIN 851 Стандарт на фрезы для обработки Т-образных пазов
DIN 1833C	DIN 1833C Стандарт на фрезы для обработки пазов типа "ласточкин хвост"	DIN 327D	DIN 327D Стандарт на фрезы для обработки пазов	DIN 885A	DIN 885A Стандарт на дисковые трехсторонние фрезы
DIN 1833D	DIN 1833D Стандарт на фрезы для обработки пазов типа обратный "ласточкин хвост"	DIN 844K	DIN 844K Стандарт на концевые фрезы	DIN 6527K	DIN 6527К Стандарт на фрезы из твердого сплава
DIN 1837	DIN 1837 Стандарт на дисковые фрезы с мелким шагом	DIN 844L	DIN 844L Стандарт на концевые фрезы из быстрорежущей стали	DIN 6527L	DIN 6527L Стандарт на фрезы из твердого сплава
DIN 1838	DIN 1838 Стандарт на дисковые фрезы с крупным шагом	DIN 850	DIN 850 Стандарт на фрезы для обработки шпоночных пазов	DORMER	DORMER Стандарт

Внутренний подвод СОЖ

Внутренний подвод СОЖ

Технологические возможности

Фрезерование глубоких уступов

Фрезерование глубоких пазов

Фрезерование неглубоких пазов

Фрезерование неглубоких уступов

Фрезерование шпоночных пазов Р9

Плунжерное фрезерование

Врезание под углом

Трохоидальное фрезерование

Фрезерование с засверливанием

Засверливание

Фрезерование с винтовой интерполяцией

Точение фрезерованием

Копировальное фрезерование

Фрезерование плоскостей

Фрезерование фасок

Фрезерование обратных уступов

Фрезерование Т-образных пазов

Фрезерование пазов типа "ласточкин хвост"

Фрезерование пазов типа обратный "ласточкин хвост"

Фрезерование пазов под сегментную шпонку

Отрезка труб дисковой фрезой

Отрезка прутков дисковой фрезой

DORMER > PRAMET

MUHAR 505/100TEKA

Всегда возвращаетесь к одним и тем же разделам наших каталогов? Наше приложение Library позволяет сохранять страницы каталогов и брошюр для быстрого использования в любое время. **Simply Reliable.**

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – МАТЕРИАЛ ИНСТРУМЕНТА И ПОКРЫТИЕ

Материал инструмента

Твердый сплав

HM

Композитный материал, состоящий из твердых карбидов и металлической связки, полученный методом порошковой металлургии. Основу составляют карбиды вольфрама (WC), которые определяют твердость материала. Дополнительные кубические карбиды тантала (TaC), титана (TiC) и ниобия (NbC) дополняют карбиды вольфрама (WC) для получения нужных эксплуатационных свойств. Кобальт (Co) выступает в роли связки для создания прочности твердого сплава.

Твердый сплав характеризуется высокой прочностью на сжатие, твердостью и износостойкостью при ограниченной прочности на растяжение и изгиб. Твердый сплав используется в метчиках, развертках, фрезах и резьбофрезах.

Обработка поверхности

Полирование (без покрытия)

Непокрытые полированные поверхности снижают вероятность налипания стружки и позволяют сохранить остроту режущих кромок для обработки вязких материалов заготовок.

Тонкое полирование

Тонкое полирование значительно снижает вероятность налипания стружки при обработке особо вязких цветных сплавов, улучшая отвод стружки и повышая стойкость инструмента.

Покрытие

Покрытие AICrN

Покрытие Alcrona (AlCrN) обычно используется для фрез и имеет два уникальных свойства: высокая красностойкость и сопротивление окислению. При использовании режущего инструмента в условиях высоких термических и механических нагрузок такое покрытие позволяет получить исключительную износостойкость. Для разного инструмента и применения доступно несколько вариантов такого покрытия.

Покрытие TiSiN

Покрытие TiSiN разработано для экстремальных условий резания твердых материалов заготовок с высокой скоростью. Это многослойное покрытие имеет нанокомпозитный наружный слой с кристаллами Si_3N_4 в матрице TiN для защиты режущих кромок от высокой температуры, окисления и абразивного износа. Инструмент с покрытием TiSiN можно применять без подвода СОЖ или в условиях минимального подвода СОЖ.

Покрытие TiAIN

Покрытие TiAIN наносится с помощью технологии PVD и обеспечивает высокую прочность и стабильность к окислению. Такие свойства повышают стойкость инструмента, позволяя работать с более высокой производительностью. Инструмент с покрытием TiAIN подходит для применения без СОЖ.

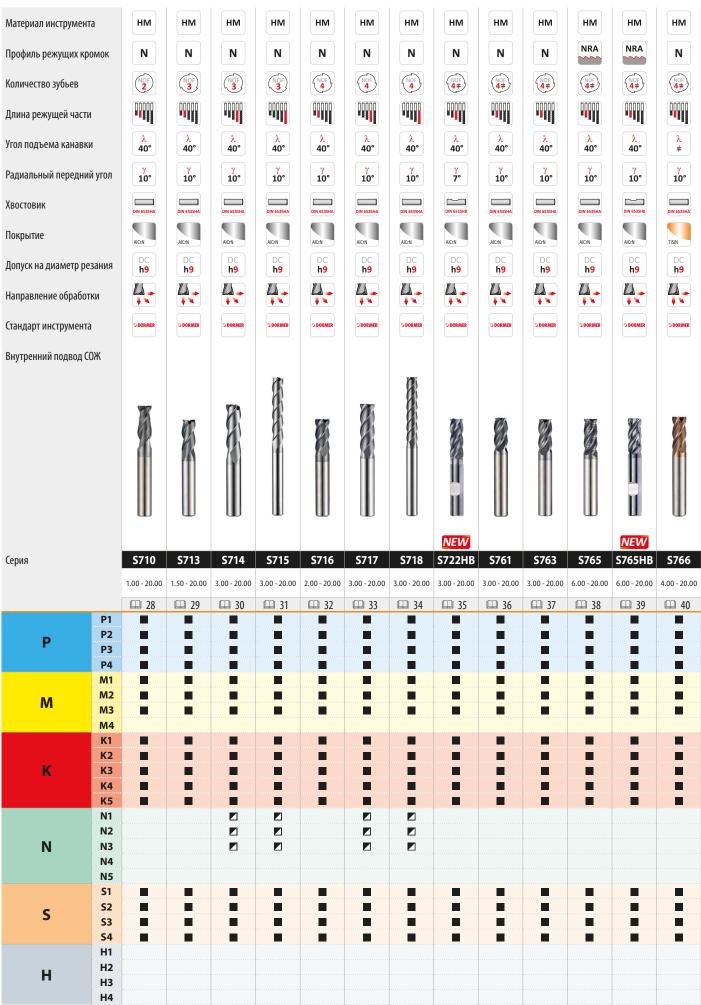
Покрытие X-CEED

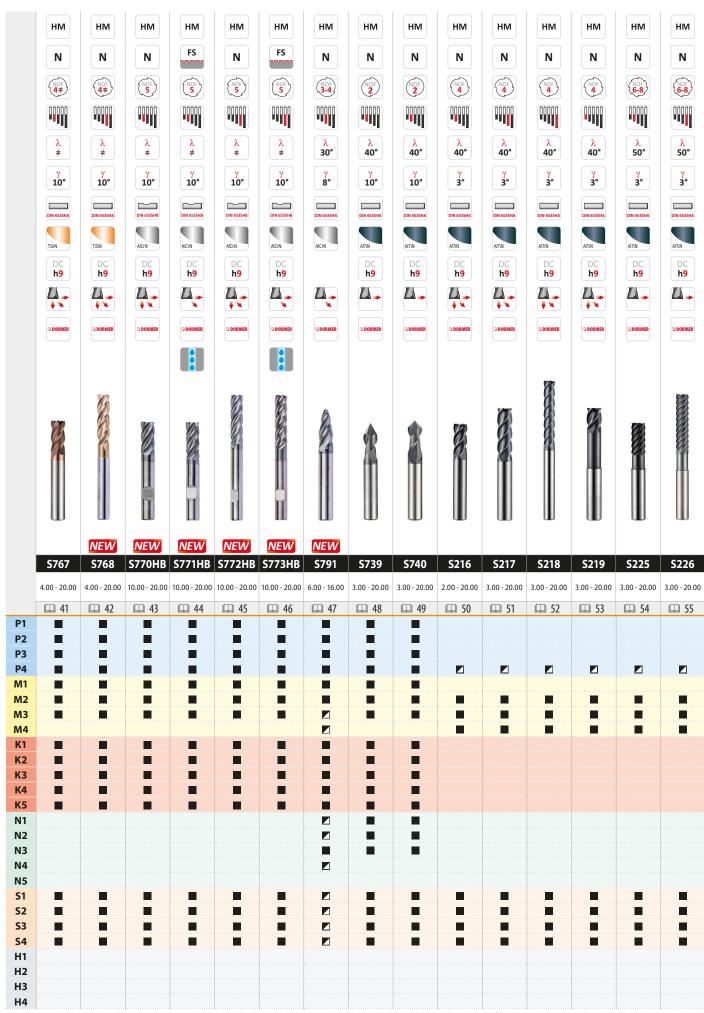
Специальное покрытие X-CEED TiAIN, также известное как Futura-Nano, разработано для повышения красностойкости инструмента и для применения в тяжелых условиях обработки.

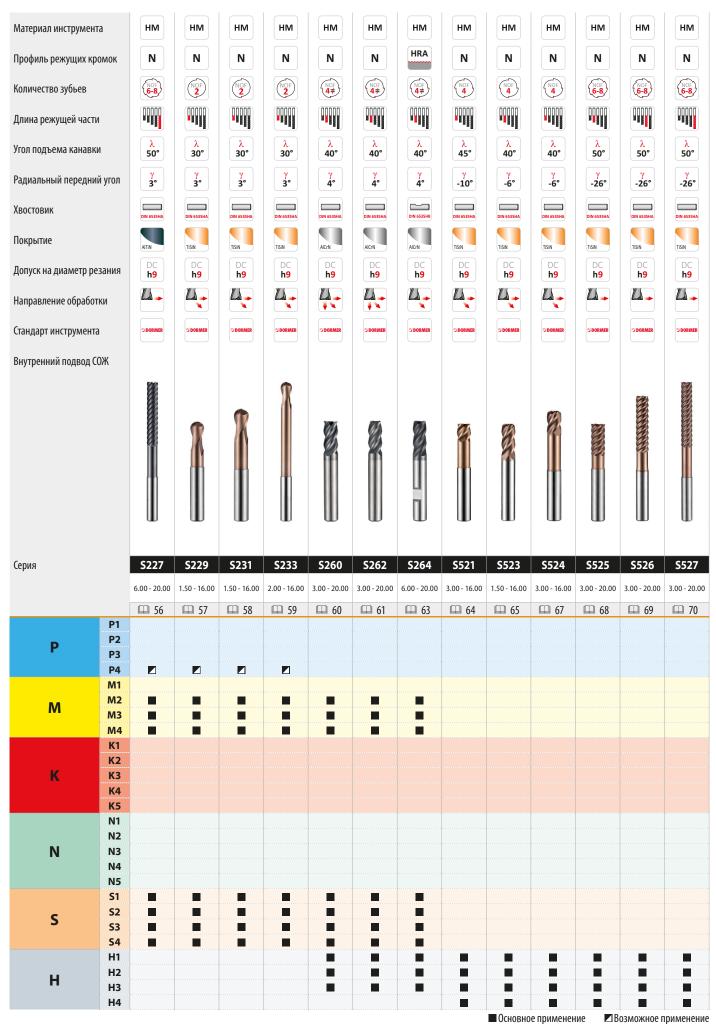
Покрытие AlTiN

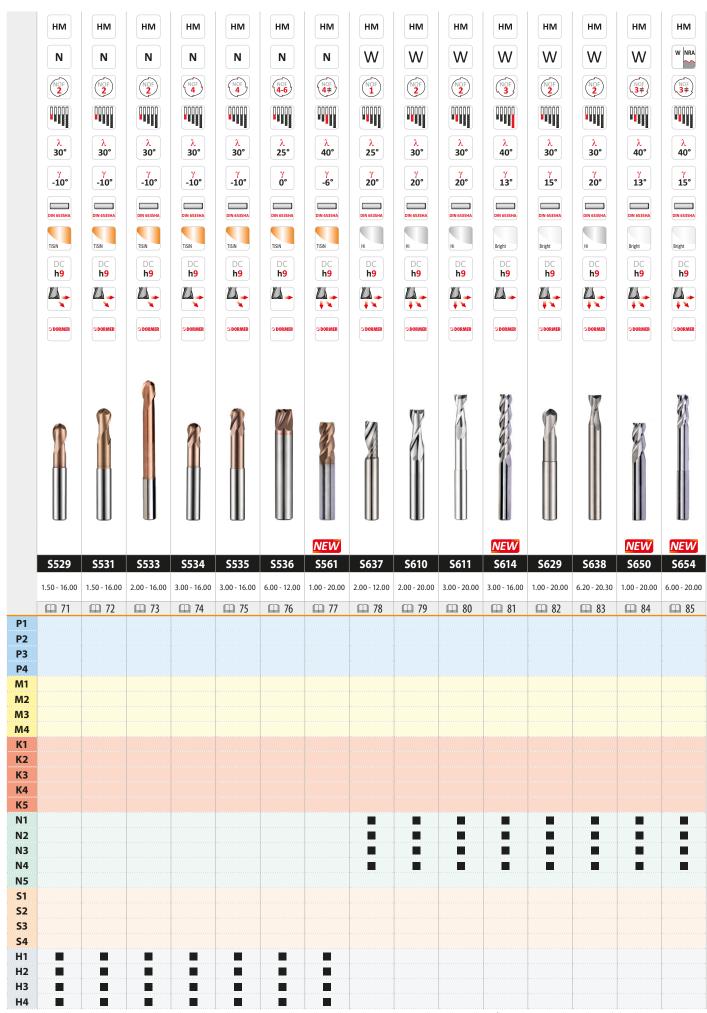
Покрытие AlTiN является обновлением традиционного покрытия TiAlN и имеет высокую прочность, красностойкость и сопротивление окислению.

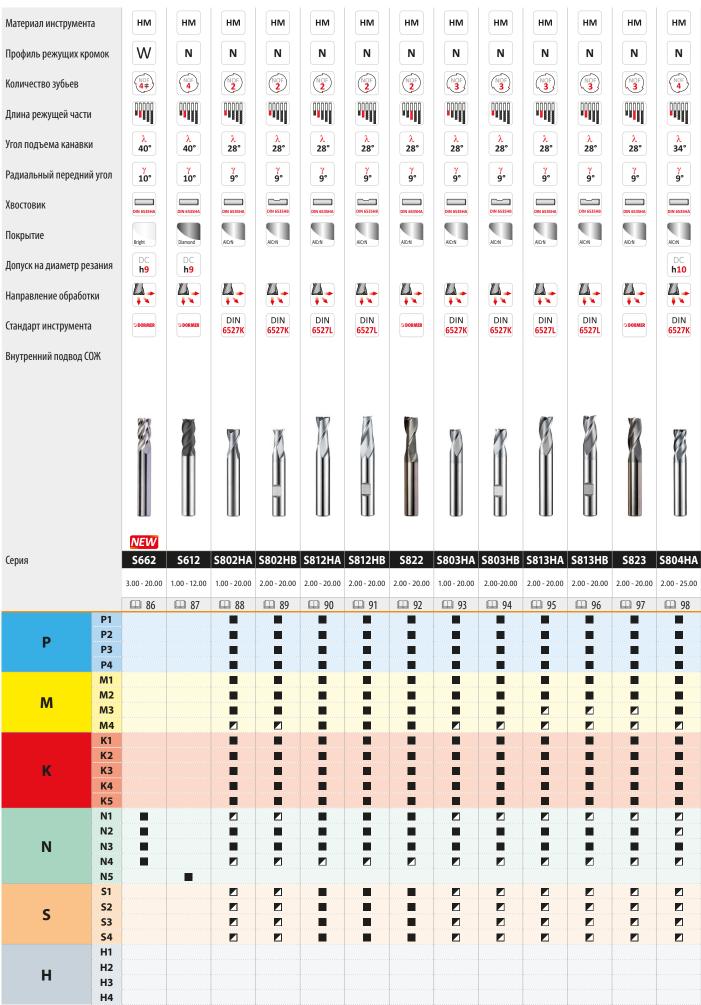
Алмазоподобное покрытие

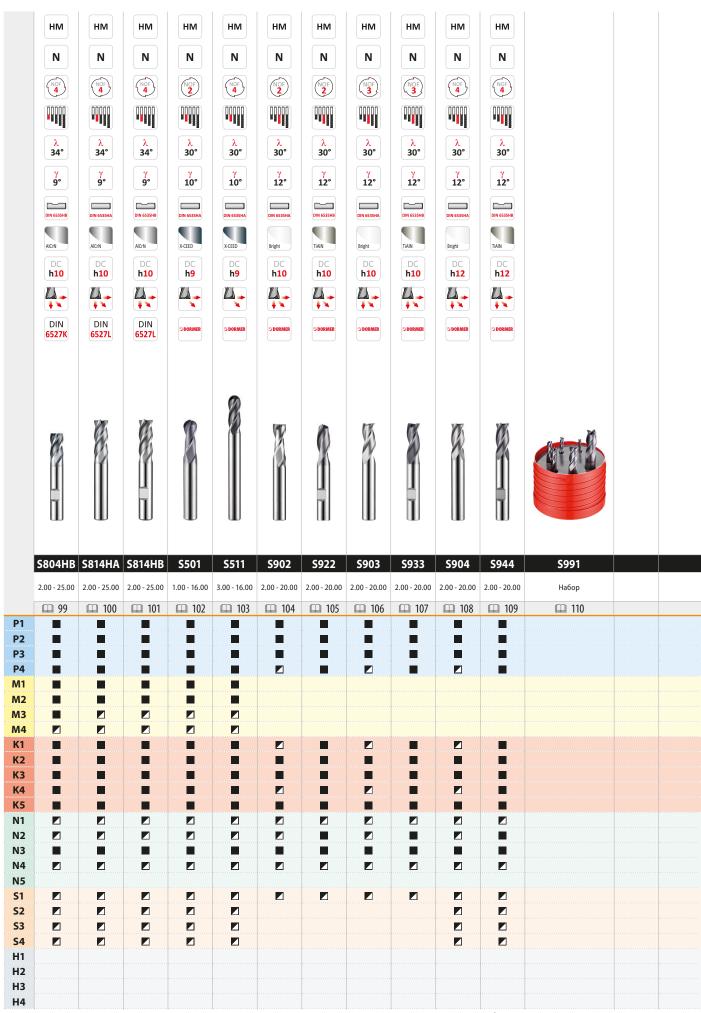

Алмазоподобное покрытие, нанесенное на инструмент из твердого сплава, хорошо смачивается СОЖ и снижает вероятность налипания стружки при обработке графита и вязких цветных сплавов.

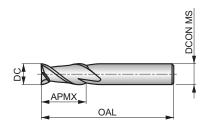

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – СЕРИИ ФРЕЗ


Ассортимент монолитных фрез из твердого сплава позволяет обрабатывать заготовки из большинства материалов.


Серии монолитных фрез из твердого сплава:

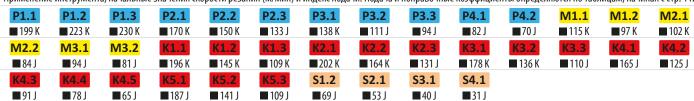

Серия	Описание
S7xx	Фрезы с передним углом 710° для обработки конструкционных и нержавеющих сталей средней прочности, чугуна и жаропрочных сплавов средней прочности.
S2xx	Фрезы с передним углом 34° для обработки высоколегированных сталей с пределом прочности 12001620 МПа, нержавеющих сталей с пределом прочности >850 МПа и жаропрочных сплавов с пределом прочности >900 МПа.
S5xx	Фрезы с негативным передним углом для обработки твердых материалов >54 HRC (кроме фрез серии S501 и S511).
S6xx	Фрезы с большим передним углом для обработки цветных сплавов (фрезы серии S612 для обработки графита).
\$8xx \$501 \$511	Фрезы с передним углом 910° для обработки большинства материалов: конструкционных и нержавеющих сталей низкой и средней прочности, чугуна, цветных сплавов.
S9xx	Фрезы с передним углом 12° для общей обработки мягких материалов: конструкционных сталей, чугуна, цветных сплавов и чистого титана.



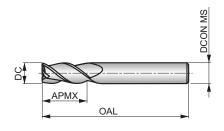


Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

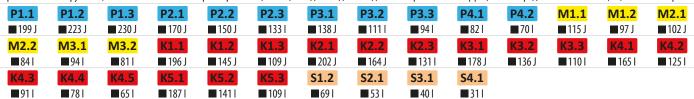


Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

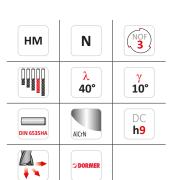

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(мм)	(мм)	
S7101.0	1.00	3.00	3.00	40.0	2
S7101.5	1.50	3.00	4.50	40.0	2
S7102.0	2.00	3.00	6.50	40.0	2
S7102.5	2.50	3.00	6.50	40.0	2
S7103.0	3.00	6.00	9.00	50.0	2
S7104.0	4.00	6.00	12.00	50.0	2
S7105.0	5.00	6.00	15.00	50.0	2
S7106.0	6.00	6.00	20.00	60.0	2
S7108.0	8.00	8.00	20.00	64.0	2
S71010.0	10.00	10.00	22.00	75.0	2
S71012.0	12.00	12.00	25.00	75.0	2
S71016.0	16.00	16.00	32.00	90.0	2
S71020.0	20.00	20.00	38.00	100.0	2

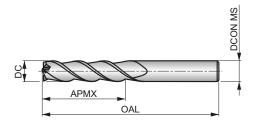
Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.



Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

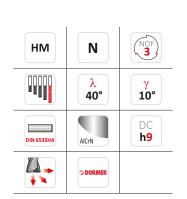


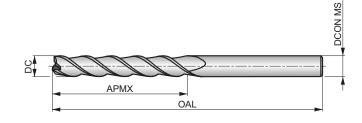

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
\$7131.5	1.50	4.00	4.50	40.0	3
\$7132.0	2.00	4.00	6.50	40.0	3
\$7133.0	3.00	3.00	9.00	40.0	3
\$7134.0	4.00	4.00	12.00	50.0	3
\$7135.0	5.00	5.00	15.00	50.0	3
\$7136.0	6.00	6.00	16.00	50.0	3
\$7138.0	8.00	8.00	20.00	64.0	3
\$71310.0	10.00	10.00	22.00	70.0	3
S71312.0	12.00	12.00	25.00	75.0	3
S71314.0	14.00	14.00	32.00	90.0	3
\$71316.0	16.00	16.00	32.00	90.0	3
\$71318.0	18.00	18.00	38.00	100.0	3
\$71320.0	20.00	20.00	38.00	100.0	3

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 140 J	■ 157 J	■162 J	■ 120 J	■ 106 J	■ 941	■97 J	■ 781	■ 66 l	■ 581	■ 49 l	■81 J	■ 68 J	■ 71 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 591	■ 661	■ 57 l	■138 J	■ 102 J	■ 77 J	■ 142 J	■ 115 J	■ 921	■ 125 J	■96 J	■ 78 I	■ 1161	■ 88 l
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■ 641	■ 551	■ 46 I	■132 I	■ 991	■ 771	Z 249 K	■ 187 K	■ 125 K	■ 125 J	■ 112 J	■ 81 J	■ 131 J	Z 76 J
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 39 J	■ 491	■ 37 l	28 I	22 I									


Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(MM)	
S7143.0	3.00	3.00	19.00	60.0	3
S7144.0	4.00	4.00	19.00	60.0	3
\$7145.0	5.00	5.00	19.00	60.0	3
S7146.0	6.00	6.00	31.00	75.0	3
S7148.0	8.00	8.00	31.00	75.0	3
S71410.0	10.00	10.00	31.00	75.0	3
S71412.0	12.00	12.00	50.00	100.0	3
S71414.0	14.00	14.00	57.00	125.0	3
S71416.0	16.00	16.00	57.00	125.0	3
S71418.0	18.00	18.00	57.00	125.0	3
\$71420.0	20.00	20.00	57.00	125.0	3

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 M1.1 M1.2 M2.1 ■88 J ■ 98 J ■ 101 J ■75 J ■ 66 J **■**591 ■61 J ■ 49 I **41** I ■36 l ■31 I ■ 50 J ■ 42 J ■ 44 J

M2.2 M3.1 M3.2 K1.1 **K1.2 K2.1 K2.2** K3.1 K3.2 K3.3 K4.1 K4.2 **■**361 **■**411 **■**351 ■86 J ■64 J ■ 48 J ■89 J ■72 J **■** 58 l ■79 J ■ 60 J **■**491 **■**73 l ■ 55 l K4.3 K4.4 K4.5 K5.2 N1.1 **N1.2 N1.3 N2.1** N2.2 N2.3 N3.1 N3.2 ■ 40 I **■**351 **2**91 ■83 I **■**621 **■**481 **∠** 178 K **Z**90 J **Z** 80 J **Z**94 J **Z** 134 K **≥**90 K **Z** 58 J **Z**55 J **S4.1** N3.3 **S1.2 S2.1 S3.1**

DCON MS с допуском h6.

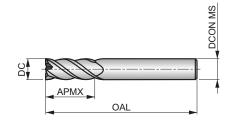
■30 l

23 I

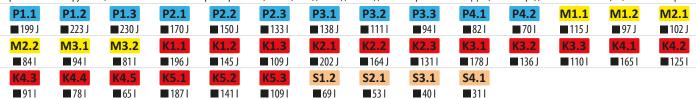
■181

14 I

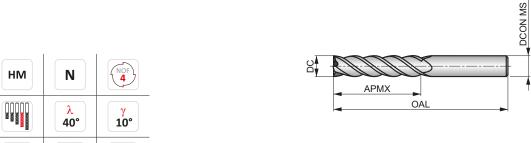
Z 28 J


Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7153.0	3.00	3.00	25.00	100.0	3
S7154.0	4.00	4.00	31.00	100.0	3
\$7155.0	5.00	5.00	31.00	100.0	3
S7156.0	6.00	6.00	38.00	100.0	3
S7158.0	8.00	8.00	41.00	100.0	3
S71510.0	10.00	10.00	57.00	125.0	3
S71512.0	12.00	12.00	75.00	150.0	3
S71514.0	14.00	14.00	75.00	150.0	3
S71516.0	16.00	16.00	75.00	150.0	3
\$71518.0	18.00	18.00	75.00	150.0	3
\$71520.0	20.00	20.00	75.00	150.0	3

Фреза из твердого сплава


Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.



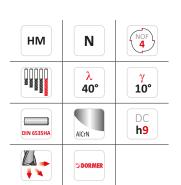
Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7162.0	2.00	4.00	6.50	40.0	4
S7163.0	3.00	3.00	9.00	40.0	4
S7164.0	4.00	4.00	12.00	50.0	4
S7165.0	5.00	5.00	15.00	50.0	4
S7166.0	6.00	6.00	16.00	50.0	4
S7168.0	8.00	8.00	20.00	64.0	4
S71610.0	10.00	10.00	22.00	70.0	4
S71612.0	12.00	12.00	25.00	75.0	4
S71614.0	14.00	14.00	32.00	90.0	4
S71616.0	16.00	16.00	32.00	90.0	4
S71618.0	18.00	18.00	38.00	100.0	4
S71620.0	20.00	20.00	38.00	100.0	4

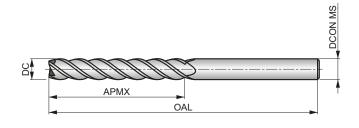
Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

DC

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P2.2 P1.3 P2.1 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 M1.1 M1.2 **1/0** I **■** 120 I 106 I 0/1 **70 I** E01 ■ 01 I **■**601 661 **40** I


140 J	■ 157 J	■ 102 J	120 J	1001	941	■ 97 J	■ /81	■ 00 I	■ 381	491	■ 917	■ 00 J	/IJ
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 591	■ 661	■ 57 l	■ 138 J	■ 102 J	■77 J	■ 142 J	■ 115 J	■ 92 l	■ 125 J	■ 96 J	■ 781	■ 116 l	■ 88 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■ 641	■ 551	■46 I	■ 132 I	■99 I	■ 77 l	Z 249 K	∠ 187 K	Z 125 K	∠ 125 J	■ 112 J	Z 81 J	■ 131 J	Z 76 J
N3.3	S1.2	S2.1	S3.1	S4.1									
Z 39 J	■ 491	■ 37 I	28 I	22 I									

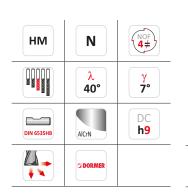

Обозначение	DC	DCON MS APMX		OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7173.0	3.00	3.00	19.00	60.0	4
S7174.0	4.00	4.00	19.00	60.0	4
\$7175.0	5.00	5.00	19.00	60.0	4
S7176.0	6.00	6.00	31.00	75.0	4
S7178.0	8.00	8.00	31.00	75.0	4
S71710.0	10.00	10.00	31.00	75.0	4
S71712.0	12.00	12.00	50.00	100.0	4
S71714.0	14.00	14.00	57.00	125.0	4
S71716.0	16.00	16.00	57.00	125.0	4
S71718.0	18.00	18.00	57.00	125.0	4
\$71720.0	20.00	20.00	57.00	125 0	4

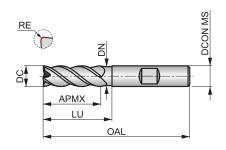
Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 88 J	■98 J	■101 J	■75 J	■ 66 J	■ 591	■ 61 J	■ 491	■41 I	■ 36 l	■ 311	■50 J	■ 42 J	■ 44 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 361	41 I	■ 351	■86 J	■ 64 J	■ 48 J	■89 J	■72 J	■ 581	■79 J	■60 J	■ 49 l	■ 73 l	■ 551
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
40 I	■ 351	29 I	■83 I	■ 621	■ 48 I	■ 178 K	■ 134 K	≥ 90 K	≥ 90 J	∠ 80 J	 ■ 58 J	∠ 94 J	Z 55 J
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 28 J	■ 301	23 I	■ 181	■ 141									

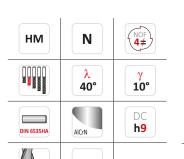

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(мм)	(MM)	
\$7183.0	3.00	3.00	25.00	100.0	4
S7184.0	4.00	4.00	31.00	100.0	4
\$7185.0	5.00	5.00	31.00	100.0	4
\$7186.0	6.00	6.00	38.00	100.0	4
\$7188.0	8.00	8.00	41.00	100.0	4
\$71810.0	10.00	10.00	57.00	125.0	4
\$71812.0	12.00	12.00	75.00	150.0	4
\$71814.0	14.00	14.00	75.00	150.0	4
\$71816.0	16.00	16.00	75.00	150.0	4
\$71818.0	18.00	18.00	75.00	150.0	4
\$71820.0	20.00	20.00	75.00	150.0	4

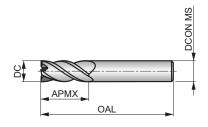

S722HB

Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, уменьшенную шейку и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 J	■223 J	■ 230 J	■ 170 J	■ 150 J	■133 I	■ 138 J	■ 1111	■ 94 l	■82 I	■ 70 l	■115 J	■ 97 J	■102 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■84 I	■ 941	■ 811	■ 196 J	■ 145 J	■ 109 J	■ 202 J	■ 164 J	■131 I	■178 J	■ 136 J	■ 110 I	■ 165 I	■ 125 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 911	1 781	■ 651	■ 187 I	1 411	■ 1091	■ 691	■ 531	4 0 l	■ 311				

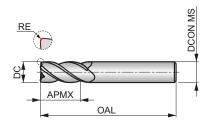

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S722HB3.0	3.00	0.10	6.00	9.00	50.0	4	15.00	2.80
S722HB4.0	4.00	0.10	6.00	11.00	57.0	4	20.00	3.70
S722HB5.0	5.00	0.10	6.00	13.00	57.0	4	20.00	4.60
S722HB6.0	6.00	0.10	6.00	20.00	60.0	4	25.00	5.50
S722HB8.0	8.00	0.20	8.00	20.00	64.0	4	26.00	7.40
S722HB10.0	10.00	0.20	10.00	27.00	70.0	4	32.00	9.20
S722HB12.0	12.00	0.20	12.00	26.00	83.0	4	37.00	11.00
S722HB14.0	14.00	0.20	14.00	26.00	83.0	4	37.00	13.00
S722HB16.0	16.00	0.20	16.00	32.00	92.0	4	42.00	15.00
S722HB18.0	18.00	0.20	18.00	32.00	92.0	4	42.00	17.00
S722HB20.0	20.00	0.20	20.00	38.00	104.0	4	50.00	19.00

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° , переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

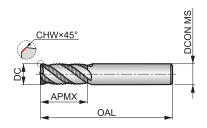
приненени	c micipymen	ia, na iambilbi	c sina icinini ci	topocini pesai	(,	· migene noge	тите податат	nonpado mo	те поэффицие	пты определ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	miquin, na mi	ian e cip. 112.
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 211 J	■236 J	■243 J	■180 J	■ 158 J	■ 140 I	■ 146 J	■ 117 l	■ 991	■86 I	■ 741	■ 122 J	■ 103 J	■ 108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■86 I	■208 J	■ 154 J	■ 116 J	■ 214 J	■ 174 J	■ 1391	■ 189 J	■ 145 J	■117 I	■176 l	■132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 97 l	■ 83 I	■ 691	■ 199 I	■ 149 I	■ 116 l	■ 72 l	■ 561	42 I	■ 33 l				

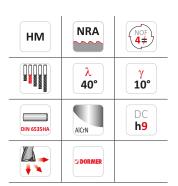

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S7613.0	3.00	6.00	9.00	57.0	4
S7614.0	4.00	6.00	12.00	57.0	4
S7615.0	5.00	6.00	13.00	57.0	4
S7616.0	6.00	6.00	13.00	57.0	4
S7618.0	8.00	8.00	20.00	64.0	4
S76110.0	10.00	10.00	22.00	72.0	4
S76112.0	12.00	12.00	26.00	83.0	4
S76114.0	14.00	14.00	32.00	83.0	4
S76116.0	16.00	16.00	32.00	92.0	4
\$76120.0	20.00	20.00	38.00	104.0	4

Фреза из твердого сплава с радиусом

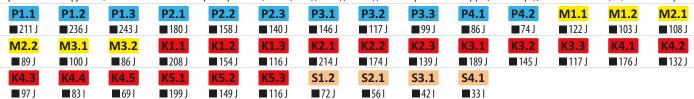
Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■ 243 J	■ 180 J	■ 158 J	■140 I	■ 146 J	■117 I	■ 99 l	■ 861	■ 741	■ 122 J	■ 103 J	■108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■ 861	■ 208 J	■ 154 J	■116 J	■214 J	■ 174 J	■139 I	■189 J	■ 145 J	■117 I	■ 176 l	■ 132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
971	831	691	199 I	1491	1161	■ 721	561	42 I	331				

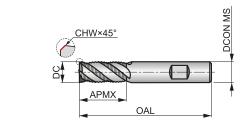

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(мм)	(MM)	(MM)	
S7633.0XR0.3	3.00	0.30	3.00	9.00	40.0	4
S7634.0XR0.3	4.00	0.30	4.00	12.00	50.0	4
S7634.0XR0.5	4.00	0.50	4.00	12.00	50.0	4
S7635.0XR0.3	5.00	0.30	5.00	15.00	50.0	4
S7635.0XR0.5	5.00	0.50	5.00	15.00	50.0	4
S7636.0XR0.5	6.00	0.50	6.00	16.00	50.0	4
S7636.0XR1.0	6.00	1.00	6.00	16.00	50.0	4
S7638.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S7638.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S76310.0XR0.5	10.00	0.50	10.00	22.00	70.0	4
S76310.0XR1.0	10.00	1.00	10.00	22.00	70.0	4
S76310.0XR2.0	10.00	2.00	10.00	22.00	70.0	4
S76312.0XR1.0	12.00	1.00	12.00	25.00	75.0	4
S76312.0XR2.0	12.00	2.00	12.00	25.00	75.0	4
S76312.0XR3.0	12.00	3.00	12.00	25.00	75.0	4
S76314.0XR1.5	14.00	1.50	14.00	32.00	90.0	4
S76316.0XR1.0	16.00	1.00	16.00	32.00	90.0	4
S76316.0XR2.0	16.00	2.00	16.00	32.00	90.0	4
S76316.0XR3.0	16.00	3.00	16.00	32.00	90.0	4
S76318.0XR2.0	18.00	2.00	18.00	38.00	100.0	4
S76320.0XR3.0	20.00	3.00	20.00	38.00	100.0	4

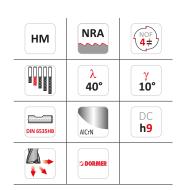
Фреза из твердого сплава с фаской для черновой обработки


Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающий профиль NRA и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

DCON MS с допуском h6; CHW $\pm~0.02\text{X}45^\circ$ мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S7656.0	6.00	0.10	6.00	16.00	50.0	4
\$7658.0	8.00	0.20	8.00	20.00	64.0	4
\$76510.0	10.00	0.20	10.00	22.00	70.0	4
S76512.0	12.00	0.20	12.00	26.00	75.0	4
S76514.0	14.00	0.30	14.00	32.00	90.0	4
S76516.0	16.00	0.30	16.00	32.00	90.0	4
S76518.0	18.00	0.30	18.00	38.00	100.0	4
\$76520.0	20.00	0.40	20.00	38.00	100.0	4

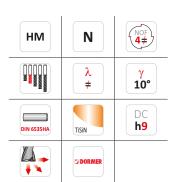


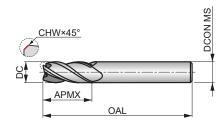
Фреза из твердого сплава с фаской для черновой обработки

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающий профиль NRA и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■ 243 J	■ 180 J	■ 158 J	■ 140 J	■ 146 J	■ 117 J	■99 J	■86 J	■74 J	■ 122 J	■ 103 J	■108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■89 J	■100 J	■86 J	■ 208 J	■ 154 J	■ 116 J	■ 214 J	■ 174 J	■139 J	■189 J	■ 145 J	■ 117 J	■ 176 J	■132 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 97 I	831	691	199 I	■ 149 I	■116 I	■72 I	561	4 21	331				


DCON MS с допуском h6; CHW $\pm\,0.02\text{X}45^\circ$ мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S765HB6.0	6.00	0.10	6.00	16.00	50.0	4
S765HB8.0	8.00	0.20	8.00	20.00	64.0	4
S765HB10.0	10.00	0.20	10.00	22.00	70.0	4
S765HB12.0	12.00	0.20	12.00	26.00	75.0	4
S765HB14.0	14.00	0.30	14.00	32.00	90.0	4
S765HB16.0	16.00	0.30	16.00	32.00	90.0	4
S765HB18.0	18.00	0.30	18.00	38.00	100.0	4
S765HB20.0	20.00	0.40	20.00	38.00	100.0	4

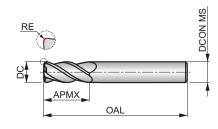
Фреза из твердого сплава с фаской

Конструкция фрезы имеет переменный угол наклона спирали, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 211 J	■ 236 J	■ 243 J	■180 J	■ 158 J	■ 140 I	■ 146 J	■ 117 I	■ 991	■ 861	■ 741	■ 122 J	■ 103 J	■ 108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■86 I	■208 J	■ 154 J	■ 116 J	■ 214 J	■ 174 J	■139 I	■ 189 J	■ 145 J	■117 I	■176 I	■132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 97 I	■83 I	■ 691	■ 199 I	■ 149 I	■116 I	■ 72 l	■ 561	■ 421	■ 33 I				


DCON MS с допуском h6; CHW $\pm\,0.02\text{X}45^\circ\,\text{мм}.$


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S7664.0	4.00	0.10	6.00	11.00	57.0	4
\$7665.0	5.00	0.10	6.00	13.00	57.0	4
S7666.0	6.00	0.10	6.00	13.00	57.0	4
\$7668.0	8.00	0.20	8.00	20.00	64.0	4
S76610.0	10.00	0.20	10.00	22.00	72.0	4
S76612.0	12.00	0.20	12.00	26.00	83.0	4
S76614.0	14.00	0.30	14.00	26.00	83.0	4
S76616.0	16.00	0.30	16.00	32.00	92.0	4
S76620.0	20.00	0.40	20.00	38.00	104.0	4

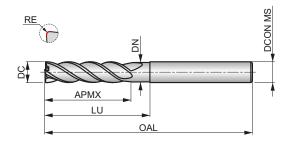
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет переменный угол наклона спирали, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■211 J	■236 J	■ 243 J	■ 180 J	■ 158 J	■ 140 I	■ 146 J	■117 I	■ 99 I	■86 I	74 I	■ 122 J	■ 103 J	■108 J
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■ 861	■ 208 J	■ 154 J	■116 J	■214 J	■ 174 J	■139 I	■189 J	■ 145 J	■117 I	■ 176 I	■ 132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
971	831	691	1991	1491	1161	■ 721	561	4 21	33 1				

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(MM)	(MM)	(MM)	
S7674.0XR0.3	4.00	0.30	6.00	11.00	57.0	4
S7674.0XR0.5	4.00	0.50	6.00	11.00	57.0	4
S7675.0XR0.3	5.00	0.30	6.00	13.00	57.0	4
S7675.0XR0.5	5.00	0.50	6.00	13.00	57.0	4
S7676.0XR0.3	6.00	0.30	6.00	13.00	57.0	4
S7676.0XR0.5	6.00	0.50	6.00	13.00	57.0	4
S7676.0XR1.0	6.00	1.00	6.00	13.00	57.0	4
S7678.0XR0.3	8.00	0.30	8.00	20.00	64.0	4
S7678.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S7678.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S76710.0XR0.3	10.00	0.30	10.00	22.00	72.0	4
S76710.0XR0.5	10.00	0.50	10.00	22.00	72.0	4
S76710.0XR1.0	10.00	1.00	10.00	22.00	72.0	4
S76712.0XR0.3	12.00	0.30	12.00	26.00	83.0	4
S76712.0XR0.5	12.00	0.50	12.00	26.00	83.0	4
S76712.0XR1.0	12.00	1.00	12.00	26.00	83.0	4
S76712.0XR2.0	12.00	2.00	12.00	26.00	83.0	4
S76716.0XR0.3	16.00	0.30	16.00	32.00	92.0	4
S76716.0XR0.5	16.00	0.50	16.00	32.00	92.0	4
S76716.0XR1.0	16.00	1.00	16.00	32.00	92.0	4
S76716.0XR2.0	16.00	2.00	16.00	32.00	92.0	4
S76720.0XR0.3	20.00	0.30	20.00	38.00	104.0	4
S76720.0XR0.5	20.00	0.50	20.00	38.00	104.0	4
S76720.0XR1.0	20.00	1.00	20.00	38.00	104.0	4
S76720.0XR2.0	20.00	2.00	20.00	38.00	104.0	4

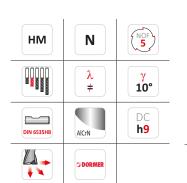


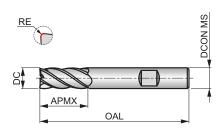
Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет переменный угол наклона спирали, переменный шаг зубьев, уменьшенную шейку и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■148 I	■ 165 I	■ 170 I	■ 126 I	■ 1111	■ 98 G	■ 102 I	■ 82 G	■ 69 G	■ 60 G	■52 G	■ 85 I	■ 72 l	■ 761
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 621	70 I	■ 601	■ 146 I	■108 I	■ 811	■ 150 l	■ 122 l	■ 97 G	■132 I	■ 102 I	■82 G	■ 123 G	■ 92 G
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 68 G	■ 581	■ 48 I	■139 G	■ 104 G	■ 81 G	■ 50 l	■39 G	■ 29 G	■ 23 G				


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S7684.0	4.00	0.10	6.00	19.00	75.0	4	32.00	3.70
\$7685.0	5.00	0.10	6.00	19.00	75.0	4	32.00	4.60
S7686.0	6.00	0.10	6.00	25.00	75.0	4	32.00	5.50
\$7688.0	8.00	0.20	8.00	30.00	75.0	4	38.00	7.40
S76810.0	10.00	0.20	10.00	40.00	100.0	4	50.00	9.20
S76812.0	12.00	0.30	12.00	45.00	100.0	4	55.00	11.00
S76816.0	16.00	0.30	16.00	65.00	125.0	4	75.00	15.00
\$76820.0	20.00	0.30	20.00	65.00	125.0	4	75.00	19.00



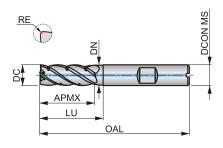
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет переменный угол наклона спирали и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

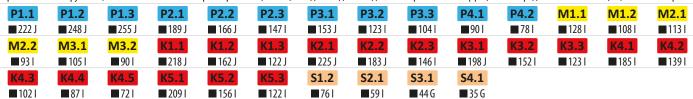
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
211 I	■236 I	■ 243 I	■ 180 l	■ 158 l	■ 140 l	■146 l	■ 117 l	■ 99 l	■ 861	■ 741	■122 I	■ 103 I	■ 108 I
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 891	■ 100 I	■86 I	208 I	■ 154 l	■ 1161	214 I	■ 174 l	■139 I	■ 189 I	■145 I	■117 I	■ 176 I	■ 132 I
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 97 I	■83 G	■ 69 G	■ 199 I	■ 149 I	1161	1 721	■ 56 G	■ 42 G	■33 G				

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S770HB10.0	10.00	0.20	10.00	22.00	72.0	5
S770HB12.0	12.00	0.30	12.00	26.00	83.0	5
S770HB16.0	16.00	0.30	16.00	32.00	92.0	5
S770HB20.0	20.00	0.30	20.00	38.00	104.0	5

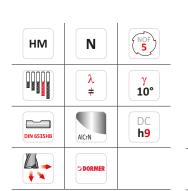


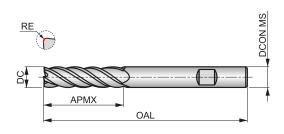
Фреза из твердого сплава с радиусом для черновой обработки

Конструкция фрезы имеет переменный угол наклона спирали, стружколомающий профиль FS, внутренний подвод СОЖ и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.



Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S771HB10.0	10.00	0.20	10.00	25.00	72.0	5	30.00	9.70
S771HB12.0	12.00	0.20	12.00	30.00	83.0	5	38.00	11.70
S771HB16.0	16.00	0.30	16.00	39.00	92.0	5	44.00	15.70
S771HB20.0	20.00	0.30	20.00	48.00	104.0	5	54.00	19.70



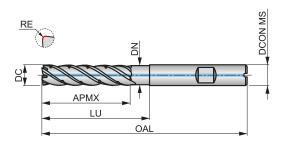
Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет переменный угол наклона спирали и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■148 G	■ 165 G	■ 170 G	■126 G	■111 G	■98 F	■ 102 G	■82 F	■69 F	■60 F	■ 52 F	■ 85 G	■72 G	■ 76 G
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■62 G	■ 70 G	■ 60 G	■ 146 G	■108 G	■81 G	■ 150 G	■ 122 G	■97 F	■ 132 G	■ 102 G	■ 82 F	■ 123 F	■ 92 F
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■68 F	■ 58 G	■ 48 G	■ 139 F	104 F	■81 F	■ 50 F	■39 F	■29 F	■23 F				

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S772HB10.0	10.00	0.20	10.00	38.00	100.0	5
S772HB12.0	12.00	0.30	12.00	45.00	100.0	5
S772HB16.0	16.00	0.30	16.00	55.00	125.0	5
S772HB20.0	20.00	0.30	20.00	65.00	125.0	5

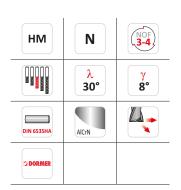


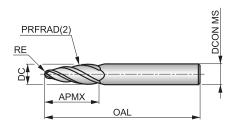
Фреза из твердого сплава удлиненной конструкции с радиусом для черновой обработки

Конструкция фрезы имеет переменный угол наклона спирали, уменьшенную шейку, стружколомающий профиль FS, внутренний подвод СОЖ и геометрию для высокопроизводительного динамического фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

pee	cc.p)c	(a) 11a 1a/121121	c 5114 10111111 ei	opoem pesa.	(,	деле поде	ода .а .		.е поэффиции	р. определ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.a p
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 155 G	■ 173 G	■ 179 G	■132 G	■ 117 G	■ 103 F	■ 107 G	■86 F	■72 F	■63 F	■ 55 F	■89 F	■76 F	■ 80 F
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 65 F	■ 74 F	■ 63 F	■ 153 G	■113 G	■ 85 G	■158 G	■128 G	■ 102 F	■ 139 G	■ 107 G	■86 F	■ 129 F	■ 97 F
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	S1.2	S2.1	S3.1	S4.1				
■ 71 F	■61 E	■ 50 E	1/6 F	100 F	■ 85 F	■ 53 F	■ /1 F	■30 E	■ 24 E				


Обозначение	DC	RE	DCON MS	АРМХ	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S773HB10.0	10.00	0.20	10.00	42.00	100.0	5	52.00	9.70
S773HB12.0	12.00	0.20	12.00	42.00	100.0	5	54.00	11.70
S773HB16.0	16.00	0.30	16.00	60.00	125.0	5	68.00	15.70
S773HB20.0	20.00	0.30	20.00	67.00	125.0	5	75.00	19.70



Параболическая фреза из твердого сплава

Конструкция фрезы имеет форму со сферической вершиной и боковой поверхностью большого радиуса, угол наклона спирали 30° и геометрию для высокопроизводительного копировального фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

$\overline{\sim}$	

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■161 F	■181 F	■ 186 F	■ 138 F	■ 121 F	■ 108 E	■ 112 F	■90 E	■76 E	■ 66 E	■ 57 E	Z 46 E	■ 94 F	■ 79 F
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■83 F	■ 69 E	Z 77 E	Z 66 E	 59 E	 ■ 58 E	■ 161 F	■ 119 F	■89 F	■ 165 F	■134 F	■ 107 E	■ 146 F	■112 F
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 90 E	■ 136 E	■ 102 E	■75 E	■ 64 E	■ 54 E	■ 154 E	■ 115 E	■89 E	⊿ 355 I	Z 267 I	∠ 1791	■ 179 F	■ 160 F
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 115 F	■ 187 F	■ 109 F	 ■ 56 F	∠ 187 F	Z 72 F	≥ 58 E	 ■ 56 E	∠ 143 E	≥ 33 E	Z 26 E			

DCON MS с допуском h6; RE ± 0.01 мм; PRFRAD(2) ± 0.01 мм.

Обозначение	DC	RE	PRFRAD(2)	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	
S7916.0	6.00	1.00	95.0	6.00	22.00	67.0	3
S7918.0	8.00	1.00	90.0	8.00	25.00	75.0	3
S79110.0	10.00	2.00	85.0	10.00	26.00	75.0	4
S79112.0	12.00	2.00	80.0	12.00	28.00	83.0	4
S79116.0	16.00	3.00	75.0	16.00	31.00	90.0	4

AlTiN

ZJ.

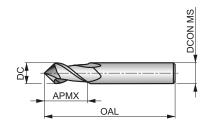
Фреза из твердого сплава для обработки фасок 60°

Конструкция фрезы имеет угол наклона спирали 40°, угол при вершине 60° и геометрию для высокопроизводительного фрезерования фасок на заготовках из большинства материалов. Покрытие AlTiN повышает стойкость и производительность.

DC **h9**

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 K	223 K	■ 230 K	■ 170 K	■ 150 K	■ 133 J	■138 K	■111 J	■94 J	■ 82 J	■70 J	■ 115 K	■ 97 K	■ 102 K
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■ 84 J	■94 J	■81 J	■ 196 K	■ 145 K	■ 109 K	■ 202 K	■164 K	■131 J	■ 178 K	■ 136 K	■110 J	■ 165 J	■ 125 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■ 91 J	■78 J	■ 65 J	■187 J	■ 141 J	■ 109 J	⊿ 355 N	■ 267 N	■ 179 N	■ 179 K	■ 160 K	■ 115 K	■ 187 K	■ 109 K
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 56 K	■ 69 J	■53 J	■ 40 J	■31 J									

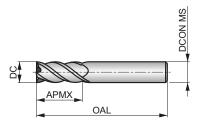

Обозначение	KAPR	DC	DCON MS	APMX	OAL	NOF
	(°)	(MM)	(MM)	(MM)	(MM)	
\$7393.0	60	3.00	3.00	9.00	40.0	2
S7394.0	60	4.00	4.00	12.00	50.0	2
\$7395.0	60	5.00	5.00	15.00	50.0	2
\$7396.0	60	6.00	6.00	16.00	50.0	2
\$7398.0	60	8.00	8.00	20.00	64.0	2
\$73910.0	60	10.00	10.00	22.00	70.0	2
S73912.0	60	12.00	12.00	25.00	75.0	2
S73916.0	60	16.00	16.00	32.00	90.0	2
\$73920.0	60	20.00	20.00	38.00	100.0	2

Фреза из твердого сплава для обработки фасок 90°

Конструкция фрезы имеет угол наклона спирали 40°, угол при вершине 90° и геометрию для высокопроизводительного фрезерования фасок на заготовках из большинства материалов. Покрытие AITiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
■ 199 K	■ 223 K	■ 230 K	■ 170 K	■150 K	■ 133 J	■ 138 K	■111 J	■94 J	■82 J	■ 70 J	■ 115 K	■97 K	■ 102 K
M2.2	M3.1	M3.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2
■84 J	■94 J	■81 J	■ 196 K	■145 K	■109 K	■ 202 K	■ 164 K	■131 J	■ 178 K	■ 136 K	■110 J	■ 165 J	■125 J
K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2
■91 J	■78 J	■ 65 J	■ 187 J	■ 141 J	■ 109 J	≥ 355 N	■267 N	■179 N	■ 179 K	■ 160 K	■ 115 K	■ 187 K	■ 109 K
N3.3	S1.2	S2.1	S3.1	S4.1									
≥ 56 K	■ 69 J	■53 J	■ 40 J	■ 31 J									


Обозначение	KAPR	DC	DCON MS	APMX	OAL	NOF
	(°)	(MM)	(MM)	(мм)	(MM)	
S7403.0	90	3.00	3.00	9.00	40.0	2
S7404.0	90	4.00	4.00	12.00	50.0	2
S7405.0	90	5.00	5.00	15.00	50.0	2
S7406.0	90	6.00	6.00	16.00	50.0	2
S7408.0	90	8.00	8.00	20.00	64.0	2
S74010.0	90	10.00	10.00	22.00	70.0	2
S74012.0	90	12.00	12.00	25.00	75.0	2
S74016.0	90	16.00	16.00	32.00	90.0	2
S74020.0	90	20.00	20.00	38.00	100.0	2

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AITiN повышает стойкость и производительность.

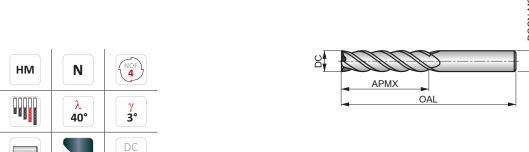
S3.2

■33 I

S4.2

27 I

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.



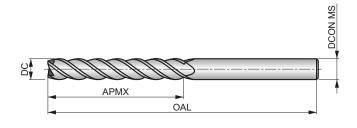
Обозначение	DC	DCON MS	APMX	OAL (MM)	NOF
63163.0					4
S2162.0	2.00	4.00	6.50	40.0	4
S2163.0XD3	3.00	3.00	9.00	40.0	4
S2163.0XD6	3.00	6.00	9.00	50.0	4
S2164.0XD4	4.00	4.00	12.00	50.0	4
S2164.0XD6	4.00	6.00	12.00	50.0	4
S2165.0	5.00	5.00	15.00	50.0	4
S2166.0	6.00	6.00	16.00	50.0	4
S2168.0	8.00	8.00	20.00	64.0	4
S21610.0	10.00	10.00	22.00	70.0	4
S21612.0	12.00	12.00	25.00	75.0	4
S21614.0	14.00	14.00	32.00	90.0	4
S21616.0	16.00	16.00	32.00	90.0	4
S21618.0	18.00	18.00	38.00	100.0	4
S21620.0	20.00	20.00	38.00	100.0	4

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AITiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

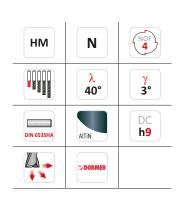
M2.3 M4.1 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 ■ 64 J ■ 64 J ■ 65 I **■** 64 l **■** 54 l ■46 I **■**381 **26** I **22** I

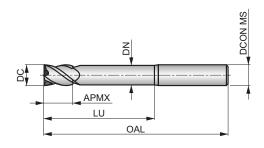

Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(мм)	(MM)	(мм)	(мм)	
S2173.0XD3	3.00	3.00	19.00	60.0	4
S2173.0XD6	3.00	6.00	19.00	75.0	4
S2174.0XD4	4.00	4.00	19.00	60.0	4
S2174.0XD6	4.00	6.00	19.00	75.0	4
S2175.0	5.00	5.00	19.00	60.0	4
S2176.0	6.00	6.00	31.00	75.0	4
S2178.0	8.00	8.00	31.00	75.0	4
S21710.0	10.00	10.00	31.00	75.0	4
S21712.0	12.00	12.00	50.00	100.0	4
S21714.0	14.00	14.00	57.00	125.0	4
S21716.0	16.00	16.00	57.00	125.0	4
S21718.0	18.00	18.00	57.00	125.0	4
S21720.0	20.00	20.00	57.00	125.0	4

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

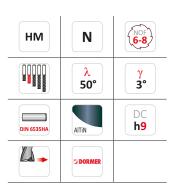

S2.2 M2.3 M4.2 **S1.3 S3.2 S4.2** M3.3 M4.1 ■ 40 J ■ 40 J ■ 41 l ■ 40 I ■34 I ■ 29 I **24** I ■ 17 l **1**4 l


Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S2183.0	3.00	3.00	25.00	100.0	4
S2184.0	4.00	4.00	31.00	100.0	4
S2185.0	5.00	5.00	31.00	100.0	4
S2186.0	6.00	6.00	38.00	100.0	4
S2188.0	8.00	8.00	41.00	100.0	4
S21810.0	10.00	10.00	57.00	125.0	4
S21812.0	12.00	12.00	75.00	150.0	4
S21814.0	14.00	14.00	75.00	150.0	4
S21816.0	16.00	16.00	75.00	150.0	4
S21818.0	18.00	18.00	75.00	150.0	4
S21820.0	20.00	20.00	75.00	150.0	4

Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 40°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из труднообрабатываемых материалов. Покрытие AITiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 ■ 64 J ■ 64 J ■ 65 I **■** 64 l **■** 54 l ■46 I **■**381 **26** I **22** I

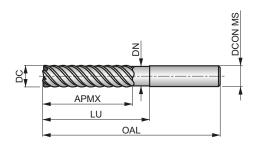
Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S2193.0	3.00	3.00	5.00	60.0	4	30.00	2.80
S2194.0	4.00	4.00	8.00	60.0	4	32.00	3.70
S2195.0	5.00	5.00	9.00	60.0	4	32.00	4.60
S2196.0	6.00	6.00	10.00	75.0	4	40.00	5.50
S2198.0	8.00	8.00	12.00	75.0	4	40.00	7.40
S21910.0	10.00	10.00	14.00	75.0	4	40.00	9.20
S21912.0	12.00	12.00	16.00	100.0	4	60.00	11.00
S21914.0	14.00	14.00	22.00	125.0	4	85.00	13.00
S21916.0	16.00	16.00	22.00	125.0	4	85.00	15.00
S21918.0	18.00	18.00	26.00	125.0	4	85.00	17.00
S21920.0	20.00	20.00	26.00	125.0	4	85.00	19.00

Фреза из твердого сплава для чистовой обработки

Конструкция фрезы имеет уменьшенную шейку, угол наклона спирали 50° и геометрию для высокопроизводительного чистового фрезерования труднообрабатываемых материалов. Покрытие AlTiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

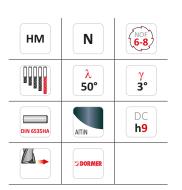
M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 ■82 F ■ 80 G ■80 G ■ 80 F ■ 68 F ■ 58 F ■ 47 F ■33 F ■ 27 F

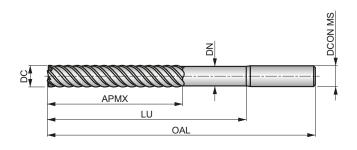

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S2253.0	3.00	6.00	8.00	50.0	6	20.00	2.80
S2254.0	4.00	6.00	11.00	50.0	6	20.00	3.70
S2256.0	6.00	6.00	15.00	50.0	6	20.00	5.50
S2258.0	8.00	8.00	20.00	64.0	6	30.00	7.40
S22510.0	10.00	10.00	22.00	70.0	6	32.00	9.20
S22512.0	12.00	12.00	25.00	75.0	6	37.00	11.00
S22514.0	14.00	14.00	30.00	90.0	6	44.00	13.00
S22516.0	16.00	16.00	30.00	90.0	8	46.00	15.00
S22518.0	18.00	18.00	35.00	100.0	8	53.00	17.00
S22520.0	20.00	20.00	38.00	100.0	8	58.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 50° и геометрию для высокопроизводительного чистового фрезерования труднообрабатываемых материалов. Покрытие AITIN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

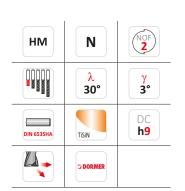

P4.3	M2.3	M3.3	M4.1	M4.2	S1.3	S2.2	S3.2	S4.2
■64 G	■ 64 G	■ 65 F	■ 64 F	■ 54 F	■ 46 F	■38 F	■ 26 F	■ 22 F

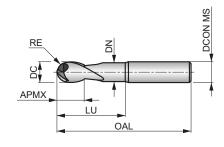

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S2263.0	3.00	6.00	19.00	75.0	6	30.00	2.80
S2264.0	4.00	6.00	19.00	75.0	6	32.00	3.70
S2266.0	6.00	6.00	31.00	75.0	6	40.00	5.50
S2268.0	8.00	8.00	31.00	75.0	6	40.00	7.40
S22610.0	10.00	10.00	45.00	100.0	6	60.00	9.20
S22612.0	12.00	12.00	50.00	100.0	6	60.00	11.00
S22614.0	14.00	14.00	57.00	125.0	6	85.00	13.00
S22616.0	16.00	16.00	57.00	125.0	8	85.00	15.00
S22618.0	18.00	18.00	57.00	125.0	8	85.00	17.00
S22620.0	20.00	20.00	57.00	125.0	8	85.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из труднообрабатываемых материалов. Покрытие AITIN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

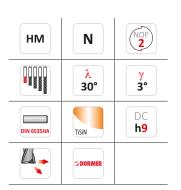

P4.3	M2.3	M3.3	M4.1	M4.2	S1.3	S2.2	S3.2	S4.2
■ 40 G	■ 40 G	■ 41 F	■ 40 F	■ 34 F	■ 29 F	■ 24 F	■ 17 F	■14 F

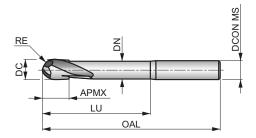

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S2276.0	6.00	6.00	38.00	100.0	6	60.00	5.50
S2278.0	8.00	8.00	41.00	100.0	6	60.00	7.40
S22710.0	10.00	10.00	57.00	125.0	6	85.00	9.20
S22712.0	12.00	12.00	75.00	150.0	6	110.00	11.00
S22714.0	14.00	14.00	75.00	150.0	6	110.00	13.00
S22716.0	16.00	16.00	75.00	150.0	8	110.00	15.00
S22718.0	18.00	18.00	75.00	150.0	8	110.00	17.00
S22720.0	20.00	20.00	75.00	150.0	8	110.00	19.00

Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования труднообрабатываемых материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


DCON MS с допуском h6; RE +0/-0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)	(MM)		(мм)	(мм)
S2291.5XD4	1.50	0.75	4.00	3.00	50.0	2	6.00	1.40
S2292.0XD3	2.00	1.00	3.00	4.00	50.0	2	8.00	1.90
S2292.0XD4	2.00	1.00	4.00	4.00	50.0	2	8.00	1.90
S2293.0XD3	3.00	1.50	3.00	5.00	50.0	2	14.00	2.80
S2293.0XD6	3.00	1.50	6.00	5.00	50.0	2	14.00	2.80
S2294.0XD4	4.00	2.00	4.00	8.00	50.0	2	20.00	3.70
S2294.0XD6	4.00	2.00	6.00	8.00	50.0	2	20.00	3.70
S2295.0XD5	5.00	2.50	5.00	9.00	50.0	2	20.00	4.60
S2295.0XD6	5.00	2.50	6.00	9.00	50.0	2	20.00	4.60
S2296.0	6.00	3.00	6.00	10.00	50.0	2	20.00	5.50
S2298.0	8.00	4.00	8.00	12.00	64.0	2	30.00	7.40
S22910.0	10.00	5.00	10.00	14.00	70.0	2	32.00	9.20
S22912.0	12.00	6.00	12.00	16.00	75.0	2	38.00	11.00
S22914.0	14.00	7.00	14.00	32.00	90.0	2	44.00	13.00
S22916.0	16.00	8.00	16.00	32.00	90.0	2	46.00	15.00

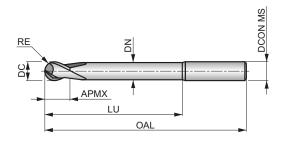
Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования труднообрабатываемых материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M2.3 M4.2 **S1.3 S2.2 S3.2 S4.2** M3.3 M4.1 ■ 64 F ■ 64 F ■ 65 F ■ 64 F ■ 54 F ■ 46 F ■38 F ■ 26 F **22** F

DCON MS с допуском h6; RE +0/-0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(MM)	(мм)		(мм)	(мм)
S2311.5XD4	1.50	0.75	4.00	3.00	75.0	2	10.00	1.40
S2312.0XD3	2.00	1.00	3.00	4.00	60.0	2	14.00	1.90
S2312.0XD4	2.00	1.00	4.00	4.00	75.0	2	14.00	1.90
S2313.0XD3	3.00	1.50	3.00	5.00	60.0	2	21.00	2.80
S2313.0XD6	3.00	1.50	6.00	5.00	75.0	2	21.00	2.80
S2314.0XD4	4.00	2.00	4.00	8.00	60.0	2	28.00	3.70
S2314.0XD6	4.00	2.00	6.00	8.00	75.0	2	28.00	3.70
S2315.0	5.00	2.50	5.00	9.00	60.0	2	32.00	4.60
S2316.0	6.00	3.00	6.00	10.00	75.0	2	40.00	5.50
S2318.0	8.00	4.00	8.00	10.00	75.0	2	40.00	7.40
S23110.0	10.00	5.00	10.00	12.00	75.0	2	40.00	9.20
S23112.0	12.00	6.00	12.00	16.00	100.0	2	60.00	11.00
S23116.0	16.00	8.00	16.00	32.00	125.0	2	80.00	15.00

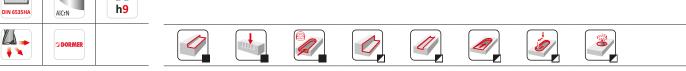
Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования труднообрабатываемых материалов. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M2.3 M4.1 M4.2 **S1.3 S3.2 S4.2** M3.3 **S2.2** ■ 40 F ■ 40 F ■ 41 F ■ 40 F ■34 F ■ 29 F ■ 24 F ■ 17 F ■14 F

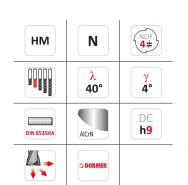
DCON MS с допуском h6; RE +0/-0.02 мм.

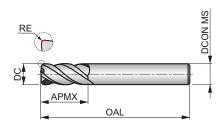

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
S2332.0XD3	2.00	1.00	3.00	4.00	100.0	2	20.00	1.90
S2332.0XD4	2.00	1.00	4.00	4.00	100.0	2	20.00	1.90
S2333.0XD3	3.00	1.50	3.00	5.00	100.0	2	30.00	2.80
S2333.0XD6	3.00	1.50	6.00	5.00	100.0	2	30.00	2.80
S2334.0XD4	4.00	2.00	4.00	8.00	100.0	2	40.00	3.70
S2334.0XD6	4.00	2.00	6.00	8.00	100.0	2	40.00	3.70
S2335.0	5.00	2.50	5.00	9.00	100.0	2	50.00	4.60
S2336.0	6.00	3.00	6.00	10.00	100.0	2	60.00	5.50
S2338.0	8.00	4.00	8.00	12.00	100.0	2	60.00	7.40
S23310.0	10.00	5.00	10.00	14.00	125.0	2	85.00	9.20
S23312.0	12.00	6.00	12.00	16.00	125.0	2	85.00	11.00
S23314.0	14.00	7.00	14.00	32.00	150.0	2	110.00	13.00
S23316.0	16.00	8.00	16.00	32.00	150.0	2	110.00	15.00

Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


P4.3	M2.3	M3.3	M4.1	M4.2	S1.3	S2.2	S3.2	S4.2	H1.1	H2.1	H3.1	H3.2
■ 97 J	■ 97 J	■ 99 I	■ 971	■83 I	■ 701	■ 561	■ 40 I	■ 321	■ 179 l	■ 106 G	■ 118 G	■ 97 G

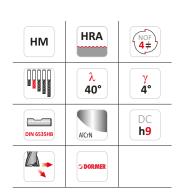

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S2603.0	3.00	6.00	9.00	57.0	4
S2604.0	4.00	6.00	12.00	57.0	4
S2605.0	5.00	6.00	13.00	57.0	4
S2606.0	6.00	6.00	13.00	57.0	4
S2608.0	8.00	8.00	20.00	64.0	4
S26010.0	10.00	10.00	22.00	72.0	4
S26012.0	12.00	12.00	26.00	83.0	4
S26014.0	14.00	14.00	32.00	83.0	4
S26016.0	16.00	16.00	32.00	92.0	4
S26018.0	18.00	18.00	38.00	92.0	4
S26020.0	20.00	20.00	38.00	104.0	4

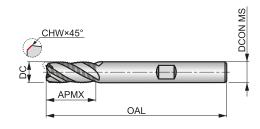
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AICrN повышает стойкость и производительность.

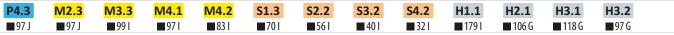
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

M4.2 **S1.3** H1.1 H2.1 H3.1 H3.2 M2.3 M3.3 M4.1 **S2.2 S3.2 S4.2** ■ 97 J ■ 97 J ■ 99 I ■ 97 I ■ 83 I ■70 I **■**561 ■ 40 I **32** I **■** 179 l ■ 106 G ■ 118 G ■97 G


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S2623.0XR0.3	3.00	0.30	6.00	9.00	50.0	4
S2623.0XR0.5	3.00	0.50	6.00	9.00	50.0	4
S2624.0XR0.3	4.00	0.30	6.00	12.00	57.0	4
S2624.0XR0.5	4.00	0.50	6.00	12.00	57.0	4
S2624.0XR1.0	4.00	1.00	6.00	12.00	57.0	4
S2625.0XR0.3	5.00	0.30	6.00	15.00	57.0	4
S2625.0XR0.5	5.00	0.50	6.00	15.00	57.0	4
S2626.0XR0.3	6.00	0.30	6.00	16.00	57.0	4
S2626.0XR0.5	6.00	0.50	6.00	16.00	57.0	4
S2626.0XR1.0	6.00	1.00	6.00	16.00	57.0	4
S2628.0XR0.3	8.00	0.30	8.00	20.00	64.0	4
S2628.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S2628.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S2628.0XR1.5	8.00	1.50	8.00	20.00	64.0	4
S2628.0XR2.0	8.00	2.00	8.00	20.00	64.0	4
S26210.0XR0.3	10.00	0.30	10.00	22.00	72.0	4
S26210.0XR0.5	10.00	0.50	10.00	22.00	72.0	4
S26210.0XR1.0	10.00	1.00	10.00	22.00	72.0	4
S26210.0XR1.5	10.00	1.50	10.00	22.00	72.0	4
S26210.0XR2.0	10.00	2.00	10.00	22.00	72.0	4
S26212.0XR0.3	12.00	0.30	12.00	26.00	83.0	4
S26212.0XR0.5	12.00	0.50	12.00	26.00	83.0	4
S26212.0XR1.0	12.00	1.00	12.00	26.00	83.0	4
S26212.0XR2.0	12.00	2.00	12.00	26.00	83.0	4
S26212.0XR2.5	12.00	2.50	12.00	26.00	83.0	4
S26212.0XR3.0	12.00	3.00	12.00	26.00	83.0	4
S26214.0XR0.3	14.00	0.30	14.00	32.00	83.0	4
S26214.0XR0.5	14.00	0.50	14.00	32.00	83.0	4
S26214.0XR1.0	14.00	1.00	14.00	32.00	83.0	4
S26214.0XR2.0	14.00	2.00	14.00	32.00	83.0	4
S26214.0XR3.0	14.00	3.00	14.00	32.00	83.0	4

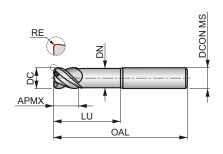

Обозначение	DC (MM)	RE (MM)	DCON MS	APMX	OAL (MM)	NOF
S26216.0XR0.3	16.00	0.30	16.00	32.00	92.0	4
S26216.0XR0.5	16.00	0.50	16.00	32.00	92.0	4
S26216.0XR1.0	16.00	1.00	16.00	32.00	92.0	4
S26216.0XR2.0	16.00	2.00	16.00	32.00	92.0	4
S26216.0XR2.5	16.00	2.50	16.00	32.00	92.0	4
S26216.0XR3.0	16.00	3.00	16.00	32.00	92.0	4
S26216.0XR4.0	16.00	4.00	16.00	32.00	92.0	4
S26218.0XR0.3	18.00	0.30	18.00	38.00	92.0	4
S26218.0XR0.5	18.00	0.50	18.00	38.00	92.0	4
S26218.0XR1.0	18.00	1.00	18.00	38.00	92.0	4
S26218.0XR2.0	18.00	2.00	18.00	38.00	92.0	4
S26218.0XR3.0	18.00	3.00	18.00	38.00	92.0	4
S26220.0XR0.3	20.00	0.30	20.00	38.00	104.0	4
S26220.0XR0.5	20.00	0.50	20.00	38.00	104.0	4
S26220.0XR1.0	20.00	1.00	20.00	38.00	104.0	4
S26220.0XR2.0	20.00	2.00	20.00	38.00	104.0	4
S26220.0XR2.5	20.00	2.50	20.00	38.00	104.0	4
S26220.0XR3.0	20.00	3.00	20.00	38.00	104.0	4
S26220.0XR4.0	20.00	4.00	20.00	38.00	104.0	4

Фреза из твердого сплава с фаской для черновой обработки


Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающий профиль HRA и геометрию для высокопроизводительного фрезерования труднообрабатываемых материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

DCON MS с допуском h6; CHW \pm 0.02X45° мм.

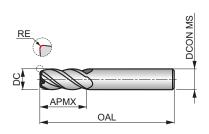

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S2646.0	6.00	0.10	6.00	13.00	57.0	4
S2648.0	8.00	0.20	8.00	20.00	64.0	4
S26410.0	10.00	0.20	10.00	22.00	72.0	4
S26412.0	12.00	0.20	12.00	26.00	83.0	4
S26414.0	14.00	0.30	14.00	26.00	83.0	4
S26416.0	16.00	0.30	16.00	32.00	92.0	4
S26418.0	18.00	0.30	18.00	32.00	92.0	4
S26420.0	20.00	0.40	20.00	38.00	104.0	4

Фреза из твердого сплава с радиусом

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 45°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■1191 ■706 ■60E ■78G ■64G ■50E ■42B

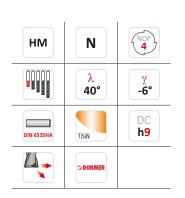

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5213.0XR0.3	3.00	0.30	6.00	4.00	60.0	4	14.00	2.80
S5214.0XR0.3	4.00	0.30	6.00	5.00	60.0	4	16.00	3.70
S5214.0XR0.5	4.00	0.50	6.00	5.00	60.0	4	16.00	3.70
S5215.0XR0.3	5.00	0.30	6.00	6.00	60.0	4	18.00	4.60
S5215.0XR0.5	5.00	0.50	6.00	6.00	60.0	4	18.00	4.60
S5216.0XR0.5	6.00	0.50	6.00	7.00	60.0	4	20.00	5.50
S5216.0XR1.0	6.00	1.00	6.00	7.00	60.0	4	20.00	5.50
S5218.0XR0.5	8.00	0.50	8.00	9.00	64.0	4	26.00	7.40
S5218.0XR1.0	8.00	1.00	8.00	9.00	64.0	4	26.00	7.40
S52110.0XR1.0	10.00	1.00	10.00	11.00	70.0	4	31.00	9.20
S52110.0XR2.0	10.00	2.00	10.00	11.00	70.0	4	31.00	9.20
S52112.0XR1.0	12.00	1.00	12.00	13.00	75.0	4	37.00	11.00
S52112.0XR2.0	12.00	2.00	12.00	13.00	75.0	4	37.00	11.00
S52116.0XR1.0	16.00	1.00	16.00	17.00	90.0	4	43.00	15.00
S52116.0XR2.0	16.00	2.00	16.00	17.00	90.0	4	43.00	15.00
S52116.0XR3.0	16.00	3.00	16.00	17.00	90.0	4	43.00	15.00

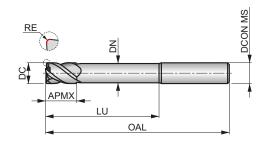
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 1191 ■ 70G ■ 60E ■ 78G ■ 64G ■ 50E ■ 42B


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S5231.5XR0.2	1.50	0.20	6.00	4.50	50.0	4
S5232.0XR0.2	2.00	0.20	6.00	6.50	50.0	4
S5233.0XR0.2XD3	3.00	0.20	3.00	9.00	50.0	4
S5233.0XR0.3XD3	3.00	0.30	3.00	9.00	50.0	4
S5233.0XR0.2XD6	3.00	0.20	6.00	9.00	50.0	4
S5233.0XR0.3XD6	3.00	0.30	6.00	9.00	50.0	4
S5233.0XR0.5XD6	3.00	0.50	6.00	9.00	50.0	4
S5234.0XR0.3XD4	4.00	0.30	4.00	12.00	50.0	4
S5234.0XR0.5XD4	4.00	0.50	4.00	12.00	50.0	4
S5234.0XR0.3XD6	4.00	0.30	6.00	12.00	50.0	4
S5234.0XR0.5XD6	4.00	0.50	6.00	12.00	50.0	4
S5235.0XR0.3XD5	5.00	0.30	5.00	15.00	50.0	4
S5235.0XR0.5XD5	5.00	0.50	5.00	15.00	50.0	4
S5235.0XR0.3XD6	5.00	0.30	6.00	15.00	50.0	4
S5235.0XR0.5XD6	5.00	0.50	6.00	15.00	50.0	4
S5236.0XR0.3	6.00	0.30	6.00	16.00	50.0	4
S5236.0XR0.5	6.00	0.50	6.00	16.00	50.0	4
S5236.0XR1.0	6.00	1.00	6.00	16.00	50.0	4
S5238.0XR0.3	8.00	0.30	8.00	20.00	64.0	4
S5238.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S5238.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S5238.0XR2.0	8.00	2.00	8.00	20.00	64.0	4
S52310.0XR0.5	10.00	0.50	10.00	22.00	70.0	4
S52310.0XR1.0	10.00	1.00	10.00	22.00	70.0	4
S52310.0XR1.5	10.00	1.50	10.00	22.00	70.0	4
S52310.0XR2.0	10.00	2.00	10.00	22.00	70.0	4
S52312.0XR0.5	12.00	0.50	12.00	25.00	75.0	4
S52312.0XR1.0	12.00	1.00	12.00	25.00	75.0	4
S52312.0XR2.0	12.00	2.00	12.00	25.00	75.0	4
S52312.0XR3.0	12.00	3.00	12.00	25.00	75.0	4
S52316.0XR0.5	16.00	0.50	16.00	32.00	90.0	4

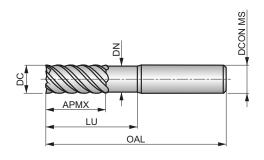

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(мм)	(MM)	
S52316.0XR1.0	16.00	1.00	16.00	32.00	90.0	4
S52316.0XR2.0	16.00	2.00	16.00	32.00	90.0	4
S52316.0XR3.0	16.00	3.00	16.00	32.00	90.0	4

Фреза из твердого сплава удлиненной конструкции с радиусом

Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 40°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 1191 ■ 70G ■ 60E ■ 78G ■ 64G ■ 50E ■ 42B

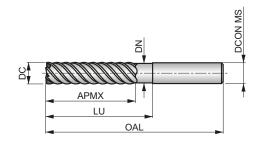

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
S5243.0XR0.3	3.00	0.30	6.00	5.00	75.0	4	30.00	2.80
S5244.0XR0.3	4.00	0.30	6.00	8.00	75.0	4	32.00	3.70
S5244.0XR0.5	4.00	0.50	6.00	8.00	75.0	4	32.00	3.70
S5245.0XR0.3	5.00	0.30	6.00	9.00	75.0	4	32.00	4.60
S5245.0XR0.5	5.00	0.50	6.00	9.00	75.0	4	32.00	4.60
S5246.0XR0.3	6.00	0.30	6.00	10.00	75.0	4	40.00	5.50
S5246.0XR0.5	6.00	0.50	6.00	10.00	75.0	4	40.00	5.50
S5246.0XR1.0	6.00	1.00	6.00	10.00	75.0	4	40.00	5.50
S5248.0XR0.3	8.00	0.30	8.00	12.00	75.0	4	40.00	7.40
S5248.0XR0.5	8.00	0.50	8.00	12.00	75.0	4	40.00	7.40
S5248.0XR1.0	8.00	1.00	8.00	12.00	75.0	4	40.00	7.40
S52410.0XR0.5	10.00	0.50	10.00	14.00	75.0	4	40.00	9.20
S52410.0XR1.0	10.00	1.00	10.00	14.00	75.0	4	40.00	9.20
S52410.0XR2.0	10.00	2.00	10.00	14.00	75.0	4	40.00	9.20
S52412.0XR0.5	12.00	0.50	12.00	16.00	100.0	4	60.00	11.00
S52412.0XR1.0	12.00	1.00	12.00	16.00	100.0	4	60.00	11.00
S52412.0XR2.0	12.00	2.00	12.00	16.00	100.0	4	60.00	11.00
S52416.0XR0.5	16.00	0.50	16.00	22.00	125.0	4	85.00	15.00
S52416.0XR1.0	16.00	1.00	16.00	22.00	125.0	4	85.00	15.00
S52416.0XR2.0	16.00	2.00	16.00	22.00	125.0	4	85.00	15.00
S52416.0XR3.0	16.00	3.00	16.00	22.00	125.0	4	85.00	15.00

Фреза из твердого сплава для чистовой обработки

Конструкция фрезы имеет угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

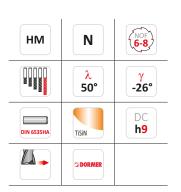
H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 119G ■ 70G ■ 60E ■ 78G ■ 64G ■ 50E ■ 42 A

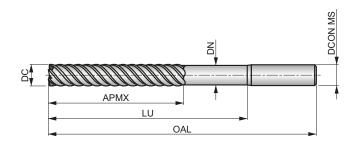

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5253.0	3.00	6.00	8.00	50.0	6	20.00	2.80
S5254.0	4.00	6.00	11.00	50.0	6	20.00	3.70
S5256.0	6.00	6.00	15.00	50.0	6	20.00	5.50
S5258.0	8.00	8.00	20.00	64.0	6	30.00	7.40
S52510.0	10.00	10.00	22.00	70.0	6	32.00	9.20
S52512.0	12.00	12.00	25.00	75.0	6	37.00	11.00
S52514.0	14.00	14.00	30.00	90.0	6	44.00	13.00
S52516.0	16.00	16.00	30.00	90.0	8	46.00	15.00
S52518.0	18.00	18.00	35.00	100.0	8	53.00	17.00
S52520.0	20.00	20.00	38.00	100.0	8	58.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

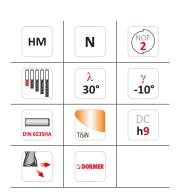

H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■96 G ■ 57 G ■ 49 E ■ 63 G ■ 52 G ■ 40 E ■34 A

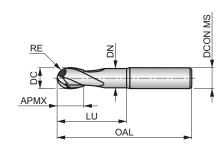

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
S5263.0	3.00	6.00	19.00	75.0	6	30.00	2.80
S5264.0	4.00	6.00	19.00	75.0	6	32.00	3.70
S5266.0	6.00	6.00	31.00	75.0	6	40.00	5.50
S5268.0	8.00	8.00	31.00	75.0	6	40.00	7.40
S52610.0	10.00	10.00	45.00	100.0	6	60.00	9.20
S52612.0	12.00	12.00	50.00	100.0	6	60.00	11.00
S52614.0	14.00	14.00	57.00	125.0	6	85.00	13.00
S52616.0	16.00	16.00	57.00	125.0	8	85.00	15.00
S52618.0	18.00	18.00	57.00	125.0	8	85.00	17.00
S52620.0	20.00	20.00	57.00	125.0	8	85.00	19.00

Фреза из твердого сплава удлиненной конструкции для чистовой обработки

Конструкция фрезы имеет длинную режущую часть угол наклона спирали 50°, уменьшенную шейку и геометрию для высокопроизводительного фрезерования глубоких карманов заготовок из твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■596 ■356 ■30E ■396 ■326 ■25E ■21A

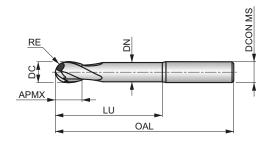

Обозначение	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
S5273.0	3.00	6.00	25.00	100.0	6	60.00	2.80
S5274.0	4.00	6.00	31.00	100.0	6	60.00	3.70
\$5276.0	6.00	6.00	38.00	100.0	6	60.00	5.50
S5278.0	8.00	8.00	41.00	100.0	6	60.00	7.40
S52710.0	10.00	10.00	57.00	125.0	6	85.00	9.20
S52712.0	12.00	12.00	75.00	150.0	6	110.00	11.00
S52716.0	16.00	16.00	75.00	150.0	8	110.00	15.00
S52720.0	20.00	20.00	75.00	150.0	8	110.00	19.00

Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■119F ■70E ■60D ■78E ■64E ■50D ■42 A

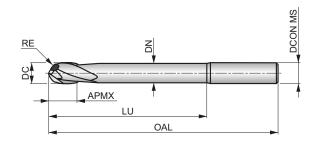

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(мм)	(MM)		(мм)	(мм)
S5291.5	1.50	0.75	6.00	3.00	50.0	2	6.00	1.40
S5292.0XD4	2.00	1.00	4.00	4.00	50.0	2	8.00	1.90
S5292.0XD6	2.00	1.00	6.00	4.00	50.0	2	8.00	1.90
S5293.0XD3	3.00	1.50	3.00	5.00	50.0	2	14.00	2.80
S5293.0XD6	3.00	1.50	6.00	5.00	50.0	2	14.00	2.80
S5294.0XD4	4.00	2.00	4.00	8.00	50.0	2	20.00	3.70
S5294.0XD6	4.00	2.00	6.00	8.00	50.0	2	20.00	3.70
S5295.0XD5	5.00	2.50	5.00	9.00	50.0	2	20.00	4.60
S5295.0XD6	5.00	2.50	6.00	9.00	50.0	2	20.00	4.60
\$5296.0	6.00	3.00	6.00	10.00	50.0	2	20.00	5.50
\$5298.0	8.00	4.00	8.00	12.00	64.0	2	30.00	7.40
\$52910.0	10.00	5.00	10.00	14.00	70.0	2	32.00	9.20
S52912.0	12.00	6.00	12.00	16.00	75.0	2	38.00	11.00
S52916.0	16.00	8.00	16.00	32.00	90.0	2	46.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

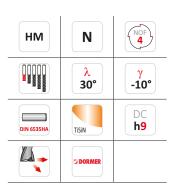
H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 96 F ■ 57 E ■ 49 D ■ 63 E ■ 52 E ■ 40 D ■ 34 A

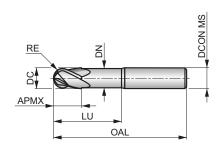

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(мм)
S5311.5	1.50	0.75	6.00	3.00	75.0	2	10.00	1.40
S5312.0XD4	2.00	1.00	4.00	4.00	75.0	2	14.00	1.90
S5312.0XD6	2.00	1.00	6.00	4.00	75.0	2	14.00	1.90
S5313.0XD3	3.00	1.50	3.00	5.00	60.0	2	21.00	2.80
S5313.0XD6	3.00	1.50	6.00	5.00	75.0	2	21.00	2.80
S5314.0XD4	4.00	2.00	4.00	8.00	60.0	2	28.00	3.70
S5314.0XD6	4.00	2.00	6.00	8.00	75.0	2	28.00	3.70
S5315.0XD5	5.00	2.50	5.00	9.00	60.0	2	32.00	4.60
S5315.0XD6	5.00	2.50	6.00	9.00	75.0	2	32.00	4.60
S5316.0	6.00	3.00	6.00	10.00	75.0	2	40.00	5.50
S5318.0	8.00	4.00	8.00	12.00	75.0	2	40.00	7.40
S53110.0	10.00	5.00	10.00	14.00	75.0	2	40.00	9.20
S53112.0	12.00	6.00	12.00	16.00	100.0	2	60.00	11.00
S53116.0	16.00	8.00	16.00	32.00	125.0	2	80.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■59 F ■35 E ■30 D ■39 E ■32 E ■25 D ■21 A

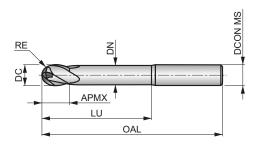

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(мм)	(мм)		(мм)	(мм)
S5332.0XD4	2.00	1.00	4.00	4.00	100.0	2	20.00	1.90
S5332.0XD6	2.00	1.00	6.00	4.00	100.0	2	20.00	1.90
S5333.0XD4	3.00	1.50	4.00	5.00	100.0	2	30.00	2.80
S5333.0XD6	3.00	1.50	6.00	5.00	100.0	2	30.00	2.80
S5334.0XD4	4.00	2.00	4.00	8.00	100.0	2	40.00	3.70
S5334.0XD6	4.00	2.00	6.00	8.00	100.0	2	40.00	3.70
S5335.0XD5	5.00	2.50	5.00	9.00	100.0	2	50.00	4.60
S5335.0XD6	5.00	2.50	6.00	9.00	100.0	2	50.00	4.60
S5336.0	6.00	3.00	6.00	10.00	100.0	2	60.00	5.50
\$5338.0	8.00	4.00	8.00	12.00	100.0	2	60.00	7.40
\$53310.0	10.00	5.00	10.00	14.00	125.0	2	85.00	9.20
\$53312.0	12.00	6.00	12.00	16.00	125.0	2	85.00	11.00
S53314.0	14.00	7.00	14.00	32.00	150.0	2	110.00	13.00
\$53316.0	16.00	8.00	16.00	32.00	150.0	2	110.00	15.00

Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 119E ■ 70 D ■ 60 C ■ 78 D ■ 64 D ■ 50 C ■ 42 A

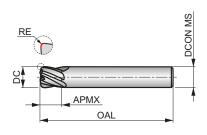

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S5343.0	3.00	1.50	6.00	5.00	50.0	4	14.00	2.80
S5344.0	4.00	2.00	6.00	8.00	50.0	4	20.00	3.70
S5345.0	5.00	2.50	6.00	9.00	50.0	4	20.00	4.60
S5346.0	6.00	3.00	6.00	10.00	50.0	4	20.00	5.50
S5348.0	8.00	4.00	8.00	12.00	64.0	4	30.00	7.40
S53410.0	10.00	5.00	10.00	14.00	70.0	4	32.00	9.20
S53412.0	12.00	6.00	12.00	16.00	75.0	4	38.00	11.00
S53414.0	14.00	7.00	14.00	32.00	90.0	4	44.00	13.00
S53416.0	16.00	8.00	16.00	32.00	90.0	4	46.00	15.00

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для высокопроизводительного копировального фрезерования твердых материалов до 63 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■ 96 E ■ 57 D ■49 C ■63 D ■ 52 D ■ 40 C ■34 A


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)
\$5353.0	3.00	1.50	6.00	5.00	75.0	4	21.00	2.80
S5354.0	4.00	2.00	6.00	8.00	75.0	4	28.00	3.70
\$5355.0	5.00	2.50	6.00	9.00	75.0	4	32.00	4.60
\$5356.0	6.00	3.00	6.00	10.00	75.0	4	40.00	5.50
\$5358.0	8.00	4.00	8.00	12.00	75.0	4	40.00	7.40
\$53510.0	10.00	5.00	10.00	14.00	75.0	4	40.00	9.20
\$53512.0	12.00	6.00	12.00	16.00	100.0	4	60.00	11.00
\$53514.0	14.00	7.00	14.00	32.00	125.0	4	80.00	13.00
\$53516.0	16.00	8.00	16.00	32.00	125.0	4	80.00	15.00

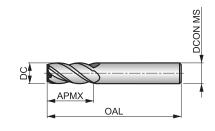
Высокоподачная фреза из твердого сплава с радиусом

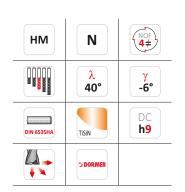
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 25° и геометрию для высокопроизводительного фрезерования твердых материалов до 63 HRC с высокой подачей. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■205 ■122 ■104 D ■135 ■ 111 E ■86 D ■73 D

DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(мм)	(мм)	(MM)	
S5366.0XR1.0	6.00	1.00	6.00	6.00	60.0	4
S5368.0XR2.0	8.00	2.00	8.00	8.00	64.0	6
S53610.0XR2.0	10.00	2.00	10.00	10.00	75.0	6
S53612.0XR2.0	12.00	2.00	12.00	12.00	75.0	6



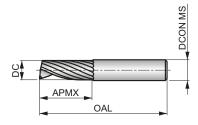
Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и геометрию с торцевой подточкой для высокопроизводительного фрезерования твердых материалов до 70 HRC. Покрытие TiSiN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2 ■1191 ■70G ■60E ■78G ■64G ■50E ■42B

DCON MS с допуском h6.


Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S5611.0	1.00	6.00	3.00	50.0	4
S5611.5	1.50	6.00	4.50	50.0	4
S5612.0	2.00	6.00	6.50	50.0	4
S5612.5	2.50	6.00	6.50	50.0	4
S5613.0	3.00	6.00	9.00	50.0	4
\$5614.0	4.00	6.00	12.00	50.0	4
\$5615.0	5.00	6.00	15.00	50.0	4
\$5616.0	6.00	6.00	20.00	60.0	4
S5618.0	8.00	8.00	20.00	64.0	4
\$56110.0	10.00	10.00	22.00	70.0	4
S56112.0	12.00	12.00	25.00	75.0	4
S56114.0	14.00	14.00	32.00	90.0	4
S56116.0	16.00	16.00	32.00	90.0	4
\$56118.0	18.00	18.00	38.00	100.0	4
\$56120.0	20.00	20.00	38.00	100.0	4

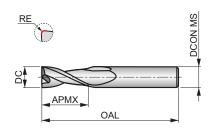
Фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 25° и позитивную геометрию с 1 режущим зубом для обработки цветных сплавов в условиях низкой жесткости. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.2 N1.3 N2.1 N2.2 N2.3 N3.1 N3.2 N3.3 N4.1 N4.2 ■ 709 R ■533 R ■357 R ■ 357 P ■320 P 229 P ■ 373 P ■219 P ■ 112 P ■ 373 S ■ 144 S

DCON MS с допуском h6.


Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S6372.0	2.00	2.00	10.00	40.0	1
S6373.0	3.00	3.00	12.00	40.0	1
S6374.0	4.00	4.00	15.00	50.0	1
S6375.0	5.00	5.00	16.00	50.0	1
S6376.0	6.00	6.00	20.00	60.0	1
S6378.0	8.00	8.00	22.00	63.0	1
S63710.0	10.00	10.00	25.00	72.0	1
S63712.0	12.00	12.00	30.00	83.0	1

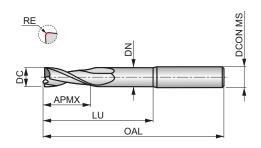
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 30° и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1 N1.2 N1.3 N2.1 N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 ■ 709 P ■533 P ■ 357 P **357 0 320 0 229 0 373 0 2190 1120** ■ 373 R ■ 144 R

DCON MS с допуском h6; RE ± 0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S6102.0	2.00	0.10	4.00	6.50	40.0	2
S6103.0XD3	3.00	0.10	3.00	9.00	40.0	2
S6103.0XD6	3.00	0.10	6.00	9.00	50.0	2
S6104.0XD4	4.00	0.10	4.00	12.00	50.0	2
S6104.0XD6	4.00	0.10	6.00	12.00	50.0	2
S6105.0	5.00	0.10	6.00	15.00	50.0	2
S6106.0	6.00	0.10	6.00	20.00	50.0	2
S6108.0	8.00	0.10	8.00	20.00	64.0	2
S61010.0	10.00	0.10	10.00	22.00	75.0	2
S61012.0	12.00	0.10	12.00	25.00	75.0	2
S61014.0	14.00	0.10	14.00	32.00	90.0	2
S61016.0	16.00	0.10	16.00	32.00	90.0	2
S61020.0	20.00	0.10	20.00	38.00	100.0	2

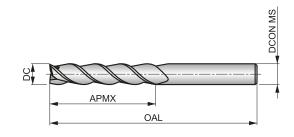
Фреза из твердого сплава удлиненной конструкции с радиусом

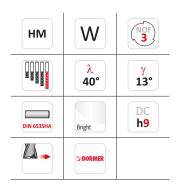
Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и позитивную геометрию для высокопроизводительной обработки глубоких карманов заготовок из цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
638 P	■ 480 P	■ 321 P	3210	■ 288 0	206.0	3360	■ 197 0	1 01 0	■ 336 R	■ 130 R

DCON MS с допуском h6; RE ± 0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(мм)
S6113.0XD3	3.00	0.10	3.00	9.00	40.0	2	15.00	2.80
S6113.0XD6	3.00	0.10	6.00	9.00	50.0	2	15.00	2.80
S6114.0XD4	4.00	0.10	4.00	12.00	50.0	2	20.00	3.70
S6114.0XD6	4.00	0.10	6.00	12.00	50.0	2	20.00	3.70
S6115.0	5.00	0.10	6.00	15.00	50.0	2	20.00	4.60
S6116.0	6.00	0.10	6.00	16.00	80.0	2	40.00	5.50
S6118.0	8.00	0.10	8.00	20.00	80.0	2	40.00	7.40
S61110.0	10.00	0.10	10.00	22.00	100.0	2	60.00	9.20
S61112.0	12.00	0.10	12.00	25.00	100.0	2	60.00	11.00
S61114.0	14.00	0.10	14.00	32.00	125.0	2	75.00	13.00
S61116.0	16.00	0.10	16.00	32.00	125.0	2	75.00	15.00
S61120.0	20.00	0.10	20.00	38.00	125.0	2	75.00	19.00



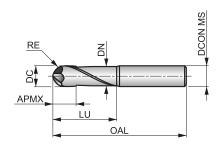
Фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 40°, длинную режущую часть и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1 N1.2 N1.3 N2.1 N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 ■ 638 G ■ 480 G ■ 321 G ■ 321 F **288** F **206** F ■ 336 F ■ 197 F ■ 101 F ■336 I ■ 130 I

DCON MS с допуском h6.


Обозначение	DC	DCON MS	АРМХ	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
S6143.0XD3	3.00	3.00	19.00	60.0	3
S6143.0XD6	3.00	6.00	19.00	75.0	3
S6144.0XD4	4.00	4.00	19.00	60.0	3
S6144.0XD6	4.00	6.00	19.00	75.0	3
S6145.0	5.00	6.00	19.00	75.0	3
S6146.0	6.00	6.00	31.00	75.0	3
S6148.0	8.00	8.00	41.00	100.0	3
S61410.0	10.00	10.00	50.00	100.0	3
S61412.0	12.00	12.00	50.00	100.0	3
S61414.0	14.00	14.00	57.00	125.0	3
S61416.0	16.00	16.00	57.00	125.0	3

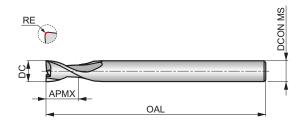
Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и позитивную геометрию для высокопроизводительной копировальной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
■ 709 N	■ 533 N	■ 357 N	■ 357 N	320 N	■ 229 N	■ 373 N	■ 219 N	■ 112 N	373 0	144 0

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
S6291.0 1)	1.00	0.50	4.00	0.80	50.0	2	10.00	0.90
S6291.5 1)	1.50	0.75	4.00	1.20	50.0	2	12.00	1.40
S6292.0 1)	2.00	1.00	4.00	1.60	60.0	2	18.00	1.90
S6293.0	3.00	1.50	6.00	5.00	57.0	2	20.00	2.80
S6294.0	4.00	2.00	6.00	6.00	57.0	2	20.00	3.70
S6295.0	5.00	2.50	6.00	7.00	57.0	2	20.00	4.60
S6296.0	6.00	3.00	6.00	8.00	57.0	2	20.00	5.50
S6298.0	8.00	4.00	8.00	10.00	64.0	2	25.00	7.40
S62910.0	10.00	5.00	10.00	12.00	75.0	2	35.00	9.20
S62912.0	12.00	6.00	12.00	14.00	75.0	2	35.00	11.00
S62916.0	16.00	8.00	16.00	18.00	90.0	2	45.00	15.00
S62920.0	20.00	10.00	20.00	22.00	100.0	2	50.00	19.00


¹⁾ Передний угол 11°.

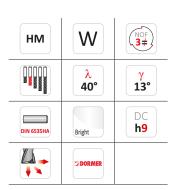
Фреза из твердого сплава удлиненной конструкции с радиусом

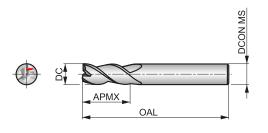
Конструкция фрезы имеет угол наклона спирали 30°, короткую режущую часть, уменьшенный хвостовик и позитивную геометрию для высокопроизводительной обработки глубоких карманов заготовок из цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1 **N1.2** N1.3 **N2.1** N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 ■ 709 N ■ 533 N ■ 357 N ■ 357 N 320 N **229** N ■ 373 N ■219 N ■ 112 N **373 0 144 0**

Уменьшенный диаметр хвостовика DCON MS с допуском h6; RE ± 0.02 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(мм)	(мм)	(MM)	(MM)	(мм)	
S6386.2	6.20	0.10	6.00	8.00	100.0	2
S6388.2	8.20	0.10	8.00	10.00	100.0	2
S63810.3	10.30	0.10	10.00	14.00	125.0	2
S63812.3	12.30	0.10	12.00	16.00	125.0	2
S63816.3	16.30	0.10	16.00	20.00	125.0	2
S63820.3	20.30	0.10	20.00	25.00	125.0	2



Фреза из твердого сплава

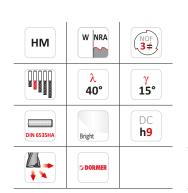
Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев, стружколомающую геометрию и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

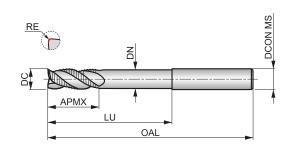
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.2 N1.3 N2.1 N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 **780 0 6080 393 0** ■ 393 N ■ 352 N **252** N ■410 N **241** N ■ 123 N ■ 410 P ■ 158 P

DCON MS с допуском h6.

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(мм)	
S6501.0	1.00	4.00	3.00	40.0	3
S6501.5	1.50	4.00	4.50	40.0	3
S6502.0	2.00	4.00	6.50	40.0	3
S6502.5	2.50	4.00	6.50	40.0	3
S6503.0XD3	3.00	3.00	9.00	40.0	3
S6503.0XD6	3.00	6.00	9.00	50.0	3
S6504.0XD4	4.00	4.00	12.00	50.0	3
S6504.0XD6	4.00	6.00	12.00	50.0	3
\$6505.0	5.00	6.00	15.00	50.0	3
S6506.0	6.00	6.00	16.00	50.0	3
\$6508.0	8.00	8.00	20.00	64.0	3
S65010.0	10.00	10.00	22.00	70.0	3
S65012.0	12.00	12.00	25.00	75.0	3
S65014.0	14.00	14.00	32.00	90.0	3
S65016.0	16.00	16.00	32.00	90.0	3
S65020.0 1)	20.00	20.00	38.00	100.0	3


¹⁾ Не имеет переменного шага и стружколомающего элемента.



Фреза из твердого сплава удлиненной конструкции с радиусом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 40°, уменьшенную шейку, переменный шаг зубьев, стружколомающий профиль NRA и позитивную геометрию для высокопроизводительной черновой обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2
709 0	533 0	357 0	■ 357 N	■ 320 N	229 N	■ 373 N	■219 N	■112 N	373 P	■ 144 P

DCON MS с допуском h6; RE ± 0.02 мм.

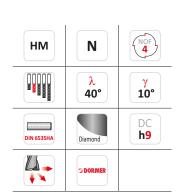
Обозначение	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(мм)		(мм)	(MM)
S6546.0	6.00	0.10	6.00	13.00	75.0	3	40.00	5.50
S6548.0	8.00	0.10	8.00	20.00	75.0	3	40.00	7.40
S65410.0	10.00	0.10	10.00	22.00	100.0	3	60.00	9.20
S65412.0	12.00	0.12	12.00	26.00	100.0	3	60.00	11.00
S65416.0	16.00	0.16	16.00	32.00	125.0	3	75.00	15.00
S65420.0	20.00	0.20	20.00	40.00	150.0	3	100.00	19.00

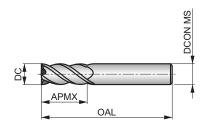
Фреза из твердого сплава с радиусом

Конструкция фрезы имеет угол наклона спирали 40°, переменный шаг зубьев и позитивную геометрию для высокопроизводительной обработки цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N1.2 N1.3 N2.1 N2.2 **N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 **7090 533 0 357 0** ■ 357 N 320 N **229** N ■ 373 N ■ 219 N ■ 112 N ■ 373 P ■ 144 P


DCON MS с допуском h6; RE ± 0.01 мм.


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(мм)	(мм)	(MM)	
S6623.0XR0.3	3.00	0.30	6.00	9.00	57.0	4
S6624.0XR0.3	4.00	0.30	6.00	12.00	57.0	4
S6624.0XR0.5	4.00	0.50	6.00	12.00	57.0	4
S6625.0XR0.3	5.00	0.30	6.00	15.00	57.0	4
S6625.0XR0.5	5.00	0.50	6.00	15.00	57.0	4
S6626.0XR0.5	6.00	0.50	6.00	16.00	57.0	4
S6626.0XR1.0	6.00	1.00	6.00	16.00	57.0	4
S6626.0XR2.0	6.00	2.00	6.00	16.00	57.0	4
S6628.0XR0.5	8.00	0.50	8.00	20.00	64.0	4
S6628.0XR1.0	8.00	1.00	8.00	20.00	64.0	4
S6628.0XR2.0	8.00	2.00	8.00	20.00	64.0	4
S66210.0XR0.5	10.00	0.50	10.00	22.00	72.0	4
S66210.0XR1.0	10.00	1.00	10.00	22.00	72.0	4
S66210.0XR2.0	10.00	2.00	10.00	22.00	72.0	4
S66212.0XR1.0	12.00	1.00	12.00	26.00	83.0	4
S66212.0XR2.0	12.00	2.00	12.00	26.00	83.0	4
S66212.0XR2.5	12.00	2.50	12.00	26.00	83.0	4
S66212.0XR3.0	12.00	3.00	12.00	26.00	83.0	4
S66216.0XR1.0	16.00	1.00	16.00	32.00	92.0	4
S66216.0XR2.0	16.00	2.00	16.00	32.00	92.0	4
S66216.0XR3.0	16.00	3.00	16.00	32.00	92.0	4
S66216.0XR4.0	16.00	4.00	16.00	32.00	92.0	4
S66220.0XR2.0	20.00	2.00	20.00	38.00	104.0	4
S66220.0XR4.0	20.00	4.00	20.00	38.00	104.0	4

Фреза из твердого сплава

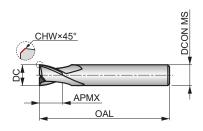
Конструкция фрезы имеет угол наклона спирали 40° и позитивную геометрию для высокопроизводительной обработки абразивных материалов. Алмазоподобное покрытие повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

N5.1 ■ 350 G

DCON MS с допуском h6.

Обозначение	DC	DCON MS	APMX	OAL	NOF
	(мм)	(MM)	(мм)	(мм)	
S6121.0	1.00	3.00	3.00	50.0	4
S6121.5	1.50	3.00	4.50	50.0	4
S6122.0	2.00	3.00	6.50	50.0	4
S6122.5	2.50	3.00	6.50	50.0	4
S6123.0	3.00	3.00	9.00	50.0	4
S6124.0	4.00	4.00	12.00	50.0	4
S6125.0	5.00	5.00	15.00	50.0	4
S6126.0	6.00	6.00	20.00	60.0	4
S6128.0	8.00	8.00	20.00	64.0	4
S61210.0	10.00	10.00	22.00	70.0	4
S61212.0	12.00	12.00	25.00	75.0	4


S802HA

Фреза из твердого сплава с фаской

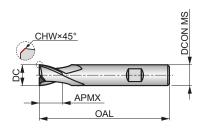
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 K	■ 230 K	■ 238 K	■ 176 K	■ 155 K	■ 137 J	■143 K	■ 114 J	■97 J	■84 J	■72 J	■58 J	■ 121 K	■ 102 K
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 K	■89 J	Z 75 J	■ 99 J	■ 85 J	Z 76 J	Z 75 J	Z 63 J	■ 205 K	■ 152 K	■ 114 K	■ 210 K	■ 171 K	■137 J
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 K	■ 143 K	■115 J	■ 173 J	■ 131 J	■ 95 J	■82 J	■ 68 J	■ 196 J	■ 147 J	■ 114 J	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 K	■ 184 K	■132 K	■ 215 K	■ 125 K	■ 64 K	₹1215 K	■ 183 K	■ 181 I	■ 171 I	■ 155 I	■ 141 I	■ 32 I	

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(мм)	(мм)	(MM)	(мм)	(MM)	
S802HA1.0	1.00	_	3.00	3.00	38.0	2
S802HA1.5	1.50	_	3.00	3.00	38.0	2
S802HA2.0	2.00	_	6.00	3.00	50.0	2
S802HA2.5	2.50	0.08	6.00	3.00	50.0	2
S802HA3.0	3.00	0.08	6.00	4.00	50.0	2
S802HA3.5	3.50	0.08	6.00	4.00	50.0	2
S802HA4.0	4.00	0.13	6.00	5.00	54.0	2
S802HA4.5	4.50	0.13	6.00	5.00	54.0	2
S802HA5.0	5.00	0.13	6.00	6.00	54.0	2
S802HA6.0	6.00	0.13	6.00	7.00	54.0	2
S802HA7.0	7.00	0.13	8.00	8.00	58.0	2
S802HA8.0	8.00	0.20	8.00	9.00	58.0	2
S802HA9.0	9.00	0.20	10.00	10.00	66.0	2
S802HA10.0	10.00	0.20	10.00	11.00	66.0	2
S802HA12.0	12.00	0.20	12.00	12.00	73.0	2
S802HA14.0	14.00	0.20	14.00	14.00	75.0	2
S802HA16.0	16.00	0.20	16.00	16.00	82.0	2
S802HA18.0	18.00	0.20	18.00	18.00	84.0	2
S802HA20.0	20.00	0.30	20.00	20.00	92.0	2


S802HB

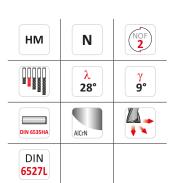
Фреза из твердого сплава с фаской

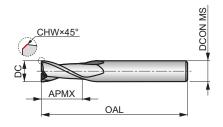
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 K	■ 230 K	■ 238 K	■ 176 K	■155 K	■ 137 J	■ 143 K	■ 114 J	■97 J	■84 J	■ 72 J	■ 58 J	■ 121 K	■ 102 K
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 K	■89 J	Z 75 J	■99 J	■85 J	Z 76 J	Z 75 J	Z 63 J	■ 205 K	■ 152 K	■ 114 K	■ 210 K	■ 171 K	■137 J
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 K	■ 143 K	■ 115 J	■ 173 J	■ 131 J	■ 95 J	■ 82 J	■ 68 J	■ 196 J	■ 147 J	■114 J	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 K	■ 184 K	■ 132 K	■ 215 K	■125 K	∠ 64 K	≥ 215 K	≥ 83 K	≥ 81 J	Z 71 J	≥ 55 J	∠ 41 J	Z 32 J	

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC (MM)	CHW	DCON MS	APMX	OAL (MM)	NOF
COARIDA A						1
S802HB2.0	2.00	_	6.00	3.00	50.0	2
S802HB2.5	2.50	0.08	6.00	3.00	50.0	2
S802HB3.0	3.00	0.08	6.00	4.00	50.0	2
S802HB3.5	3.50	0.08	6.00	4.00	50.0	2
S802HB4.0	4.00	0.13	6.00	5.00	54.0	2
S802HB4.5	4.50	0.13	6.00	5.00	54.0	2
S802HB5.0	5.00	0.13	6.00	6.00	54.0	2
S802HB6.0	6.00	0.13	6.00	7.00	54.0	2
S802HB7.0	7.00	0.13	8.00	8.00	58.0	2
S802HB8.0	8.00	0.20	8.00	9.00	58.0	2
S802HB9.0	9.00	0.20	10.00	10.00	66.0	2
S802HB10.0	10.00	0.20	10.00	11.00	66.0	2
S802HB12.0	12.00	0.20	12.00	12.00	73.0	2
S802HB14.0	14.00	0.20	14.00	14.00	75.0	2
S802HB16.0	16.00	0.20	16.00	16.00	82.0	2
S802HB18.0	18.00	0.20	18.00	18.00	84.0	2
S802HB20.0	20.00	0.30	20.00	20.00	92.0	2


S812HA

Фреза из твердого сплава с фаской

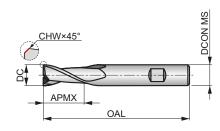
Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.3 P2.2 P2.3 P3.2 P3.3 P4.1 P4.2 P1.1 P1.2 P2.1 P3.1 P4.3 M1.1 M1.2 ■ 166 K ■ 186 K ■ 192 K ■ 142 K ■ 125 K ■ 111 J ■ 115 K ■ 93 J ■78 J ■ 68 J ■59 J ■ 47 J ■ 97 K ■81 K K2.1 M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 **K1.1 K1.2** K1.3 K2.2 K2.3 K3.1 K3 2 ■ 85 K ■71 J ■79 J ■68 J ■61 J ■ 60 J ■166 K ■123 K ■ 92 K ■ 170 K ■ 138 K ■110 J ■ 150 K ■ 115 K

K4.1 K4.3 K4.4 K4.5 **N1.1 N1.2** N1.3 **N2.1** N2.2 ■ 93 J ■ 140 J ■ 105 J ■77 J ■ 66 J ■ 159 J ■ 118 J ■92 J **Z** 330 K ■ 56 J **Z** 247 K ■166 K ■166 K ■ 148 K N2.3 N3.1 N3.2 N3.3 N4.1 **S1.2 S2.1 S3.1** N4.2 **S1.1 S4.1** ■ 107 K ■ 173 K 101 K **Z** 52 K **■** 173 K **Z** 67 K ■72 J ■ 64 J ■49 J ■38 J ■30 J

DCON MS c допуском h6; DC \leq 7.00 mm: CHW \pm 0.03X45° mm; DC>7.00 mm: CHW \pm 0.05X45° mm.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S812HA2.0	2.00	_	6.00	6.00	57.0	2
S812HA2.5	2.50	0.08	6.00	7.00	57.0	2
S812HA3.0	3.00	0.08	6.00	7.00	57.0	2
S812HA3.5	3.50	0.08	6.00	7.00	57.0	2
S812HA4.0	4.00	0.13	6.00	8.00	57.0	2
S812HA4.5	4.50	0.13	6.00	8.00	57.0	2
S812HA5.0	5.00	0.13	6.00	10.00	57.0	2
S812HA6.0	6.00	0.13	6.00	10.00	57.0	2
S812HA7.0	7.00	0.13	8.00	13.00	63.0	2
S812HA8.0	8.00	0.20	8.00	16.00	63.0	2
S812HA9.0	9.00	0.20	10.00	16.00	72.0	2
S812HA10.0	10.00	0.20	10.00	19.00	72.0	2
S812HA12.0	12.00	0.20	12.00	22.00	83.0	2
S812HA14.0	14.00	0.20	14.00	22.00	83.0	2
S812HA16.0	16.00	0.20	16.00	26.00	92.0	2
S812HA18.0	18.00	0.20	18.00	26.00	92.0	2
S812HA20.0	20.00	0.30	20.00	32.00	104.0	2


S812HB

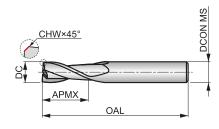
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 K	■ 186 K	■ 192 K	■ 142 K	■125 K	■111 J	■ 115 K	■ 93 J	■78 J	■68 J	■ 59 J	■ 47 J	■97 K	■81 K
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■85 K	■ 71 J	■ 79 J	■68 J	■ 61 J	■60 J	■ 166 K	■ 123 K	■92 K	■ 170 K	■ 138 K	■110 J	■ 150 K	■115 K
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■93 J	■140 J	■ 105 J	■77 J	■ 66 J	■56 J	■ 159 J	■118 J	■92 J	≥ 330 K	Z 247 K	■ 166 K	■ 166 K	■148 K
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 107 K	■ 173 K	■ 101 K	■ 152 K	■1173 K	■ 167 K	■ 72 I	■ 64 I	49 I	■ 38 I	■ 30 I			

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL (MM)	NOF
*******	(MM)	• • •				
S812HB2.0	2.00	0.00	6.00	6.00	57.0	2
S812HB2.5	2.50	0.08	6.00	7.00	57.0	2
S812HB3.0	3.00	0.08	6.00	7.00	57.0	2
S812HB3.5	3.50	0.08	6.00	7.00	57.0	2
S812HB4.0	4.00	0.13	6.00	8.00	57.0	2
S812HB4.5	4.50	0.13	6.00	8.00	57.0	2
S812HB5.0	5.00	0.13	6.00	10.00	57.0	2
S812HB6.0	6.00	0.13	6.00	10.00	57.0	2
S812HB7.0	7.00	0.13	8.00	13.00	63.0	2
S812HB8.0	8.00	0.20	8.00	16.00	63.0	2
S812HB9.0	9.00	0.20	10.00	16.00	72.0	2
S812HB10.0	10.00	0.20	10.00	19.00	72.0	2
S812HB12.0	12.00	0.20	12.00	22.00	83.0	2
S812HB14.0	14.00	0.20	14.00	22.00	83.0	2
S812HB16.0	16.00	0.20	16.00	26.00	92.0	2
S812HB18.0	18.00	0.20	18.00	26.00	92.0	2
S812HB20.0	20.00	0.30	20.00	32.00	104.0	2

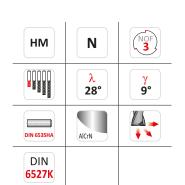
Фреза из твердого сплава с фаской

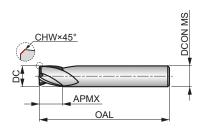
Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 146 K	■ 164 K	■169 K	■ 125 K	■ 110 K	■ 98 J	■101 K	■82 J	■69 J	■61 J	■52 J	■41 J	■ 85 K	■72 K
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■76 K	■62 J	■70 J	■ 60 J	■ 54 J	■53 J	■145 K	■108 K	■ 81 K	■ 150 K	■ 122 K	■97 J	■ 133 K	■ 102 K
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 82 J	■ 123 J	■93 J	■ 68 J	■ 59 J	■ 48 J	■ 139 J	■ 105 J	■81 J	Z 287 K	Z 216 K	■ 144 K	■ 144 K	■ 129 K
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 03 K	■ 152 K	■ 88 K	■145 K	1152 K	■ 50 K	■ 50 I	■ 51 I	30 1	20 I	■ 23 I			

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S8222.0	2.00	-	6.00	8.00	57.0	2
\$8222.5	2.50	0.08	6.00	12.00	57.0	2
S8223.0	3.00	0.08	6.00	12.00	57.0	2
S8224.0	4.00	0.13	6.00	14.00	57.0	2
\$8225.0	5.00	0.13	6.00	16.00	57.0	2
\$8226.0	6.00	0.13	6.00	19.00	57.0	2
S8227.0	7.00	0.13	8.00	19.00	63.0	2
S8228.0	8.00	0.20	8.00	19.00	63.0	2
S8229.0	9.00	0.20	10.00	21.00	72.0	2
S82210.0	10.00	0.20	10.00	22.00	72.0	2
S82212.0	12.00	0.20	12.00	25.00	83.0	2
S82214.0	14.00	0.20	14.00	30.00	83.0	2
S82216.0	16.00	0.20	16.00	32.00	92.0	2
S82218.0	18.00	0.20	18.00	32.00	92.0	2
\$82220.0	20.00	0.30	20.00	38.00	104.0	2


S803HA

Фреза из твердого сплава с фаской

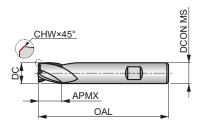
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

													· ·
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■206 J	■ 230 J	■ 238 J	■ 176 J	■ 155 J	■ 137 l	■ 143 J	■ 114 l	■ 97 l	■ 841	■ 72 l	■ 58 l	■ 121 J	■102 J
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■107 J	■89 I	⊿ 751	■ 991	■85 I	 1 1 1 1 1 1 1 1 1 	 ■ 75 l	Z 63 I	■ 205 J	■ 152 J	■ 114 J	■ 210 J	■ 171 J	■ 137 I
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■186 J	■143 J	■ 115 I	■ 173 I	■ 131 I	■95 I	■82 I	■ 68 I	■196 I	■ 147 I	■ 1141	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■206 J	■184 J	■ 132 J	■ 215 J	■ 125 J	∠ 64 J	Z 215 J	≥ 83 J	≥ 811	Z 71 I	≥ 55 l	∠ 41 l	∠ 32 l	

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S803HA1.0	1.00	-	3.00	3.00	38.0	3
S803HA1.5	1.50	_	3.00	3.00	38.0	3
S803HA2.0	2.00	-	6.00	3.00	50.0	3
S803HA2.5	2.50	0.08	6.00	3.00	50.0	3
S803HA2.8	2.80	0.08	6.00	4.00	50.0	3
S803HA3.0	3.00	0.08	6.00	4.00	50.0	3
S803HA3.5	3.50	0.08	6.00	4.00	50.0	3
S803HA3.8	3.80	0.08	6.00	5.00	54.0	3
S803HA4.0	4.00	0.13	6.00	5.00	54.0	3
S803HA4.5	4.50	0.13	6.00	5.00	54.0	3
S803HA4.8	4.80	0.13	6.00	6.00	54.0	3
S803HA5.0	5.00	0.13	6.00	6.00	54.0	3
S803HA6.0	6.00	0.13	6.00	7.00	54.0	3
S803HA7.0	7.00	0.13	8.00	8.00	58.0	3
S803HA8.0	8.00	0.20	8.00	9.00	58.0	3
S803HA9.0	9.00	0.20	10.00	10.00	66.0	3
S803HA10.0	10.00	0.20	10.00	11.00	66.0	3
S803HA12.0	12.00	0.20	12.00	12.00	73.0	3
S803HA14.0	14.00	0.20	14.00	14.00	75.0	3
S803HA16.0	16.00	0.20	16.00	16.00	82.0	3
S803HA18.0	18.00	0.20	18.00	18.00	84.0	3
S803HA20.0	20.00	0.30	20.00	20.00	92.0	3


S803HB

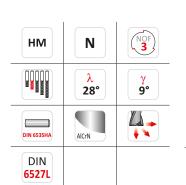
Фреза из твердого сплава с фаской

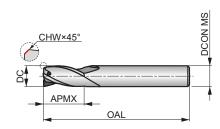
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 J	■ 230 J	■238 J	■176 J	■ 155 J	■137 I	■ 143 J	■ 114 l	■ 971	■84 I	■ 72 l	■ 58 l	■121 J	■ 102 J
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 J	■ 891	⊿ 75 I	■ 991	■85 I	Z 761	 175 I	 63 I	■ 205 J	■ 152 J	■114 J	■210 J	■171 J	■137 I
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 J	■ 143 J	■ 115 I	■ 173 I	■131 I	■ 951	■82 I	■ 681	■ 196 l	■ 147 l	■ 1141	∠ 408 K	Z 307 K	■ 206 K
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
■ 206 J	■ 184 J	■132 J	■215 J	■ 125 J	■ 164 J	■ 1215 J	■ 183 J	₹ 181 I	7 1711	1551	411	1 321	

DCON MS c допуском h6; DC \leq 7.75 мм: CHW \pm 0.03X45° мм; DC>7.75 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S803HB2.0	2.00	_	6.00	3.00	50.0	3
S803HB2.5	2.50	0.08	6.00	3.00	50.0	3
S803HB2.8	2.80	0.08	6.00	4.00	50.0	3
S803HB3.0	3.00	0.08	6.00	4.00	50.0	3
S803HB3.5	3.50	0.08	6.00	4.00	50.0	3
S803HB3.8	3.80	0.08	6.00	5.00	54.0	3
S803HB4.0	4.00	0.13	6.00	5.00	54.0	3
S803HB4.5	4.50	0.13	6.00	5.00	54.0	3
S803HB4.8	4.80	0.13	6.00	6.00	54.0	3
S803HB5.0	5.00	0.13	6.00	6.00	54.0	3
S803HB5.75	5.75	0.13	6.00	7.00	54.0	3
S803HB6.0	6.00	0.13	6.00	7.00	54.0	3
S803HB6.75	6.75	0.13	8.00	8.00	58.0	3
S803HB7.0	7.00	0.13	8.00	8.00	58.0	3
S803HB7.75	7.75	0.13	8.00	9.00	58.0	3
S803HB8.0	8.00	0.20	8.00	9.00	58.0	3
S803HB9.0	9.00	0.20	10.00	10.00	66.0	3
S803HB9.7	9.70	0.20	10.00	11.00	66.0	3
S803HB10.0	10.00	0.20	10.00	11.00	66.0	3
S803HB11.7	11.70	0.20	12.00	12.00	73.0	3
S803HB12.0	12.00	0.20	12.00	12.00	73.0	3
S803HB14.0	14.00	0.20	14.00	14.00	75.0	3
S803HB16.0	16.00	0.20	16.00	16.00	82.0	3
S803HB18.0	18.00	0.20	18.00	18.00	84.0	3
S803HB20.0	20.00	0.30	20.00	20.00	92.0	3


S813HA

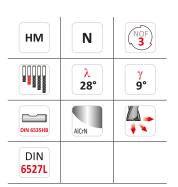
Фреза из твердого сплава с фаской

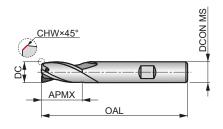
Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■166 J	■186 J	■ 192 J	■ 142 J	■ 125 J	■ 1111	■ 115 J	■ 93 l	78 I	■ 68 l	■ 591	∠ 47 l	■ 97 J	■81 J
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■85 J	■ 711	 179	 ■681	 ■611	 ■601	■ 166 J	■ 123 J	■92 J	■ 170 J	■138 J	■110 I	■ 150 J	■115 J
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 931	■ 140 I	■ 105 I	■ 77 l	■ 66 l	■ 561	■ 1591	■118 I	■ 92 l	■ 330 K	Z 247 K	■ 166 K	■ 166 J	■148 J
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■107 I	■ 173 I	■ 101 I	■ 152 I	■1173 I	■ 167 I	■ 172 I	641	491	1381	1 301			

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
*******	(MM)			(MM)	(MM)	
S813HA2.0	2.00	0.00	6.00	6.00	57.0	3
S813HA2.5	2.50	0.08	6.00	7.00	57.0	3
S813HA3.0	3.00	0.08	6.00	7.00	57.0	3
S813HA3.5	3.50	0.08	6.00	7.00	57.0	3
S813HA4.0	4.00	0.13	6.00	8.00	57.0	3
S813HA4.5	4.50	0.13	6.00	8.00	57.0	3
S813HA5.0	5.00	0.13	6.00	10.00	57.0	3
S813HA6.0	6.00	0.13	6.00	10.00	57.0	3
S813HA7.0	7.00	0.13	8.00	13.00	63.0	3
S813HA8.0	8.00	0.20	8.00	16.00	63.0	3
S813HA9.0	9.00	0.20	10.00	16.00	72.0	3
S813HA10.0	10.00	0.20	10.00	19.00	72.0	3
S813HA12.0	12.00	0.20	12.00	22.00	83.0	3
S813HA14.0	14.00	0.20	14.00	22.00	83.0	3
S813HA16.0	16.00	0.20	16.00	26.00	92.0	3
S813HA18.0	18.00	0.20	18.00	26.00	92.0	3
S813HA20.0	20.00	0.30	20.00	32.00	104.0	3


S813HB

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 J	■ 186 J	■192 J	■142 J	■ 125 J	■ 1111	■ 115 J	■93 I	■ 781	■ 681	■ 59 l	Z 47 I	■ 97 J	■ 81 J
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 85 J	■ 711	Z 791	Z 68 I	 ■611	 ■601	■ 166 J	■ 123 J	■92 J	■ 170 J	■ 138 J	■110 I	■ 150 J	■115 J
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 931	■ 140 I	■ 105 I	■ 77 l	■ 661	■ 561	■ 159 l	■ 118 I	■ 921	≥ 330 K	Z 247 K	■ 166 K	■ 166 J	■ 148 J
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 107 J	■ 173 J	■101 J	 52 J	■ 173 J	Z 67 J	Z 72 I	 ■641	■ 491	■ 381	Z 30 I			

DCON MS с допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.

Обозначение	DC	CHW	DCON MS	APMX	OAL (MM)	NOF
S813HB2.0	2.00	0.00	6.00	6.00	57.0	3
S813HB2.5	2.50	0.08	6.00	7.00	57.0	2
						<u></u>
S813HB3.0	3.00	0.08	6.00	7.00	57.0	3
S813HB3.5	3.50	0.08	6.00	7.00	57.0	3
S813HB4.0	4.00	0.13	6.00	8.00	57.0	3
S813HB4.5	4.50	0.13	6.00	8.00	57.0	3
S813HB5.0	5.00	0.13	6.00	10.00	57.0	3
S813HB6.0	6.00	0.13	6.00	10.00	57.0	3
S813HB7.0	7.00	0.13	8.00	13.00	63.0	3
S813HB8.0	8.00	0.20	8.00	16.00	63.0	3
S813HB9.0	9.00	0.20	10.00	16.00	72.0	3
S813HB10.0	10.00	0.20	10.00	19.00	72.0	3
S813HB12.0	12.00	0.20	12.00	22.00	83.0	3
S813HB14.0	14.00	0.20	14.00	22.00	83.0	3
S813HB16.0	16.00	0.20	16.00	26.00	92.0	3
S813HB18.0	18.00	0.20	18.00	26.00	92.0	3
S813HB20.0	20.00	0.30	20.00	32.00	104.0	3

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 28° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

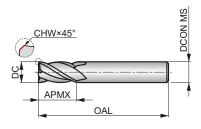
DCON MS

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 ■ 145 J ■ 162 J ■ 167 J ■ 124 J ■ 109 J ■97 I ■ 100 J ■81 I ■ 68 I **■** 60 l **■**511 **∠**41 l ■ 84 J ■ 71 J K2.1 **M2.1 M2.2** M3.1 M3.2 M3.3 M4.1 **K1.1** K1.2 K1.3 K2.2 K3.1 K3.2

■75 J **■**611 **Z**691 **■** 59 l **Z**53 I **■** 52 l ■ 144 J ■ 107 J ■80 J ■ 149 J ■ 121 J **■**961 ■ 132 J ■101 J K4.1 K4.2 K4.4 **N1.1** N1.2 N1.3 N2.1 **N2.2** K4.3 K4.5 K5.1 **■**811 ■ 122 I **■**921 **■**581 **■**481 **■** 138 l ■104 I ■ 80 I **Z** 284 K **■**67 l **Z** 214 K ■ 143 K ■ 143 J ■128 J N3.1 **N2.3** N3.2 N3.3 N4.1 N4.2 **S1.2 S3.1 S4.1 S1.1 S2.1** ■ 92 J ■150 J ■ 87 J **∠** 45 J **∠** 150 J **Z** 58 J **■** 113 l **■** 100 l **77** 1 **∠** 58 l **∠** 45 l

DCON MS c допуском h6; DC \leq 7.00 мм: CHW \pm 0.03X45° мм; DC>7.00 мм: CHW \pm 0.05X45° мм.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S8232.0	2.00	-	6.00	8.00	57.0	3
\$8232.5	2.50	0.08	6.00	12.00	57.0	3
S8233.0	3.00	0.08	6.00	12.00	57.0	3
S8234.0	4.00	0.13	6.00	14.00	57.0	3
S8235.0	5.00	0.13	6.00	16.00	57.0	3
\$8236.0	6.00	0.13	6.00	19.00	57.0	3
S8237.0	7.00	0.13	8.00	19.00	63.0	3
S8238.0	8.00	0.20	8.00	19.00	63.0	3
S8239.0	9.00	0.20	10.00	21.00	72.0	3
S82310.0	10.00	0.20	10.00	22.00	72.0	3
S82312.0	12.00	0.20	12.00	25.00	83.0	3
S82314.0	14.00	0.20	14.00	30.00	83.0	3
S82316.0	16.00	0.20	16.00	32.00	92.0	3
S82318.0	18.00	0.20	18.00	32.00	92.0	3
S82320.0	20.00	0.30	20.00	38.00	104.0	3


S804HA

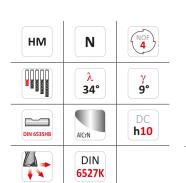
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

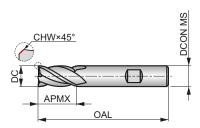
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 206 J	■ 230 J	■238 J	■176 J	■ 155 J	■137 I	■ 143 J	■ 114 l	■ 971	■84 I	■ 72 l	■ 58 l	■121 J	■ 102 J
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 107 J	■ 891	⊿ 75 I	■ 991	■85 I	Z 761	 175 I	 63 I	■ 205 J	■ 152 J	■114 J	■210 J	■171 J	■137 I
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 186 J	■ 143 J	■ 115 I	■ 173 I	■131 I	■ 951	■82 I	■ 681	■ 1961	■ 147 I	■ 1141	∠ 408 J	Z 307 J	Z 206 J
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1	
Z 206 J	■ 184 J	■ 132 J	215 J	■ 125 J	∠ 64 J	Z 215 J	■ 83 J	Z 81 I	Z 71 I	Z 55 I	∠ 41 l	∠ 32 l	

DCON MS c допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S804HA2.0	2.00	_	6.00	4.00	50.0	4
S804HA3.0	3.00	0.08	6.00	5.00	50.0	4
S804HA4.0	4.00	0.13	6.00	8.00	54.0	4
S804HA5.0	5.00	0.13	6.00	9.00	54.0	4
S804HA6.0	6.00	0.13	6.00	10.00	54.0	4
S804HA8.0	8.00	0.13	8.00	12.00	58.0	4
S804HA10.0	10.00	0.20	10.00	14.00	66.0	4
S804HA12.0	12.00	0.20	12.00	16.00	73.0	4
S804HA16.0	16.00	0.20	16.00	22.00	82.0	4
S804HA20.0	20.00	0.30	20.00	26.00	92.0	4
S804HA25.0	25.00	0.30	25.00	32.00	121.0	4

S804HB


Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Z 206 J

■ 184 J

∠ 64 J

Z 215 J

≥83 J

∠ 81 l

Z71 I

∠ 55 l

∠ 41 l

∠32 l

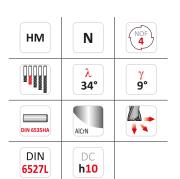
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.2 P2.3 P3.2 P3.3 P4.1 P4.2 P2.1 P3.1 P4.3 M1.1 ■206 J **230** J **238** J ■ 176 J ■ 155 J ■ 137 l ■ 143 J **114** l ■ 97 I ■84 I **72** l **■** 58 l ■ 121 J ■102 J K2.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 K1.2 K1.3 K2.2 **K2.3** ■107 J **■**891 **Z**75∣ **■**991 ■85 I **Z**76∣ **Z**75∣ **∠**631 ■ 205 J ■ 152 J ■114 J ■210 J ■ 171 J ■ 137 I K3.1 K4.2 K4.4 K4.5 K5.2 **N1.1** N1.2 **N1.3 K4.1** K4.3 ■186 J ■143 J **■** 115 l ■ 173 I **■** 131 l ■82 I **■** 68 I ■196 I **114** I **Z** 307 J **■**951 ■ 147 I **∠** 408 J **Z** 206 J **N2.1 N2.2 N2.3** N3.1 N3.2 N4.1 N4.2 **S4.1** N3.3 **S1.1 S1.2 S2.1 S3.1**

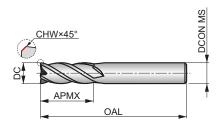
DCON MS c допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.

■ 215 J

■ 125 J

∠ 132 J


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S804HB2.0	2.00	_	6.00	4.00	50.0	4
S804HB3.0	3.00	0.08	6.00	5.00	50.0	4
S804HB4.0	4.00	0.13	6.00	8.00	54.0	4
S804HB5.0	5.00	0.13	6.00	9.00	54.0	4
S804HB6.0	6.00	0.13	6.00	10.00	54.0	4
S804HB8.0	8.00	0.13	8.00	12.00	58.0	4
S804HB10.0	10.00	0.20	10.00	14.00	66.0	4
S804HB12.0	12.00	0.20	12.00	16.00	73.0	4
S804HB16.0	16.00	0.20	16.00	22.00	82.0	4
S804HB20.0	20.00	0.30	20.00	26.00	92.0	4
S804HB25.0	25.00	0.30	25.00	32.00	121.0	4


S814HA

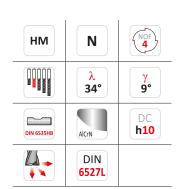
Фреза из твердого сплава с фаской

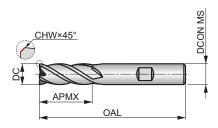
Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AlCrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 166 J	■ 186 J	■ 192 J	■142 J	■ 125 J	■ 1111	■ 115 J	■ 931	■ 781	■ 681	■ 59 l	∠ 47 I	■ 97 J	■81 J
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 85 J	■ 711	 ✓ 79 I	Z 68Ⅰ	Z 611	Z 60 I	■ 166 J	■ 123 J	■92 J	■ 170 J	■ 138 J	■110 I	■150 J	■115 J
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 931	■ 140 I	■ 105 I	■ 77 l	■ 661	■ 561	■ 1591	■ 118 I	■ 921	Z 330 J	Z 247 J	Z 166 J	■ 166 J	■ 148 J
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 107 J	■ 173 J	■101 J	 52 J	∠ 173 J	∠ 67 J	 72 l	 ■ 641	∠ 491	■ 381	∠ 301			

DCON MS c допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S814HA2.0	2.00	0.00	6.00	7.00	57.0	4
S814HA3.0	3.00	0.08	6.00	8.00	57.0	4
S814HA4.0	4.00	0.13	6.00	11.00	57.0	4
S814HA5.0	5.00	0.13	6.00	13.00	57.0	4
S814HA6.0	6.00	0.13	6.00	13.00	57.0	4
S814HA8.0	8.00	0.13	8.00	19.00	63.0	4
S814HA10.0	10.00	0.20	10.00	22.00	72.0	4
S814HA12.0	12.00	0.20	12.00	26.00	83.0	4
S814HA16.0	16.00	0.20	16.00	32.00	92.0	4
S814HA20.0	20.00	0.30	20.00	38.00	104.0	4
S814HA25.0	25.00	0.30	25.00	45.00	121.0	4

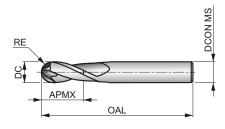

S814HB

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 34° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие AICrN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 ■ 166 J ■ 186 J ■ 192 J ■ 142 J ■ 125 J **■**1111 ■ 115 J ■ 93 I **78** I **■** 68 l **■** 59 l **∠** 47 l ■ 97 J ■81 J M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 ■ 85 J **■**711 **Z**791 **Z**68∣ **Z**611 **Z**60∣ ■ 166 J ■ 123 J ■92 J ■ 170 J ■ 138 J ■110 I ■ 150 J ■115 J K4.2 K4.3 K4.4 K5.1 **N1.1** N1.2 N1.3 N2.1 **N2.2** K4.5 **■** 92 I **■**931 ■ 140 I ■ 105 I ■66 I **■**561 ■ 159 I **■**1181 **■** 77 l **Z** 330 J **Z** 247 J **∠** 166 J **■** 166 J **■** 148 J N3.1 **N2.3** N3.2 N3.3 N4.1 N4.2 **S1.2 S3.1 S4.1 S1.1 S2.1 ■** 107 J ■173 J ■ 101 J **Z** 52 J **Z** 173 J **Z** 67 J **∠**72 l **∠** 64 l **∠** 49 l **∠**381 **∠**30 l

DCON MS c допуском h6; DC \leq 8.00 мм: CHW \pm 0.03X45° мм; DC>8.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S814HB2.0	2.00	0.00	6.00	7.00	57.0	4
S814HB3.0	3.00	0.08	6.00	8.00	57.0	4
S814HB4.0	4.00	0.13	6.00	11.00	57.0	4
S814HB5.0	5.00	0.13	6.00	13.00	57.0	4
S814HB6.0	6.00	0.13	6.00	13.00	57.0	4
S814HB8.0	8.00	0.13	8.00	19.00	63.0	4
S814HB10.0	10.00	0.20	10.00	22.00	72.0	4
S814HB12.0	12.00	0.20	12.00	26.00	83.0	4
S814HB16.0	16.00	0.20	16.00	32.00	92.0	4
S814HB20.0	20.00	0.30	20.00	38.00	104.0	4
S814HB25.0	25.00	0.30	25.00	45.00	121.0	4

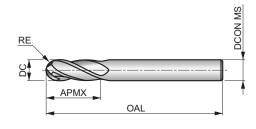
Сферическая фреза из твердого сплава

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного копировального фрезерования большинства материалов. Покрытие X-CEED повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 161 F	■ 181 F	■ 186 F	■138 F	■121 F	■ 108 F	■ 112 F	■ 90 F	■76 F	■ 66 F	■ 57 F	Z 46 F	■94 F	■ 79 F
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 83 F	■ 69 F	Z 77 F	Z 66 F	 59 E	 ■ 58 E	■ 161 F	■ 119 F	■89 F	■ 165 F	■ 134 F	■ 107 F	■ 146 F	■ 112 F
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 90 F	■ 136 F	■ 102 F	■ 75 F	■ 64 E	■ 54 E	■ 154 F	■ 115 F	■89 F	Z 355 G	Z 267 G	∠ 179 G	■ 179 F	■ 160 F
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 115 F	■ 187 F	■ 109 F	Z 56 F	■ 187 F	Z 72 F	∠ 126 F	■ 112 F	≥ 86 E	∠ 65 E	■ 51 E			

DCON MS с допуском h6; RE ± 0.01 мм.

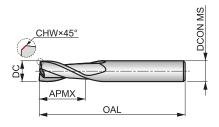

Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(мм)	(MM)	(MM)	
S5011.0	1.00	0.50	3.00	3.00	38.0	2
S5011.5	1.50	0.75	3.00	3.00	38.0	2
S5012.0	2.00	1.00	3.00	6.00	38.0	2
S5012.5	2.50	1.25	3.00	7.00	38.0	2
S5013.0	3.00	1.50	3.00	7.00	38.0	2
S5014.0	4.00	2.00	6.00	8.00	57.0	2
S5015.0	5.00	2.50	6.00	10.00	57.0	2
S5016.0	6.00	3.00	6.00	10.00	57.0	2
S5017.0	7.00	3.50	8.00	13.00	63.0	2
\$5018.0	8.00	4.00	8.00	16.00	63.0	2
S5019.0	9.00	4.50	10.00	16.00	72.0	2
S50110.0	10.00	5.00	10.00	19.00	72.0	2
S50112.0	12.00	6.00	12.00	22.00	83.0	2
\$50116.0	16.00	8.00	16.00	26.00	92.0	2

Сферическая фреза из твердого сплава удлиненной конструкции

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного копировального фрезерования большинства материалов. Покрытие X-CEED повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■161 E	■ 181 E	■ 186 E	■ 138 E	■ 121 E	■ 108 E	■ 112 E	■90 E	■76 E	■ 66 E	■ 57 E	Z 46 E	■ 94 E	■ 79 E
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 83 E	■ 69 E	Z 77 E	Z 66 E	 59 D	 ■ 58 D	■ 161 E	■119 E	■89 E	■ 165 E	■ 134 E	■ 107 E	■146 E	■112 E
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 90 E	■ 136 E	■ 102 E	■75 E	■64 D	■54 D	■ 154 E	■115 E	■89 E	Z 355 F	Z 267 F	 179 F	■ 179 E	■ 160 E
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S2.1	S3.1	S4.1			
■ 115 E	■ 187 E	■ 109 E	≥ 56 E	≥ 187 E	Z 72 E	■ 126 E	■ 112 E	∠ 86 D	∠ 65 D				


Обозначение	DC	RE	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S5113.0	3.00	1.50	6.00	8.00	80.0	4
S5114.0	4.00	2.00	6.00	11.00	80.0	4
\$5115.0	5.00	2.50	6.00	13.00	80.0	4
S5116.0	6.00	3.00	6.00	13.00	80.0	4
S5117.0	7.00	3.50	8.00	16.00	100.0	4
S5118.0	8.00	4.00	8.00	19.00	100.0	4
S5119.0	9.00	4.50	10.00	19.00	100.0	4
S51110.0	10.00	5.00	10.00	22.00	100.0	4
S51112.0	12.00	6.00	12.00	26.00	100.0	4
S51116.0	16.00	8.00	16.00	32.00	100.0	4

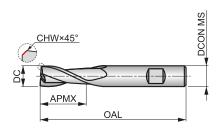
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	K1.1	K1.2	K1.3
■ 106 K	■ 119 K	■ 123 K	■ 91 K	■ 80 K	Z 71 J	■ 66 K	■53 J	∠ 45 J	■ 40 J	Z 34 J	■ 80 K	 ≤ 59 K	∠ 44 K
K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3
■98 K	■80 K	Z 64 J	■ 87 K	■ 67 K	Z 54 J	■81 J	■ 61 J	∠ 45 J	■ 38 J	Z 32 J	■ 91 J	■69 J	Z 53 J
N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2	S1.3
1355 K	■ 267 K	■ 179 K	■ 179 K	1160 K	1115 K	■ 187 K	■ 109 K	■ 56 K	■ 187 K	72 K	■38 J	361	15 J

DCON MS c допуском h6; DC $\!\leq$ $\!10.00$ mm: CHW \pm $0.03 X45^{\circ}$ mm; DC $\!>$ $\!10.00$ mm: CHW \pm $0.05 X45^{\circ}$ mm.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S9022.0	2.00	0.08	3.00	6.00	38.0	2
S9022.5	2.50	0.08	3.00	9.00	38.0	2
S9023.0	3.00	0.08	3.00	12.00	38.0	2
S9024.0	4.00	0.08	4.00	14.00	50.0	2
S9025.0	5.00	0.13	5.00	16.00	50.0	2
S9026.0	6.00	0.13	6.00	19.00	57.0	2
S9027.0	7.00	0.13	8.00	19.00	63.0	2
S9028.0	8.00	0.13	8.00	19.00	63.0	2
S9029.0	9.00	0.13	10.00	21.00	72.0	2
S90210.0	10.00	0.18	10.00	22.00	72.0	2
S90212.0	12.00	0.20	12.00	25.00	73.0	2
S90214.0	14.00	0.20	14.00	30.00	83.0	2
S90216.0	16.00	0.20	16.00	32.00	92.0	2
S90218.0	18.00	0.20	18.00	32.00	92.0	2
S90220.0	20.00	0.30	20.00	38.00	104.0	2

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiAlN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

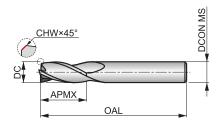
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	K1.1	K1.2
■ 132 K	■148 K	■ 153 K	■ 113 K	■100 K	■88 J	■ 98 K	■79 J	■ 67 J	■59 J	■ 50 J	Z 41 J	■ 100 K	■74 K
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■56 K	■ 107 K	■ 87 K	■70 J	■ 95 K	■72 K	■59 J	■88 J	■67 J	■49 J	■ 42 J	■ 35 J	■ 100 J	■ 75 J
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1
■58 J	Z 296 K	Z 222 K	■ 149 K	■149 K	■133 K	■ 96 K	■ 156 K	■91 K	■ 47 K	∠ 156 K	∠ 160 K	 ■64 K	■ 47 J
C1 2	C1 2												

S1.2 S1.3 ≥ 20 J

DCON MS c допуском h6; DC \leq 10.00 мм: CHW \pm 0.03X45° мм; DC>10.00 мм: CHW \pm 0.05X45° мм.

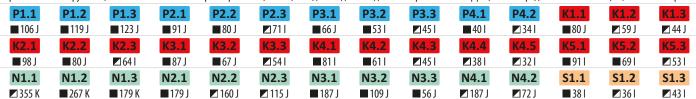
Продукция этой серии доступна в наборах \$991.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S9222.0 1)	2.00	0.08	3.00	6.00	38.0	2
S9222.5 1)	2.50	0.08	3.00	9.00	38.0	2
S9223.0 1)	3.00	0.08	3.00	12.00	38.0	2
S9224.0 1)	4.00	0.08	4.00	14.00	50.0	2
S9225.0 1)	5.00	0.13	5.00	16.00	50.0	2
S9226.0	6.00	0.13	6.00	19.00	57.0	2
S9227.0	7.00	0.13	8.00	19.00	63.0	2
S9228.0	8.00	0.13	8.00	19.00	63.0	2
S9229.0	9.00	0.13	10.00	21.00	72.0	2
S92210.0	10.00	0.18	10.00	22.00	72.0	2
S92212.0	12.00	0.20	12.00	25.00	73.0	2
S92214.0	14.00	0.20	14.00	30.00	83.0	2
S92216.0	16.00	0.20	16.00	32.00	92.0	2
S92218.0	18.00	0.20	18.00	32.00	92.0	2
S92220.0	20.00	0.30	20.00	38.00	104.0	2

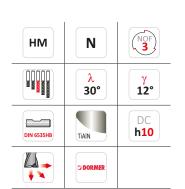

¹⁾ Цилиндрический хвостовик.

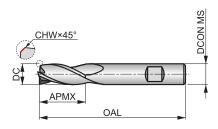
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.



Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.


DCON MS c допуском h6; DC \leq 9.00 мм: CHW \pm 0.03X45° мм; DC>9.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S9032.0	2.00	0.08	3.00	6.00	38.0	3
S9032.5	2.50	0.08	3.00	9.00	38.0	3
S9033.0	3.00	0.08	3.00	12.00	38.0	3
S9034.0	4.00	0.08	4.00	14.00	50.0	3
S9035.0	5.00	0.13	5.00	16.00	50.0	3
S9036.0	6.00	0.13	6.00	19.00	57.0	3
S9037.0	7.00	0.13	8.00	19.00	63.0	3
\$9038.0	8.00	0.13	8.00	19.00	63.0	3
S9039.0	9.00	0.13	10.00	21.00	72.0	3
S90310.0	10.00	0.20	10.00	22.00	72.0	3
S90312.0	12.00	0.20	12.00	25.00	73.0	3
S90314.0	14.00	0.20	14.00	30.00	83.0	3
S90316.0	16.00	0.20	16.00	32.00	92.0	3
S90318.0	18.00	0.20	18.00	32.00	92.0	3
S90320.0	20.00	0.30	20.00	38.00	104.0	3

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiAlN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

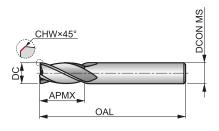
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	K1.1	K1.2
■132 J	■148 J	■ 153 J	■ 113 J	■ 100 J	■88 I	■98 J	■ 791	■ 67 l	■ 591	■ 501	∠ 41 I	■ 100 J	■74 J
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 56 J	■107 J	■87 J	■ 701	■95 J	■72 J	■ 591	■ 88 I	■ 67 l	49 I	42 I	■ 351	■ 100 I	■ 75 l
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1
■ 581	≥ 296 K	Z 222 K	■ 149 K	■ 149 J	■ 133 J	■96 J	■ 156 J	■91 J	Z 47 J	■ 156 J	∠ 60 J	∠ 64 J	■ 47 I
04.0	04.0												

S1.2 S1.3 ≥451 **≥**201

DCON MS c допуском h6; DC \leq 9.00 mm: CHW \pm 0.03X45° mm; DC>9.00 mm: CHW \pm 0.05X45° mm.

Продукция этой серии доступна в наборах \$991.

S9332.0 ¹⁾ 2.00 0.08 3.00 6.00 38.0 3 S9332.5 ¹⁾ 2.50 0.08 3.00 9.00 38.0 3 S9333.0 ¹⁾ 3.00 0.08 3.00 12.00 38.0 3 S9334.0 ¹⁾ 4.00 0.08 4.00 14.00 50.0 3 S9335.0 ¹⁾ 5.00 0.13 5.00 16.00 50.0 3 S9336.0 6.00 0.13 6.00 19.00 57.0 3 S9337.0 7.00 0.13 8.00 19.00 63.0 3 S9338.0 8.00 0.13 8.00 19.00 63.0 3 S9339.0 9.00 0.13 10.00 21.00 72.0 3 S93310.0 10.00 0.20 10.00 22.00 72.0 3	Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
\$9332.5 \(^1\) 2.50 0.08 3.00 9.00 38.0 3 \$9333.0 \(^1\) 3.00 0.08 3.00 12.00 38.0 3 \$9334.0 \(^1\) 4.00 0.08 4.00 14.00 50.0 3 \$9335.0 \(^1\) 5.00 0.13 5.00 16.00 50.0 3 \$9336.0 6.00 0.13 6.00 19.00 57.0 3 \$9337.0 7.00 0.13 8.00 19.00 63.0 3 \$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3		(MM)	(MM)	(MM)	(MM)	(MM)	
\$9333.0 ¹¹ 3.00 0.08 3.00 12.00 38.0 3 \$9334.0 ¹¹ 4.00 0.08 4.00 14.00 50.0 3 \$9335.0 ¹¹ 5.00 0.13 5.00 16.00 50.0 3 \$9336.0 6.00 0.13 6.00 19.00 57.0 3 \$9337.0 7.00 0.13 8.00 19.00 63.0 3 \$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3	S9332.0 1)	2.00	0.08	3.00	6.00	38.0	3
\$9334.0 1) 4.00 0.08 4.00 14.00 50.0 3 \$9335.0 1) 5.00 0.13 5.00 16.00 50.0 3 \$9336.0 6.00 0.13 6.00 19.00 57.0 3 \$9337.0 7.00 0.13 8.00 19.00 63.0 3 \$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3	S9332.5 1)	2.50	0.08	3.00	9.00	38.0	3
\$9335.0 ¹¹ 5.00 0.13 5.00 16.00 50.0 3 \$9336.0 6.00 0.13 6.00 19.00 57.0 3 \$9337.0 7.00 0.13 8.00 19.00 63.0 3 \$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3	S9333.0 1)	3.00	0.08	3.00	12.00	38.0	3
\$9336.0 6.00 0.13 6.00 19.00 57.0 3 \$9337.0 7.00 0.13 8.00 19.00 63.0 3 \$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3	S9334.0 1)	4.00	0.08	4.00	14.00	50.0	3
\$9337.0 7.00 0.13 8.00 19.00 63.0 3 \$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3	S9335.0 1)	5.00	0.13	5.00	16.00	50.0	3
\$9338.0 8.00 0.13 8.00 19.00 63.0 3 \$9339.0 9.00 0.13 10.00 21.00 72.0 3	\$9336.0	6.00	0.13	6.00	19.00	57.0	3
\$9339.0 9.00 0.13 10.00 21.00 72.0 3	S9337.0	7.00	0.13	8.00	19.00	63.0	3
	\$9338.0	8.00	0.13	8.00	19.00	63.0	3
\$93310.0 10.00 0.20 10.00 22.00 72.0 3	\$9339.0	9.00	0.13	10.00	21.00	72.0	3
	S93310.0	10.00	0.20	10.00	22.00	72.0	3
\$93312.0 12.00 0.20 12.00 25.00 73.0 3	S93312.0	12.00	0.20	12.00	25.00	73.0	3
S93314.0 14.00 0.20 14.00 30.00 83.0 3	S93314.0	14.00	0.20	14.00	30.00	83.0	3
\$93316.0 16.00 0.20 16.00 32.00 92.0 3	S93316.0	16.00	0.20	16.00	32.00	92.0	3
S93318.0 18.00 0.20 18.00 32.00 92.0 3	S93318.0	18.00	0.20	18.00	32.00	92.0	3
S93320.0 20.00 0.30 20.00 38.00 104.0 3	S93320.0	20.00	0.30	20.00	38.00	104.0	3


¹⁾ Цилиндрический хвостовик.

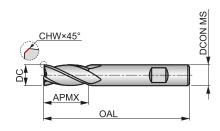
Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	K1.1	K1.2
■ 106 J	■ 119 J	■123 J	■91 J	■ 80 J	Z 71 I	■ 66 J	■ 53 I	∠ 45 I	■40 I	∠ 341	∠ 18 l	■ 80 J	 59 J
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
∠ 44 J	■98 J	■ 80 J	■ 641	■ 87 J	■ 67 J	■ 541	■ 811	■ 611	■ 451	■ 381	Z 32 I	■ 911	■ 691
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1	S1.2
■ 531	■ 355 J	■267 J	■179 J	■ 179 J	■ 160 J	■ 115 J	■ 187 J	■ 109 J	■56 J	■ 187 J	Z 172 J	■381	Z 361
S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2							
∠ 43 I	∠ 1401	Z 351	 ■301	 25 I	Z 23 I	≥ 20 l							

DCON MS c допуском h6; DC \leq 9.00 мм: CHW \pm 0.03X45° мм; DC>9.00 мм: CHW \pm 0.05X45° мм.


Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	
S9042.0	2.00	0.08	3.00	6.00	38.0	4
S9042.5	2.50	0.08	3.00	9.00	38.0	4
S9043.0	3.00	0.08	3.00	12.00	38.0	4
S9044.0	4.00	0.08	4.00	14.00	50.0	4
S9045.0	5.00	0.13	5.00	16.00	50.0	4
S9046.0	6.00	0.13	6.00	19.00	57.0	4
S9047.0	7.00	0.13	8.00	19.00	63.0	4
\$9048.0	8.00	0.13	8.00	19.00	63.0	4
S9049.0	9.00	0.13	10.00	21.00	72.0	4
S90410.0	10.00	0.20	10.00	22.00	72.0	4
590412.0	12.00	0.20	12.00	25.00	73.0	4
590414.0	14.00	0.20	14.00	30.00	83.0	4
\$90416.0	16.00	0.20	16.00	32.00	92.0	4
S90418.0	18.00	0.20	18.00	32.00	92.0	4
S90420.0	20.00	0.30	20.00	38.00	104.0	4

Фреза из твердого сплава с фаской

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для высокопроизводительного фрезерования большинства материалов. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 112. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 ■ 132 J ■ 148 J ■ 153 J ■ 113 J ■ 100 J ■88 I ■ 98 J **■** 79 l ■ 67 l **■** 59 l **50** I **∠**411 ■ 100 J ■74 J K2.2 K1.3 K2.1 **K2.3** K3.1 K3.3 K4.1 K4.2 K4.3 K5.1 K4.4 ■56 J ■107 J ■ 87 J **■**701 ■95 J ■72 J **■**591 ■88 I **■** 67 l **■**491 **42** I ■35 l ■ 100 I **■**75 l N1.1 **N1.2** N1.3 **N2.1 N2.2 N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 N4.3 **S1.1 ■**581 **Z** 296 J ■ 149 J ■ 149 J ■ 133 J ■ 156 J **Z** 222 J ■96 J ■91 J **Z** 47 J **∠** 156 J **Z** 60 J **Z** 64 J **47** I **S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.2 S4.1 ∠** 45 l **∠** 45 l **∠** 60 l **∠** 49 l **∠** 45 l **∠**35 l **∠**35 l **28** I

DCON MS c допуском h6; DC \leq 9.00 mm: CHW \pm 0.03X45° mm; DC>9.00 mm: CHW \pm 0.05X45° mm. Продукция этой серии доступна в наборах \$991.

Обозначение	DC	CHW	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	(MM)	
S9442.0 1)	2.00	0.08	3.00	6.00	38.0	4
S9442.5 1)	2.50	0.08	3.00	9.00	38.0	4
S9443.0 1)	3.00	0.08	3.00	12.00	38.0	4
S9444.0 1)	4.00	0.08	4.00	14.00	50.0	4
S9445.0 1)	5.00	0.13	5.00	16.00	50.0	4
S9446.0	6.00	0.13	6.00	19.00	57.0	4
S9447.0	7.00	0.13	8.00	19.00	63.0	4
S9448.0	8.00	0.13	8.00	19.00	63.0	4
S9449.0	9.00	0.13	10.00	21.00	72.0	4
S94410.0	10.00	0.20	10.00	22.00	72.0	4
S94412.0	12.00	0.20	12.00	25.00	73.0	4
S94414.0	14.00	0.20	14.00	30.00	83.0	4
S94416.0	16.00	0.20	16.00	32.00	92.0	4
S94418.0	18.00	0.20	18.00	32.00	92.0	4
S94420.0	20.00	0.30	20.00	38.00	104.0	4

¹⁾ Цилиндрический хвостовик.

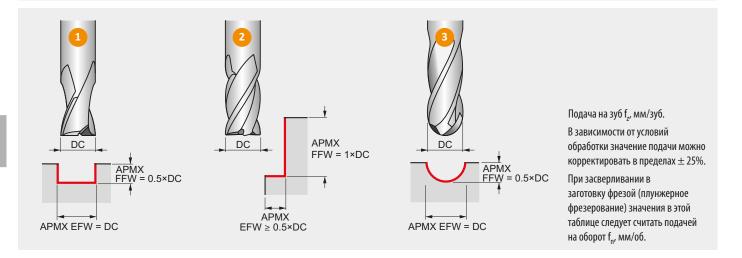
Набор фрез из твердого сплава В набор входят фрезы S922, S933 или S944 (2, 3 или 4 зуба) с покрытием TiAIN диаметром 3, 4, 5, 6, 8 и 10 мм в пластиковой цилиндрической упаковке.

А – серия, В – количество, С – диаметр.

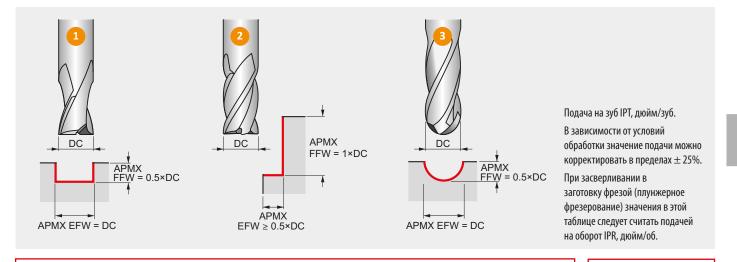
Обозначение	А	В	С
S991SET922	S922	6	3.00 мм, 4.00 мм, 5.00 мм, 6.00 мм, 8.00 мм, 10.00 мм
S991SET933	S933	6	3.00 мм, 4.00 мм, 5.00 мм, 6.00 мм, 8.00 мм, 10.00 мм
S991SET944	S944	6	3.00 мм, 4.00 мм, 5.00 мм, 6.00 мм, 8.00 мм, 10.00 мм

DORMER PRAMET

CMEMNTE 3A OBHOBMEHNЯMN



МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОДАЧА НА ЗУБ


Как использовать таблицу определения подачи на зуб (f,):

- 1. Определение индекса подачи (например, 199К, где "К" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы (f_2) .

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ ТВЕРДОГО СПЛАВА

									(ø DC, mn	١							
		1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00	25.00
	A	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	В	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	C	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	D	0.002	0.003	0.004	0.005	0.007	0.008	0.009	0.010	0.011	0.012	0.014	0.015	0.017	0.019	0.021	0.025	0.028
	E	0.002	0.003	0.004	0.008	0.009	0.012	0.013	0.014	0.015	0.016	0.019	0.021	0.024	0.026	0.028	0.030	0.034
Подача на зуб, мм/зуб	F	0.002	0.003	0.006	0.010	0.013	0.016	0.017	0.019	0.021	0.022	0.026	0.029	0.032	0.035	0.039	0.042	0.047
5, MA	G	0.002	0.005	0.008	0.014	0.018	0.022	0.024	0.026	0.028	0.031	0.035	0.040	0.044	0.048	0.053	0.057	0.064
a 3y(ı	0.003	0.006	0.011	0.019	0.024	0.030	0.032	0.036	0.039	0.042	0.049	0.054	0.061	0.066	0.073	0.079	0.088
чан	J	0.004	0.009	0.014	0.026	0.033	0.041	0.044	0.048	0.053	0.057	0.066	0.074	0.083	0.090	0.099	0.107	0.120
Пода	K	0.006	0.012	0.019	0.035	0.044	0.054	0.059	0.064	0.070	0.076	0.088	0.098	0.110	0.120	0.132	0.142	0.160
	N	0.008	0.016	0.025	0.047	0.058	0.072	0.078	0.086	0.094	0.101	0.117	0.131	0.146	0.160	0.175	0.189	0.212
	0	0.010	0.021	0.034	0.062	0.078	0.096	0.104	0.114	0.124	0.135	0.156	0.174	0.195	0.213	0.233	0.252	0.283
	P	0.014	0.028	0.045	0.083	0.104	0.128	0.138	0.152	0.166	0.180	0.207	0.231	0.259	0.283	0.311	0.335	0.376
	R	0.018	0.037	0.060	0.110	0.138	0.170	0.184	0.202	0.221	0.239	0.276	0.308	0.345	0.377	0.414	0.446	0.501
	S	0.024	0.049	0.080	0.147	0.183	0.226	0.245	0.269	0.294	0.318	0.367	0.410	0.459	0.502	0.550	0.593	0.667

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб IPT:

- 1. Определение индекса подачи (например, 653К, где "К" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы IPT.

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ ТВЕРДОГО СПЛАВА

									ø DC,	дюйм							
		1/16	3/32	1/8	5/32	3/16	7/32	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
		.0625	.0938	.1250	.1563	.1875	.2188	.2500	.3125	.3750	.4375	.5000	.5625	.6250	.7500	.8750	1.0000
	A	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011
	В	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011
	C	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011
	D	.0001	.0001	.0002	.0002	.0002	.0003	.0004	.0004	.0004	.0005	.0006	.0006	.0007	.0008	.0010	.0011
9	E	.0001	.0001	.0002	.0003	.0004	.0004	.0005	.0006	.0006	.0007	.0007	.0009	.0009	.0011	.0012	.0013
Подача на зуб, дюйм/зуб	F	.0001	.0002	.0002	.0004	.0005	.0006	.0006	.0007	.0009	.0009	.0011	.0012	.0013	.0015	.0017	.0019
ЯЮЙ	G	.0002	.0002	.0004	.0006	.0007	.0007	.0009	.0010	.0012	.0013	.0015	.0016	.0017	.0020	.0023	.0025
396,	Ι	.0002	.0003	.0005	.0007	.0009	.0011	.0012	.0014	.0016	.0018	.0020	.0022	.0024	.0028	.0031	.0035
а на	J	.0003	.0004	.0007	.0010	.0012	.0014	.0017	.0019	.0022	.0024	.0027	.0030	.0032	.0037	.0043	.0047
одан	K	.0004	.0006	.0009	.0014	.0016	.0019	.0022	.0025	.0029	.0032	.0036	.0040	.0043	.0050	.0056	.0063
Ĕ	N	.0005	.0007	.0011	.0019	.0022	.0025	.0029	.0034	.0038	.0043	.0048	.0053	.0057	.0066	.0075	.0083
	0	.0006	.0010	.0015	.0024	.0029	.0034	.0039	.0045	.0051	.0057	.0063	.0070	.0076	.0088	.0100	.0111
	P	.0008	.0014	.0020	.0033	.0038	.0045	.0052	.0060	.0068	.0076	.0084	.0094	.0100	.0117	.0133	.0148
	R	.0011	.0018	.0027	.0043	.0051	.0060	.0069	.0080	.0091	.0101	.0112	.0125	.0134	.0156	.0177	.0197
	S	.0015	.0024	.0036	.0058	.0067	.0080	.0091	.0106	.0120	.0135	.0149	.0166	.0178	.0207	.0236	.0263

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

1 Фрезерование паза

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от глубины резания.

APMX FFW / DC	25 %	50 %	100 %	150 %
(X.V	1.25	1.00	0.75	0.50
x.f ⇒	1.25	1.00	0.75	0.50

2 Фрезерование уступа

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от ширины фрезерования (в % от диаметра фрезы).

APMX EFW / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	≥ 50 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.00
x.f ⇒	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

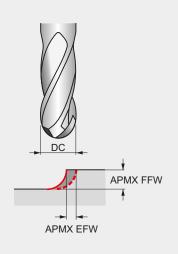
Рекомендуется избегать обработки с шириной фрезерования 50% от диаметра фрезы.

За Копировальное фрезерование (сферическими фрезами)

Поправочные коэффициенты для скорости резания V в зависимости от глубины резания.

APMX FFW / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %
(X.V	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

3b


Значения шага $\mathbf{f}_{\mathbf{e}}$ между проходами для достижения теоретической шероховатости .

DC	μm	2	4	8	16	32	63	125	250
2		0.13	0.18	0.25	0.36	0.50	0.70	0.97	1.32
3		0.15	0.22	0.31	0.44	0.62	0.86	1.20	1.66
4		0.18	0.25	0.36	0.50	0.71	1.00	1.39	1.94
5		0.20	0.28	0.40	0.56	0.80	1.12	1.56	2.18
6		0.22	0.31	0.44	0.62	0.87	1.22	1.71	2.40
8		0.25	0.36	0.51	0.71	1.01	1.41	1.98	2.78
10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.28	0.40	0.57	0.80	1.13	1.58	2.22	3.12
12	V/	0.31	0.44	0.62	0.88	1.24	1.73	2.44	3.43
14	// //	0.33	0.47	0.67	0.95	1.34	1.87	2.63	3.71
16		0.36	0.51	0.72	1.01	1.43	2.00	2.82	3.97
18		0.38	0.54	0.76	1.07	1.52	2.13	2.99	4.21
20		0.40	0.57	0.80	1.13	1.60	2.24	3.15	4.44
22		0.42	0.59	0.84	1.19	1.68	2.35	3.31	4.66
25	f _e	0.45	0.63	0.89	1.26	1.79	2.51	3.53	4.97
28	•	0.47	0.67	0.95	1.34	1.89	2.65	3.73	5.27

Указанные значения шага измеряются только в мм.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

Как использовать таблицу определения поправочного коэффициента для подачи на зуб (\mathbf{f}_z) при копировальном фрезеровании:

- 1. Определение ближайшего значения к выбранной ширине фрезерования в % от диаметра фрезы (APMX EFW) по верхней строке таблицы.
- 2. Определение ближайшего значения к выбранной глубине резания в % от диаметра фрезы (APMX FFW) по левому столбцу таблицы.
- 3. В ячейке на пересечении выбранных параметров будет значение поправочного коэффициента для подачи на зуб фрезы (f,).

Пример для копировального фрезерования:

- 1. Применение сферической фрезы Ø8 мм с глубиной резания 0.8 мм (APMX FFW) с целью получения поверхности с шероховатостью 32 мкм.
- 2. Поправочный коэффициент для скорости резания при глубине резания 10% от диаметра фрезы = 1.67 (таблица 3a).
- 3. Шаг между проходами для достижения теоретической шероховатости 32 мкм = 1.01 мм (таблица 3b).
- Поправочный коэффициент для подачи на зуб при глубине резания 10% и ширине фрезерования 1.01 / 8 = 12.6% определяется по таблице 3с и в данном случае будет = 2.33.

Поправочные коэффициенты для подачи на зуб f, в зависимости от ширины фрезерования АРМХ EFW и глубины резания АРМХ FFW (в % от диаметра фрезы).

APMX FFW	APMX EFW	5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %	50 %
5 %		5.26	3.82	3.21	2.87	2.65	2.50	2.40	2.34	2.29
10 %		3.82	2.78	2.33	2.08	1.92	1.82	1.75	1.70	1.67
15 %		3.21	2.33	1.96	1.75	1.62	1.53	1.47	1.43	1.40
20 %		2.87	2.08	1.75	1.56	1.44	1.36	1.31	1.28	1.25
25 %	x.f	2.65	1.92	1.62	1.44	1.33	1.26	1.21	1.18	1.15
30 %		2.50	1.82	1.53	1.36	1.26	1.19	1.14	1.11	1.09
35 %		2.40	1.75	1.47	1.31	1.21	1.14	1.10	1.07	1.05
40 %		2.34	1.70	1.43	1.28	1.18	1.11	1.07	1.04	1.02
45 %		2.31	1.68	1.41	1.26	1.16	1.10	1.05	1.03	1.01
50 %		2.29	1.67	1.40	1.25	1.15	1.09	1.05	1.02	1.00

Для повышения качества обрабатываемой поверхности инструмент следует наклонять по отношению к поверхности заготовки под углом 10...15°.

ПАРАБОЛИЧЕСКИЕ ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб (f_j) :

- 1. Определение индекса подачи (например, 121F, где "F" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы $(\mathbf{f_{_{7}}}).$

ТОЛЬКО ДЛЯ ПАРАБОЛИЧЕСКИХ ФРЕЗ ИЗ ТВЕРДОГО СПЛАВА СЕРИИ S791

		ø DC, mm												
		6.00	8.00	10.00	12.00	16.00								
3)6	E	0.030	0.039	0.053	0.067	0.096								
ача на	F	0.037	0.050	0.064	0.083	0.118								
Подача	ı	0.062	0.084	0.111	0.141	0.203								

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – МАТЕРИАЛ ИНСТРУМЕНТА

Материал инструмента		
Быстрорежущая сталь	HSS	Среднелегированная быстрорежущая сталь имеет хорошую обрабатываемость, а также важное сочетание прочности и износостойкости, что делает такой материал привлекательным для изготовления большого ассортимента режущего инструмента, например, сверл, метчиков и фрез.
Быстрорежущая сталь с кобальтом	HSS-E	Быстрорежущая сталь с кобальтом HSS-E имеет повышенную красностойкость. Структура материала позволяет получить хорошее сочетание прочности и износостойкости. Хорошая обрабатываемость материала делает его пригодным для изготовления сверл, метчиков и монолитных фрез.
Порошковая быстрорежущая сталь с кобальтом	HSS-E PM	Быстрорежущая сталь с кобальтом HSS-E-PM изготавливается методом порошковой металлургии. Благодаря такому методу получения быстрорежущая сталь имеет однородную структуру, высокую прочность и хорошую обрабатываемость шлифованием. Изготовленный из такого материала режущий инструмент имеет значительное преимущество в производительности и надежности.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОКРЫТИЕ

Обработка поверхности

Полирование (без покрытия)

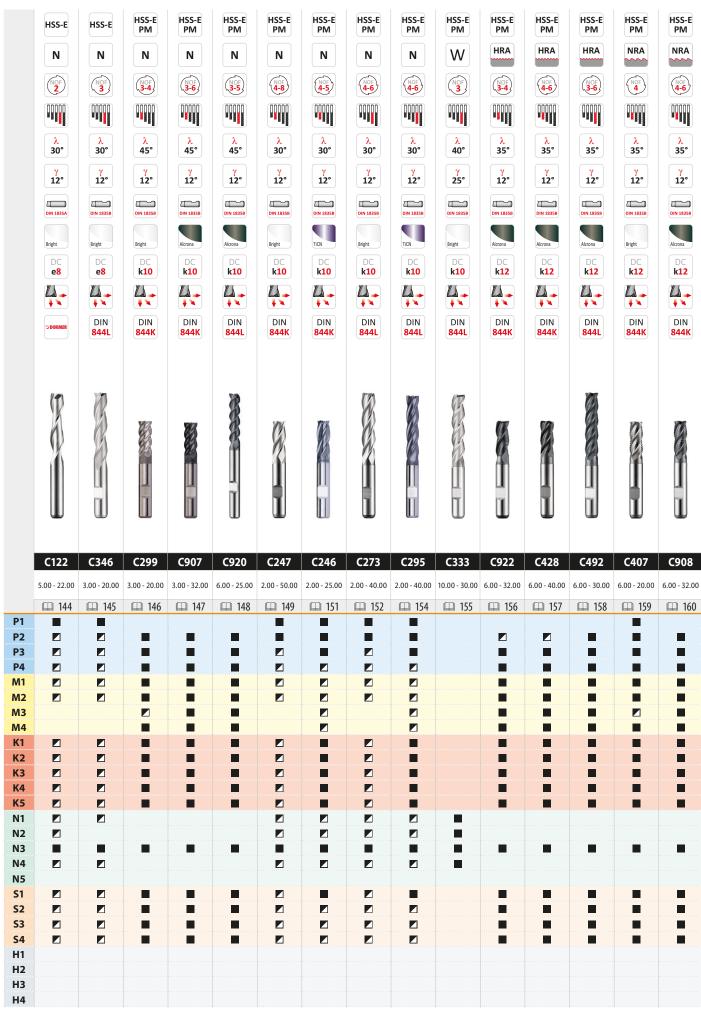
Непокрытые полированные поверхности снижают вероятность налипания стружки и позволяют сохранить остроту режущих кромок для обработки вязких материалов заготовок.

Обработка быстрорежущей стали паром

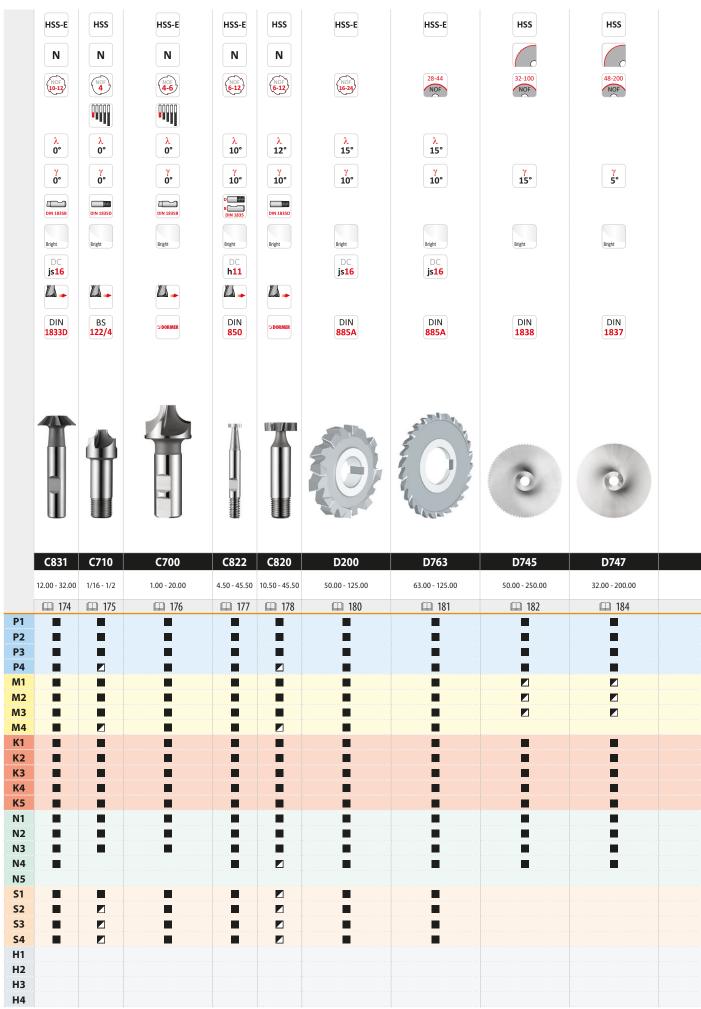
Обработка быстрорежущей стали паром создает тонкую оксидную пленку на поверхности инструмента, которая снижает вероятность налипания стружки и лучше смачивается СОЖ. Такой вид обработки поверхности используется преимущественно на сверлах и метчиках.

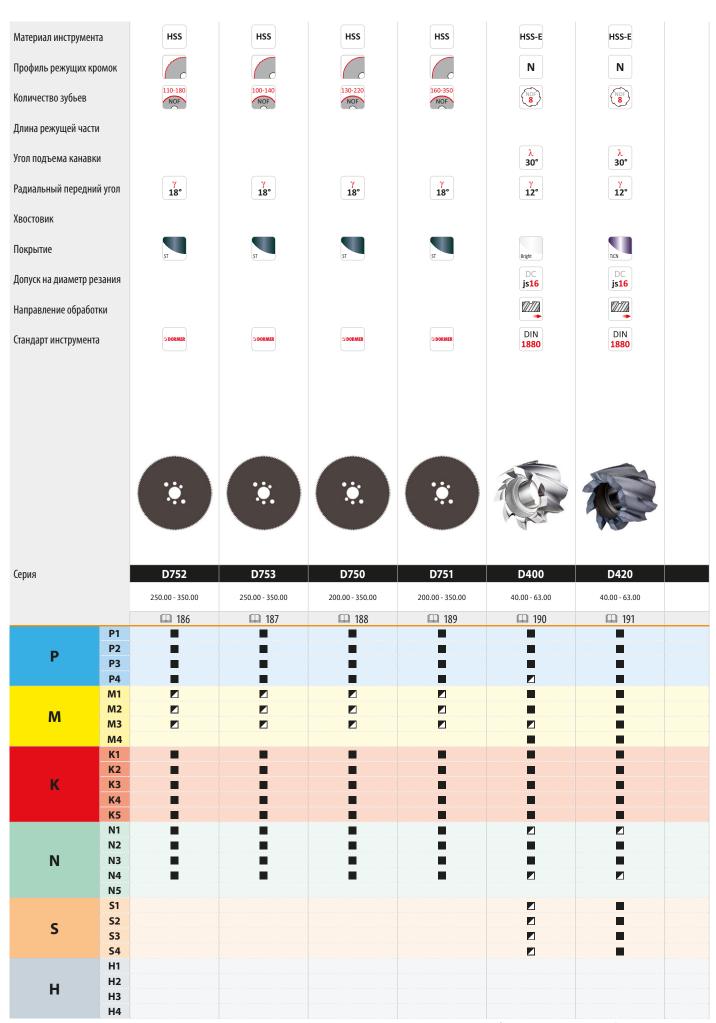
Покрытие

Покрытие Alcrona

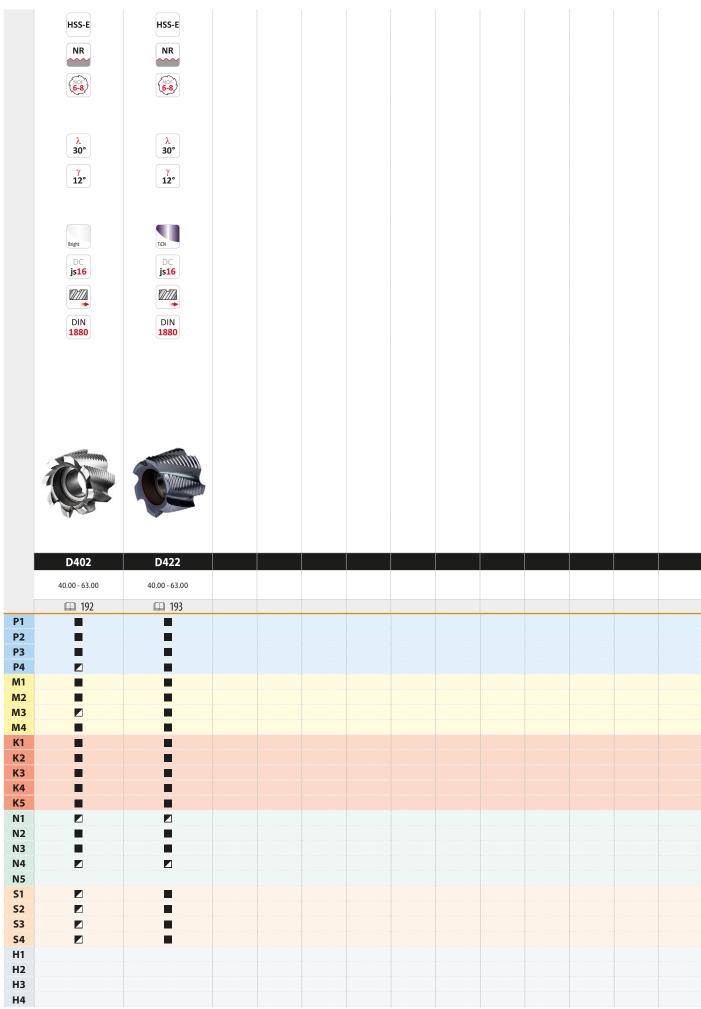

Покрытие Alcrona (AlCrN) обычно используется для фрез и имеет два уникальных свойства: высокая красностойкость и сопротивление окислению. При использовании режущего инструмента в условиях высоких термических и механических нагрузок такое покрытие позволяет получить исключительную износостойкость. Для разного инструмента и применения доступно несколько вариантов такого покрытия.

Покрытие TiCN



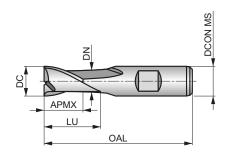

Покрытие TiCN наносится с помощью технологии PVD, является более твердым покрытием в сравнении с TiN и имеет более низкий коэффициент трения. Высокая твердость и прочность покрытия позволяют значительно повысить износостойкость режущего инструмента и производительность обработки.

Материал инструмент	та	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E PM	HSS-E	HSS-E PM	HSS-E
Профиль режущих кр	омок	N	N	N	N	N	N	N	N	N	N	W	W	N
Количество зубьев		NOF 2	NOF 2	NOF 2	NOF 2	NOF 2	NOF 3	NOF 3	NOF 3	NOF 3	NOF 3	NOF 2	NOF 3	NOF 2
, Длина режущей части	1													
Угол подъема канавкі		λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ
		30° γ 12°	30°	30° γ	30°	30°	30°	30°	40° γ	30°	30° γ	40° γ	40° γ	30°
Радиальный передни	и угол	12°	γ 12°	γ 12°	12°	12°	12°	γ 12°	15°	12°	12°	20°	γ 25°	12°
Хвостовик		DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835A
Покрытие		Bright	TiCN	Bright	TICN	Bright	Bright	Alcrona	Alcrona	Bright	Alcrona	Bright	Bright	Bright
Допуск на диаметр ре	зания	DC e8	DC e8	e8	DC e8	DC e8	DC e8	e8	DC e8	e8	e8	DC e8	DC k10	DC js 14
Направление обработ	КИ													
Стандарт инструмента	ì	DIN 327D	DIN 327D	DIN 844K	DIN 844K	DORMER	DIN 327D	DIN 327D	DIN 327D	DIN 844K	DIN 844K	DIN 844K	DIN 844K	DORMER
						//n								á
					Ø)	(V)				(h)		(1)	(7 1	
		A	V	Y.			0			A)		X	8	
		1							Ĭ			1		
							76							
								101	111					
		Ш		I	Ш	\mathbf{I}	\mathbf{I}	1	I	Ш		1	Ш	
Серия		C110	C126	C123	C139	C135	C306	C353	C367	C305	C352	C159	C336	C167
Серия		C110 1.00 - 40.00		C123	C139 2.00 - 25.00							C159		C167
Серия	P1	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00 - 20.00 133	C306 3.00 - 30.00	C353 3.00-30.00	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00	C159 2.00 - 20.00 141	C336 10.00 - 30.00	C167
Серия	P2	1.00 - 40.00 1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00	C336	C167 6.00 - 16.00 143
С ерия Р	P2 P3 P4	1.00 - 40.00 126	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00 - 20.00 133	C306 3.00 - 30.00 134	C353 3.00 - 30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143
P	P2 P3	1.00 - 40.00 126	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00 - 20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143
Р	P2 P3 P4 M1 M2 M3	1.00 - 40.00 126	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00 - 30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143
P	P2 P3 P4 M1 M2	1.00 - 40.00 126	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143
P M	P2 P3 P4 M1 M2 M3 M4 K1	1.00 - 40.00	C126 1.00-30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3	1.00 - 40.00	C126 1.00-30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00 - 20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00 - 30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 1 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00-30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130 130 130 141 151 151 151 151 151 151 15	2.00 - 25.00	C135 2.00-20.00 133 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C306 3.00-30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 143 144 144 144 144 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00-30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4	1.00 - 40.00	C126 1.00 - 30.00 128	C123 1/16-30.00 130 130 130 130 130 130 130	2.00 - 25.00	C135 2.00-20.00 133 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3	1.00 - 40.00	C126 1.00-30.00 128	C123 1/16-30.00 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00 - 30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4 H1	1.00 - 40.00	C126 1.00-30.00 128	C123 1/16-30.00 130 130 130 130 130 130 130	2.00 - 25.00	C135 2.00-20.00 133	C306 3.00-30.00 134	C353 3.00-30.00 135	C367 2.00 - 20.00 137	2.00 - 32.00	C352 3.00 - 20.00 140	C159 2.00 - 20.00 141	C336 10.00 - 30.00 142	C167 6.00 - 16.00 143 143 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



Материал инструмент	га	HSS-E PM	HSS-E	HSS-E	HSS-E	HSS-E	HSS-E	HSS-E	HSS	HSS-E	HSS-E	HSS	HSS	HSS-E
Профиль режущих кр	омок	NRA	NF	NF	NF	N	N	N	N	N	NF	N	N	N
Количество зубьев		NOF 4-6	NOF 4	NOF 4	NOF 4-6	NOF 2	NOF 2	NOF 6-8	NOF 6-8	NOF 8-12	NOF 6-8	NOF 6-8	NOF 6-8	NOF 10-12
, Длина режущей части	1													
Угол подъема канавкі		λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ
		35° γ 12°	30°	30°	30°	30°	30°	15° γ	12° γ	15°	12° γ	ο° γ ο°	ο° Ο°	ο°
Радиальный передни	и угол	12°	γ 12°	γ 12°	12°	γ 12°	12°	10°	10°	15°	10°	Ŏ°	Ó°	Ó°
Хвостовик		DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	DIN 1835B	D B DIN 1835	DIN 1835D	DIN 1835B	DIN 1835B	DIN 1835D	DIN 1835D	DIN 1835B
Покрытие		Alcrona	Bright	TiCN	Bright	Bright	Bright	Bright	Bright	Bright	Bright	Bright	Bright	Bright
Допуск на диаметр ре	винье	DC k12	DC k12	DC k12	DC k12	DC e8	DC e8	DC d 11	DC d 11	js16	DC d11	w	W	js16
Направление обработ	КИ													
Стандарт инструмента	a	DIN 844L	DIN 844K	DIN 844K	DIN 844L	DIN 327D	DIN 844K	DIN 851	DORMER	DORMER	DIN 851	DORMER	DORMER	DIN 1833C
		7			97B									
				nen			(n Mayo		V	W	
							X					#		
				П				1	m	m	1	Ш	ш	Ш
							Ш		- 101					
				Ш		Ш								
		U			1	Ш	Ш			1				
Серия		C948	1 C400	C413	C403	C500	C505	C800	C810	C825	C801	C837	C835	C830
Серия		C948 6.00 - 32.00	6.00 - 20.00	C413 6.00 - 20.00	C403	2.00 - 25.00		11.00 - 50.00		40.00 - 63.00	C801		1/2 - 1.1/2	12.00 - 32.00
Серия	P1	C948		C413	C403						C801			
Серия	P1 P2 P3	C948 6.00 - 32.00	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
·	P2 P3 P4	C948 6.00 - 32.00 161	6.00 - 20.00 162	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00 165	3.00 - 30.00 166	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
·	P2 P3 P4 M1 M2	C948 6.00 - 32.00 161	6.00 - 20.00 162	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00 165	3.00 - 30.00 166	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2 - 1.1/2	12.00 - 32.00
P	P2 P3 P4 M1 M2 M3 M4	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00 166	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2 - 1.1/2 1/2 - 1.1/2 1/2 - 1.1/2	12.00 - 32.00
P	P2 P3 P4 M1 M2 M3 M4	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163 163 1 103 103 104 105 105 105 105 105 105 105 105 105 105	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2	C948 6.00 - 32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163 103 104 105 105 105 105 105 105 105 105 105 105	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00
P M K	P2 P3 P4 M1 M2 M3 M4 K1 K2 K3 K4 K5 N1 N2 N3 N4 N5 S1 S2 S3 S4	C948 6.00-32.00 161	6.00 - 20.00	C413 6.00 - 20.00 163	C403 10.00 - 50.00 164	2.00 - 25.00	3.00 - 30.00	11.00 - 50.00	12.50 - 40.00	40.00 - 63.00	C801 16.00 - 32.00 170	13.00 - 38.00	1/2-1.1/2	12.00 - 32.00

124



Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P3.1 P3.2 P4.1 M1.1 M1.2 M2.1 M2.2 ■ 53 E ■ 59 E ■ 61 E ■ 45 E **∠** 40 E **Z**37 E **Z**30 D **Z** 22 D **∠**41 E **∠**35 E **Z**37 E **Z** 30 D **∠** 35 E **Z** 26 E K2.1 K2.3 K1.3 **K3.1** K4.1 K4.2 K4.3 K4.4 K4.5 K5.1 **∠** 19 E **∠** 62 E **Z** 50 E **Z** 40 D **Z** 54 E **Z** 42 E **Z**34 D **Z** 50 D **Z**38 D **Z**28 D **Z** 24 C **Z**20 C **Z** 57 D **∠** 43 D N1.1 N2.2 **N1.2 N1.3 N2.1 N2.3** N3.1 N3.2 N3.3 N4.1 **S1.1 S1.2 S2.1 Z**71 F **Z** 48 F **∠** 48 E **∠**43 E **Z**31 E ■ 50 E ■ 29 E ■15 E ■ 35 D **Z** 25 D **Z**20 C **Z** 50 E

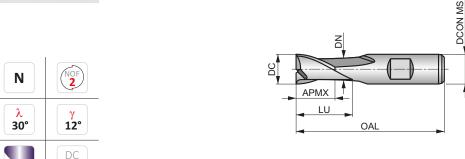
■33 D ■95 G **S3.1 S4.1**■15 C ■12 C

DCON MS с допуском h6.

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(мм)	(MM)		(MM)	(MM)
C1101.0	_	1.00	6.00	2.50	47.0	2	_	_
C1101.5	-	1.50	6.00	3.00	47.0	2	_	_
C1101/16	1/16	1.59	6.00	3.00	47.0	2	_	-
C1101.8	_	1.80	6.00	4.00	48.0	2	_	_
C1102.0	_	2.00	6.00	4.00	48.0	2	_	_
C1103/32	3/32	2.38	6.00	5.00	49.0	2	_	_
C1102.5	-	2.50	6.00	5.00	49.0	2	_	_
C1102.8	_	2.80	6.00	5.00	49.0	2	_	_
C1103.0	_	3.00	6.00	5.00	49.0	2	_	_
C1101/8	1/8	3.18	6.00	6.00	50.0	2	_	_
C1103.5	-	3.50	6.00	6.00	50.0	2	_	_
C1103.8	_	3.80	6.00	7.00	51.0	2	_	_
C1104.0	_	4.00	6.00	7.00	51.0	2	_	_
C1104.5	_	4.50	6.00	7.00	51.0	2	_	_
C1103/16	3/16	4.76	6.00	8.00	52.0	2	_	_
C1104.8 ²⁾	_	4.80	6.00	8.00	52.0	2	_	_
C1105.0	_	5.00	6.00	8.00	52.0	2	_	_
C1105.5	_	5.50	6.00	8.00	52.0	2	_	_
C1105.75 ²⁾	_	5.75	6.00	8.00	52.0	2	-	_
C1106.0	_	6.00	6.00	8.00	52.0	2	_	_
C1101/4	1/4	6.35	10.00	10.00	60.0	2	_	_
C1106.5	_	6.50	10.00	10.00	60.0	2	_	
C1107.0	_	7.00	10.00	10.00	60.0	2	-	_
C1107.5	_	7.50	10.00	10.00	60.0	2	_	_
C1107.75 ²⁾	_	7.75	10.00	11.00	61.0	2	_	_

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C1105/16	5/16	7.94	10.00	11.00	61.0	2	_	_
C1108.0	_	8.00	10.00	11.00	61.0	2	_	_
C1108.5	_	8.50	10.00	11.00	61.0	2	_	_
C1109.0	_	9.00	10.00	11.00	61.0	2	_	_
C1109.5	-	9.50	10.00	11.00	61.0	2	_	-
C1103/8	3/8	9.52	10.00	13.00	63.0	2	22.50	9.50
C11010.0	_	10.00	10.00	13.00	63.0	2	22.50	9.50
C11013/32	13/32	10.32	12.00	13.00	70.0	2	_	_
C11010.5	_	10.50	12.00	13.00	70.0	2	_	_
C11011.0	_	11.00	12.00	13.00	70.0	2	_	_
C1107/16	7/16	11.11	12.00	13.00	70.0	2	_	-
C11011.5	_	11.50	12.00	13.00	70.0	2	_	_
C11012.0	_	12.00	12.00	16.00	73.0	2	27.50	11.50
C11012.5	-	12.50	12.00	16.00	73.0	2	27.50	11.50
C1101/2	1/2	12.70	12.00	16.00	73.0	2	27.50	11.50
C11013.0	_	13.00	12.00	16.00	73.0	2	27.50	11.50
C11017/32	17/32	13.49	12.00	16.00	73.0	2	27.50	11.50
C11014.0	_	14.00	12.00	16.00	73.0	2	27.50	11.50
C1109/16	9/16	14.29	12.00	16.00	73.0	2	27.50	11.50
C11015.0	_	15.00	12.00	16.00	73.0	2	27.50	11.50
C1105/8	5/8	15.88	16.00	19.00	79.0	2	30.50	15.50
C11016.0	_	16.00	16.00	19.00	79.0	2	30.50	15.50
C11017.0	_	17.00	16.00	19.00	79.0	2	30.50	15.50
C11011/16	11/16	17.46	16.00	19.00	79.0	2	30.50	15.50
C11018.0	_	18.00	16.00	19.00	79.0	2	30.50	15.50
C11019.0	_	19.00	16.00	19.00	79.0	2	30.50	15.50
C1103/4	3/4	19.05	20.00	22.00	88.0	2	37.50	18.50
C11020.0	_	20.00	20.00	22.00	88.0	2	37.50	19.50
C11022.0	_	22.00	20.00	22.00	88.0	2	37.50	19.50
C1107/8	7/8	22.22	20.00	22.00	88.0	2	37.50	19.50
C11024.0	_	24.00	25.00	26.00	102.0	2	45.50	23.50
C11025.0	_	25.00	25.00	26.00	102.0	2	45.50	24.50
C1101	1"	25.40	25.00	26.00	102.0	2	45.50	24.50
C11026.0	_	26.00	25.00	26.00	102.0	2	45.50	24.50
C11028.0	_	28.00	25.00	26.00	102.0	2	45.50	24.50
C11030.0	_	30.00	25.00	26.00	102.0	2	45.50	24.50
C11032.0	_	32.00	32.00	32.00	112.0	2	51.50	31.50
C11035.0 ¹⁾	_	35.00	32.00	32.00	112.0	2	51.50	31.50
C11036.0 1)	_	36.00	32.00	32.00	112.0	2	51.50	31.50
C11040.0 1)	_	40.00	40.00	38.00	130.0	2	59.50	39.00

¹⁾ DC с допуском h10; только HSS-E. ²⁾ DC с допуском h10; паз не в допуске P9.



HSS-E

PM

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.3 P2.2 P2.3 P3.2 P4.1 P4.2 P1.1 P1.2 P2.1 P3.1 P3.3 P4.3 M1.1 M1.2 ■ 126 E ■141 E ■146 E ■ 108 E ■ 95 E **■**84 D ■81 E ■ 65 D **≥**55 D ■48 D **∠**41 D **Z** 34 D **∠** 62 E **Z** 52 E M2.1 **M2.2** M3.3 M4.1 K1.1 K1.3 K2.1 K2.3 K3.2 K3.3 **Z** 55 E **∠**45 D **Z**26 C **Z**25 C ■ 60 E ■ 44 E ■33 E ■111 E ■ 90 E ■72 D ■98 E ■ 75 E ■61 D ■91 D K4.2 K4.3 K4.5 N1.1 N1.2 N1.3 **N2.1 N2.2 N2.3** N3.1 K4.4 ■68 D ■ 50 D ■43 C ■ 103 D ■77 D ■60 D **≥**89 F ■ 80 E ■ 57 E ■ 93 E **■**36 C **Z** 177 G **Z** 133 F **≥**89 E N3.2 N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

143.2	143.3	144.7	J1.1	31.2	31.3	32.1	32.2	33.1	33.2	J-1.1	34.2	
■ 55 E	■ 28 E	■ 93 E	■ 45 D	■ 40 D	■ 15 C	■33 C	■ 14 C	■ 25 C	■ 10 C	■ 20 C	■ 8C	
DCON MS с доп	уском h6.											
		DC	D	OCON MS		APMX	0A	L	NOF		LU	DN
		(мм)		(MM)		(MM)	(MN)			(MM)	(MM)
C1261.0		1.00		6.00		2.50	47.	0	2		_	_
C1261.5		1.50		6.00		3.00	47.	0	2		_	_
C1262.0		2.00		6.00		4.00	48.	0	2		-	_
C1262.5		2.50		6.00		5.00	49.	0	2		-	_
C1263.0		3.00		6.00		5.00	49.	.0	2		_	_
C1263.5		3.50		6.00		6.00	50.	.0	2		_	_
C1264.0		4.00		6.00		7.00	51.	.0	2		_	
C1264.5		4.50		6.00		7.00	51.	.0	2		-	
C1265.0		5.00		6.00		8.00	52.		2		_	_
C1265.5		5.50		6.00		8.00	52.	.0	2		-	
C1266.0		6.00		6.00		8.00	52.		2		_	-
C1266.5		6.50		10.00		10.00	60.		2		_	_
C1267.0		7.00		10.00		10.00	60.		2		_	
C1267.5		7.50		10.00		10.00	60.		2		_	
C1268.0		8.00		10.00		11.00	61.		2		_	_
C1268.5		8.50		10.00		11.00	61.		2		_	_
C1269.0		9.00		10.00		11.00	61.		2		_	-
C1269.5		9.50		10.00		11.00	61.		2			_
C12610.0		10.00		10.00		13.00	63.		2		22.50	9.50
C12610.5		10.50		12.00		13.00	70		2		_	_
C12611.0		11.00		12.00		13.00	70		2		_	_
C12611.5		11.50		12.00		13.00	70		2		_	_
C12612.0		12.00		12.00		16.00	73	.0	2		27.50	11.50

16.00

16.00

73.0

73.0

27.50

27.50

11.50

11.50

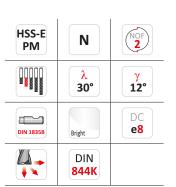
C12612.5

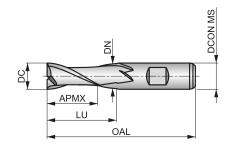
C12613.0

12.50

13.00

12.00


12.00


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(мм)	(мм)
C12614.0	14.00	12.00	16.00	73.0	2	27.50	11.50
C12615.0	15.00	12.00	16.00	73.0	2	27.50	11.50
C12616.0	16.00	16.00	19.00	79.0	2	30.50	15.50
C12618.0	18.00	16.00	19.00	79.0	2	30.50	15.50
C12620.0	20.00	20.00	22.00	88.0	2	37.50	19.50
C12622.0	22.00	20.00	22.00	88.0	2	37.50	19.50
C12624.0	24.00	25.00	26.00	102.0	2	45.50	23.50
C12625.0	25.00	25.00	26.00	102.0	2	45.50	24.50
C12630.0	30.00	25.00	26.00	102.0	2	45.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.2 P3.1 P3.2 P4.1 P2.1 M1.1 M1.2 M2.1 M2.2 ■ 53 D ■ 59 D ■61 D ■ 45 D ■ 40 D ■37 D ■30 C ■ 22 C **Z**34 D **Z**29 D **Z**31 D **Z**25 C **Z** 30 D **Z** 22 D K2.3 K5.1 K1.3 K2.1 **K3.1** K4.1 K4.2 K4.3 K4.4 K4.5 **■** 17 D **Z** 55 D **∠** 45 D **Z**36 C **∠**49 D **Z** 37 D **Z**30 B **∠**45 C **Z** 34 C **Z** 25 C **Z**22 B **■** 18 B **Z**51 C **Z**39 C N1.1 **N1.2 N1.3 N2.1 N2.2 N2.3** N3.1 N3.2 N3.3 N4.1 **S1.1 S1.2 S2.1 Z**30 C **≥** 95 F **Z**71 E **Z**48 D **Z**43 D **Z**31 D ■ 50 D ■29 D ■15 D **■**30 C **Z**25 C **Z**20 B **Z** 48 E **Z** 50 D **S4.1**

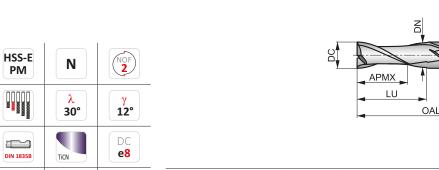
DCON MS с допуском h6.

∠ 12 B

S3.1 ■ 15 B

DC DC DCN MS APMX OAL NOF LU	DN (MM)
C1231/16 ¹⁾ 1/16 1.59 6.00 7.00 51.0 2 - C1232.0 - 2.00 6.00 7.00 51.0 2 - C1232.5 - 2.50 6.00 8.00 52.0 2 - C1233.0 - 3.00 6.00 8.00 52.0 2 - C1231/8 ¹⁾ 1/8 3.18 6.00 10.00 54.0 2 - C1233.5 - 3.50 6.00 10.00 54.0 2 - C1235/32 ¹⁾ 5/32 3.97 6.00 11.00 55.0 2 - C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00	()
C1231/16¹¹ 1/16 1.59 6.00 7.00 51.0 2 − C1232.0 − 2.00 6.00 7.00 51.0 2 − C1232.5 − 2.50 6.00 8.00 52.0 2 − C1233.0 − 3.00 6.00 8.00 52.0 2 − C1231/8¹¹ 1/8 3.18 6.00 10.00 54.0 2 − C1233.5 − 3.50 6.00 10.00 54.0 2 − C1235/32¹¹ 5/32 3.97 6.00 11.00 55.0 2 − C1234.0 − 4.00 6.00 11.00 55.0 2 − C1234.5 − 4.50 6.00 11.00 55.0 2 − C1234.5 − 4.50 6.00 13.00 57.0 2 − C1235.0 − 5.00 6.00 13.00 <th< th=""><th></th></th<>	
C1232.0 − 2.00 6.00 7.00 51.0 2 − C1232.5 − 2.50 6.00 8.00 52.0 2 − C1233.0 − 3.00 6.00 8.00 52.0 2 − C1231/8 ¹¹ 1/8 3.18 6.00 10.00 54.0 2 − C1233.5 − 3.50 6.00 10.00 54.0 2 − C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 − C1234.0 − 4.00 6.00 11.00 55.0 2 − C1234.5 − 4.50 6.00 11.00 55.0 2 − C1234.5 − 4.50 6.00 13.00 57.0 2 − C1235.0 − 5.00 6.00 13.00 57.0 2 − C1236.0 − 6.00 6.00 13.00 57	_
C1232.5 - 2.50 6.00 8.00 52.0 2 - C1233.0 - 3.00 6.00 8.00 52.0 2 - C1231/8 ¹¹¹ 1/8 3.18 6.00 10.00 54.0 2 - C1233.5 - 3.50 6.00 10.00 54.0 2 - C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 - C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 13.00 57.0 2 - C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00	_
C1233.0 - 3.00 6.00 8.00 52.0 2 - C1231/8 ¹¹) 1/8 3.18 6.00 10.00 54.0 2 - C1233.5 - 3.50 6.00 10.00 54.0 2 - C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 - C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1235.0 - 4.50 6.00 13.00 57.0 2 - C1235.5 - 5.00 6.00 13.00 57.0 2 - C1236.0 - 5.50 6.00 13.00 57.0 2 - C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 - C1237.5 - 6.50 10.00 16.00	_
C1231/8 ¹¹) 1/8 3.18 6.00 10.00 54.0 2 - C1233.5 - 3.50 6.00 10.00 54.0 2 - C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 - C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1235.16 ¹¹ 3/16 4.76 6.00 13.00 57.0 2 - C1235.0 - 5.50 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 - C1237.5 - 6.50 10.00 16.00 <td>_</td>	_
C1233.5 - 3.50 6.00 10.00 54.0 2 - C1235/32 ¹¹ 5/32 3.97 6.00 11.00 55.0 2 - C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1233/16 ¹¹ 3/16 4.76 6.00 13.00 57.0 2 - C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 ¹¹ 1/4 6.35 10.00 16.00 66.0 2 - C1237.0 - 7.50 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00	_
C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1233/16 1) 3/16 4.76 6.00 13.00 57.0 2 - C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 1) 1/4 6.35 10.00 16.00 66.0 2 - C1237.0 - 6.50 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00	_
C1234.0 - 4.00 6.00 11.00 55.0 2 - C1234.5 - 4.50 6.00 11.00 55.0 2 - C1233/16 1) 3/16 4.76 6.00 13.00 57.0 2 - C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 1) 1/4 6.35 10.00 16.00 66.0 2 - C1237.0 - 6.50 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00	_
C1233/16 ¹¹) 3/16 4.76 6.00 13.00 57.0 2 - C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 ¹¹) 1/4 6.35 10.00 16.00 66.0 2 - C1236.5 - 6.50 10.00 16.00 66.0 2 - C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 ¹¹ 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1235.0 - 5.00 6.00 13.00 57.0 2 - C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 1) 1/4 6.35 10.00 16.00 66.0 2 - C1236.5 - 6.50 10.00 16.00 66.0 2 - C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1235.5 - 5.50 6.00 13.00 57.0 2 - C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 ¹⁾ 1/4 6.35 10.00 16.00 66.0 2 - C1236.5 - 6.50 10.00 16.00 66.0 2 - C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 ¹⁾ 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1236.0 - 6.00 6.00 13.00 57.0 2 - C1231/4 ¹¹) 1/4 6.35 10.00 16.00 66.0 2 - C1236.5 - 6.50 10.00 16.00 66.0 2 - C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 ¹¹ 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1231/4 ¹¹) 1/4 6.35 10.00 16.00 66.0 2 - C1236.5 - 6.50 10.00 16.00 66.0 2 - C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 ¹¹) 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1236.5 - 6.50 10.00 16.00 66.0 2 - C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1237.0 - 7.00 10.00 16.00 66.0 2 - C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1237.5 - 7.50 10.00 16.00 66.0 2 - C1235/16 ¹⁾ 5/16 7.94 10.00 19.00 69.0 2 - C1238.0 - 8.00 10.00 19.00 69.0 2 -	_
C1235/16 1) 5/16 7.94 10.00 19.00 69.0 2 — C1238.0 — 8.00 10.00 19.00 69.0 2 —	_
C1238.0 – 8.00 10.00 19.00 69.0 2 –	_
	_
C1238 5 - 8.50 10.00 19.00 69.0 2 -	_
0.50 10.00 17.00 07.0 2	_
C1239.0 – 9.00 10.00 19.00 69.0 2 –	_
C1239.5 – 9.50 10.00 19.00 69.0 2 –	_
C1233/8 ¹⁾ 3/8 9.52 10.00 22.00 72.0 2 31.50	9.50
C12310.0 – 10.00 10.00 22.00 72.0 2 31.50	9.50
C12311.0 – 11.00 12.00 22.00 79.0 2 –	_

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C12312.0	_	12.00	12.00	26.00	83.0	2	37.50	11.50
C1231/2 1)	1/2	12.70	12.00	26.00	83.0	2	37.50	11.50
C12313.0	_	13.00	12.00	26.00	83.0	2	37.50	11.50
C12314.0	_	14.00	12.00	26.00	83.0	2	37.50	11.50
C12315.0	_	15.00	12.00	26.00	83.0	2	37.50	11.50
C12316.0	_	16.00	16.00	32.00	92.0	2	43.50	15.50
C12318.0	_	18.00	16.00	32.00	92.0	2	43.50	15.50
C12320.0	_	20.00	20.00	38.00	104.0	2	53.50	19.50
C12322.0	_	22.00	20.00	38.00	104.0	2	53.50	19.50
C12325.0	_	25.00	25.00	45.00	121.0	2	64.50	24.50
C12330.0	-	30.00	25.00	45.00	121.0	2	64.50	24.50


¹⁾ DC с допуском – 0.0005" / – 0.0013".

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

DCON MS

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■113 D ■ 126 D ■ 131 D ■ 97 D ■85 D **Z** 75 C **■**74 D ■59 C **∠** 50 C ■ 44 C **Z** 37 C **Z**31 C **∠** 62 D **Z** 52 D M2.1 M2.2 M3.3 M4.1 **K2.3** K1.1 **≥**55 D **∠** 45 C **Z** 26 B **Z** 25 B ■55 D ■41 D ■31 D ■98 D ■80 D ■ 64 C ■ 87 D ■ 67 D ■ 54 B ■81 C N1.1 **N1.2** N1.3 **N2.1 N2.2 N2.3** N3.1 K4.2 K4.4 K4.5 ■ 61 C ■ 45 C ■38 B ■ 32 B ■91 C ■69 C ■53 C **Z** 159 F **Z** 120 E **∠**80 E **∠**80 D ■72 D ■51 D ■84 D N3.2 N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** 50 D 25 D **■**84 D 45 C ■ 35 C **■** 15 B ■ 33 B **■** 14 B 25 B **■** 10 B **20** B **≥**8B

DCON MS с допуском h6. DC DCON MS **APMX** 0AL NOF LU DN (MM) (MM) (MM) (ww) (MM) (MM) C1392.0 2.00 6.00 7.00 51.0 2 C1393.0 8.00 2 3.00 6.00 52.0 C1394.0 2 4.00 6.00 11.00 55.0 2 C1395.0 5.00 6.00 13.00 57.0 2 C1395.5 5.50 6.00 13.00 57.0 2 C1396.0 6.00 6.00 13.00 57.0 C1396.5 10.00 16.00 66.0 2 6.50 C1397.0 7.00 16.00 2 10.00 66.0 C1397.5 2 7.50 10.00 16.00 66.0 C1398.0 2 8.00 10.00 19.00 69.0 2 C1398.5 8.50 10.00 19.00 69.0 2 C1399.0 9.00 10.00 19.00 69.0 2 C1399.5 9.50 10.00 19.00 69.0 2 C13910.0 10.00 10.00 22.00 72.0 31.50 9.50 C13911.0 79.0 2 11.00 12.00 22.00 2 37.50 11.50 C13912.0 12.00 12.00 26.00 83.0 2 37.50 C13913.0 13.00 12.00 26.00 83.0 11.50 2 C13914.0 14.00 12.00 26.00 83.0 37.50 11.50 C13915.0 15.00 12.00 26.00 83.0 2 37.50 11.50 C13916.0 16.00 16.00 32.00 92.0 2 43.50 15.50 C13918.0 18.00 16.00 32.00 92.0 2 43.50 15.50 C13920.0 20.00 20.00 38.00 104.0 2 53.50 19.50 C13922.0 22.00 20.00 38.00 104.0 2 53.50 19.50

45.00

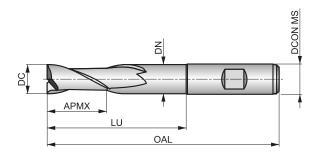
121.0

64.50

24.50

C13925.0

25.00


25.00

Фреза удлиненной конструкции из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30°, уменьшенную шейку и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

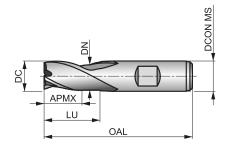
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■ 54 C	■ 40 C	Z 35 C	Z 32 C	Z 26 B	■ 19 B	Z 34 C	Z 29 C	Z 31 C	Z 25 B	Z 30 C	Z 22 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 C	∠ 49 C	■ 40 C	∠ 32 B	■ 44 C	⊿ 33 C	Z 27 A	∠ 40 B	Z 30 B	Z 22 B	∠ 19 A	∠ 16 A	∠ 46 B	≥ 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	≥ 81 E	Z 60 D	■ 41 D	■ 41 C	Z 37 C	Z 26 C	■ 43 C	■ 25 C	■13 C	∠ 43 C	■ 30 B	Z 25 B	Z 20 A
S3.1	S4.1												

DCON MS с допуском h6.

∠ 12 A

∠ 15 A


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(мм)	(мм)		(мм)	(MM)
C1352.0	2.00	6.00	7.00	54.0	2	18.00	1.80
C1353.0	3.00	6.00	8.00	56.0	2	20.00	2.80
C1354.0	4.00	6.00	11.00	63.0	2	27.00	3.70
C1355.0	5.00	6.00	13.00	68.0	2	32.00	4.70
C1356.0	6.00	6.00	13.00	68.0	2	32.00	5.70
C1358.0	8.00	10.00	19.00	88.0	2	48.00	7.50
C13510.0	10.00	10.00	22.00	95.0	2	54.50	9.50
C13512.0	12.00	12.00	26.00	110.0	2	64.50	11.50
C13514.0	14.00	12.00	26.00	110.0	2	64.50	11.50
C13516.0	16.00	16.00	32.00	123.0	2	74.50	15.50
C13518.0	18.00	16.00	32.00	123.0	2	74.50	15.50
C13520.0	20.00	20.00	38.00	141.0	2	90.50	19.50

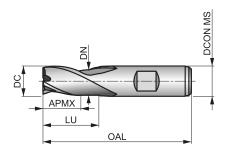
Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента..

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 54 E	■ 61 E	■ 63 E	■ 47 E	■ 41 E	Z 38 E	Z 31 D	Z 23 D	Z 36 E	Z 30 E	Z 32 E	Z 26 D	Z 32 E	≥ 24 E
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 18 E	≥ 59 E	∠ 48 E	Z 38 D	 52 E	∠ 40 E	Z 32 D	∠ 148 D	Z 37 D	Z 27 D	Z 23 C	■ 19 C	≥ 55 D	∠ 41 D
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
Z 32 D	Z 50 F	■ 50 E	■ 45 E	■ 32 E	■52 E	■30 E	■16 E	 52 E	■33 D	Z 26 D	Z 20 C	■ 15 C	■ 12 C

DCON MS с допуском h6.


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C3063.0	3.00	6.00	5.00	49.0	3	_	_
C3064.0	4.00	6.00	7.00	51.0	3	_	
C3065.0	5.00	6.00	8.00	52.0	3	_	_
C3066.0	6.00	6.00	8.00	52.0	3	_	_
C3067.0	7.00	10.00	10.00	60.0	3	_	_
C3068.0	8.00	10.00	11.00	61.0	3	_	_
C3069.0	9.00	10.00	11.00	61.0	3	_	_
C3069.5	9.50	10.00	11.00	61.0	3	_	_
C30610.0	10.00	10.00	13.00	63.0	3	22.50	9.50
C30611.0	11.00	12.00	13.00	70.0	3	_	_
C30612.0	12.00	12.00	16.00	73.0	3	27.50	11.50
C30614.0	14.00	12.00	16.00	73.0	3	27.50	11.50
C30615.0	15.00	12.00	16.00	73.0	3	27.50	11.50
C30616.0	16.00	16.00	19.00	79.0	3	30.50	15.50
C30618.0	18.00	16.00	19.00	79.0	3	30.50	15.50
C30620.0	20.00	20.00	22.00	88.0	3	37.50	19.50
C30622.0	22.00	20.00	22.00	88.0	3	37.50	19.50
C30625.0	25.00	25.00	26.00	102.0	3	45.50	24.50
C30630.0	30.00	25.00	26.00	102.0	3	45.50	24.50

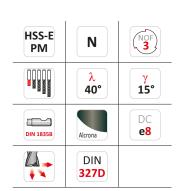
Фреза из порошковой быстрорежущей стали с кобальтом

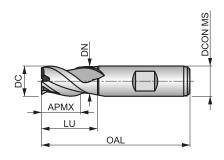
Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■133 E ■ 148 E ■ 154 E ■ 114 E ■ 100 E ■88 D ■ 88 E ■71 D ■ 60 D ■ 53 D ■ 45 D **Z** 37 D **∠** 69 E **≥** 58 E M2.2 **K2.2 K2.3** M2.1 M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K3.1 K3.2 **Z**61 E **Z**50 D **Z** 52 D **∠**45 D **■**41 C **Z**30 C ■65 E ■48 E ■36 E ■ 117 E ■ 95 E ■76 D ■ 103 E ■ 79 E K4.1 K4.2 K4.3 K4.4 K4.5 K5.1 **N1.3** N2.1 **N2.2** N2.3 N3.1 ■ 64 D ■96 D ■72 D ■53 D ■45 C **■**38 C ■108 D ■82 D ■ 63 D **≥**89 F **≥** 89 E ■80 E ■ 57 E ■ 93 E N3.3 N3.2 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** ■ 55 E **28** E **≥**93 E ■ 50 D ■ 40 D **Z**20 C ■ 40 C **21** C ■ 30 C **■** 15 C **23** C **■** 12 C

DCON MS с допуском he	с допуском h6
-----------------------	---------------

Cassas.0 3.00 6.00 5.00 49.0 3 -		DC	DCON MS	APMX	OAL	NOF	LU	DN
G533.5 3.50 6.00 6.00 50.0 3 - - G3534.0 4.00 6.00 7.00 51.0 3 - - G3534.5 4.50 6.00 7.00 51.0 3 - - G3534.8 °° 4.80 6.00 8.00 52.0 3 - - G3535.0 5.00 6.00 8.00 52.0 3 - - G3536.5 5.50 6.00 8.00 52.0 3 - - G3536.5 6.50 6.00 8.00 52.0 3 - - G3537.5 6.50 10.00 10.00 60.0 3 - - G3537.5 7.50 10.00 10.00 60.0 3 - - G3537.5 ° 7.50 10.00 11.00 61.0 3 - - G3538.5 8.50 10.00 11.00 61.0 3		(MM)	(MM)	(мм)	(MM)		(мм)	(мм)
C3534.0 4.00 6.00 7.00 51.0 3 - - C3534.5 4.50 6.00 7.00 51.0 3 - - C3534.8 °° 4.80 6.00 8.00 52.0 3 - - C3535.0 5.00 6.00 8.00 52.0 3 - - C3535.5 5.50 6.00 8.00 52.0 3 - - C3536.0 6.00 6.00 8.00 52.0 3 - - C3537.5 5.50 6.00 8.00 52.0 3 - - C3537.6 6.50 10.00 10.00 60.0 3 - - C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.75 °° 7.75 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 <th>C3533.0</th> <th>3.00</th> <th>6.00</th> <th>5.00</th> <th>49.0</th> <th>3</th> <th>-</th> <th>_</th>	C3533.0	3.00	6.00	5.00	49.0	3	-	_
C3534.5 4.50 6.00 7.00 51.0 3 - - C3534.8 °° 4.80 6.00 8.00 52.0 3 - - C3535.0 5.00 6.00 8.00 52.0 3 - - C3535.5 5.50 6.00 8.00 52.0 3 - - C3536.0 6.00 6.00 8.00 52.0 3 - - C3536.5 6.50 10.00 10.00 60.0 3 - - C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.5 ° 7.50 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 - - C3539.5 8.50 10.00 11.00 61.0 3<	C3533.5	3.50	6.00	6.00	50.0	3	-	_
C3534.8 ° 4.80 6.00 8.00 52.0 3 − − C3535.0 5.00 6.00 8.00 52.0 3 − − C3535.5 5.50 6.00 8.00 52.0 3 − − C3536.0 6.00 6.00 8.00 52.0 3 − − C3536.5 6.50 10.00 10.00 60.0 3 − − C3537.0 7.00 10.00 10.00 60.0 3 − − C3537.5 7.50 10.00 10.00 60.0 3 − − C3537.5 ° 7.50 10.00 11.00 61.0 3 − − C3538.0 8.00 10.00 11.00 61.0 3 − − C3538.5 8.50 10.00 11.00 61.0 3 − − C3539.5 9.50 10.00 11.00 61.0 3	C3534.0	4.00	6.00	7.00	51.0	3	-	_
G3535.0 5.00 6.00 8.00 52.0 3 - - G3535.5 5.50 6.00 8.00 52.0 3 - - G3536.0 6.00 6.00 8.00 52.0 3 - - G3536.5 6.50 10.00 10.00 60.0 3 - - G3537.0 7.00 10.00 10.00 60.0 3 - - G3537.5 7.50 10.00 10.00 60.0 3 - - G3538.0 8.00 10.00 11.00 61.0 3 - - G3538.5 8.50 10.00 11.00 61.0 3 - - G3539.0 9.00 10.00 11.00 61.0 3 - - G3539.5 9.50 10.00 11.00 61.0 3 - - G35310.0 10.00 10.00 13.00 63.0 3	C3534.5	4.50	6.00	7.00	51.0	3	_	_
C3335.5 5.50 6.00 8.00 52.0 3 - - C3536.0 6.00 6.00 8.00 52.0 3 - - C3536.5 6.50 10.00 10.00 60.0 3 - - C3537.0 7.00 10.00 10.00 60.0 3 - - C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.75 °° 7.75 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 - - C3539.5 8.50 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0	C3534.8 1)	4.80	6.00	8.00	52.0	3	_	_
C3536.0 6.00 6.00 8.00 52.0 3 — — C3536.5 6.50 10.00 10.00 60.0 3 — — C3537.0 7.00 10.00 10.00 60.0 3 — — C3537.5 7.50 10.00 11.00 61.0 3 — — C3537.75 °° 7.75 10.00 11.00 61.0 3 — — C3538.0 8.00 10.00 11.00 61.0 3 — — C3538.5 8.50 10.00 11.00 61.0 3 — — C3539.0 9.00 10.00 11.00 61.0 3 — — C3539.5 9.50 10.00 11.00 61.0 3 — — C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 16.00 73.0 <th>C3535.0</th> <th>5.00</th> <th>6.00</th> <th>8.00</th> <th>52.0</th> <th>3</th> <th>_</th> <th>_</th>	C3535.0	5.00	6.00	8.00	52.0	3	_	_
C3536.5 6.50 10.00 10.00 60.0 3 - - C3537.0 7.00 10.00 10.00 60.0 3 - - C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.75 ¹⁾ 7.75 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 - - C3538.5 8.50 10.00 11.00 61.0 3 - - C3539.0 9.00 10.00 11.00 61.0 3 - - C3531.0 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - C35312.0 12.00 12.00 16.00 7	C3535.5	5.50	6.00	8.00	52.0	3	-	_
C3537.0 7.00 10.00 10.00 60.0 3 - - C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.75 ¹⁾ 7.75 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 - - C3538.5 8.50 10.00 11.00 61.0 3 - - C3539.0 9.00 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00	C3536.0	6.00	6.00	8.00	52.0	3	_	_
C3537.5 7.50 10.00 10.00 60.0 3 - - C3537.75 °° 7.75 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 - - C3538.5 8.50 10.00 11.00 61.0 3 - - C3539.0 9.00 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00<	C3536.5	6.50	10.00	10.00	60.0	3	_	_
C3537.75 ¹¹ 7.75 10.00 11.00 61.0 3 - - C3538.0 8.00 10.00 11.00 61.0 3 - - C3538.5 8.50 10.00 11.00 61.0 3 - - C3539.0 9.00 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00	C3537.0	7.00	10.00	10.00	60.0	3	-	_
C3538.0 8.00 10.00 11.00 61.0 3 - - C3538.5 8.50 10.00 11.00 61.0 3 - - C3539.0 9.00 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C3537.5	7.50	10.00	10.00	60.0	3	-	_
C3538.5 8.50 10.00 11.00 61.0 3 - - C3539.0 9.00 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C3537.75 ¹⁾	7.75	10.00	11.00	61.0	3	-	_
C3539.0 9.00 10.00 11.00 61.0 3 - - C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C3538.0	8.00	10.00	11.00	61.0	3	_	_
C3539.5 9.50 10.00 11.00 61.0 3 - - C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C3538.5	8.50	10.00	11.00	61.0	3	-	_
C35310.0 10.00 10.00 13.00 63.0 3 22.50 9.50 C35311.0 11.00 12.00 13.00 70.0 3 - - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C3539.0	9.00	10.00	11.00	61.0	3	_	_
C35311.0 11.00 12.00 13.00 70.0 3 - - C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C3539.5	9.50	10.00	11.00	61.0	3	_	_
C35312.0 12.00 12.00 16.00 73.0 3 27.50 11.50 C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C35310.0	10.00	10.00	13.00	63.0	3	22.50	9.50
C35313.0 13.00 12.00 16.00 73.0 3 27.50 11.50 C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C35311.0	11.00	12.00	13.00	70.0	3	-	_
C35314.0 14.00 12.00 16.00 73.0 3 27.50 11.50 C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C35312.0	12.00	12.00	16.00	73.0	3	27.50	11.50
C35315.0 15.00 12.00 16.00 73.0 3 27.50 11.50	C35313.0	13.00	12.00	16.00	73.0	3	27.50	11.50
	C35314.0	14.00	12.00	16.00	73.0	3	27.50	11.50
C35316.0 16.00 16.00 19.00 79.0 3 30.50 15.50	C35315.0	15.00	12.00	16.00	73.0	3	27.50	11.50
10100 1	C35316.0	16.00	16.00	19.00	79.0	3	30.50	15.50
C35318.0 18.00 16.00 19.00 79.0 3 30.50 15.50	C35318.0	18.00	16.00	19.00	79.0	3	30.50	15.50
C35320.0 20.00 20.00 22.00 88.0 3 37.50 19.50	C35320.0	20.00	20.00	22.00	88.0	3	37.50	19.50


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C35322.0	22.00	20.00	22.00	88.0	3	37.50	19.50
C35325.0	25.00	25.00	26.00	102.0	3	45.50	24.50
C35328.0	28.00	25.00	26.00	102.0	3	45.50	24.50
C35330.0	30.00	25.00	26.00	102.0	3	45.50	24.50


 $^{^{1)}}$ DC с допуском h10.

Фреза из порошковой быстрорежущей стали с кобальтом

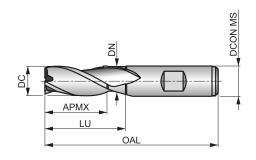
Конструкция фрезы имеет угол наклона спирали 40° и геометрию для фрезерования преимущественно конструкционных и нержавеющих сталей, а также цветных сплавов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M2.3	M3.1
■135 E	■ 151 E	■ 157 E	■116 E	■ 102 E	■ 94 E	Z 75 D	 ■ 56 D	■92 E	■ 78 E	■ 82 E	■ 67 D	■ 56 D	■ 64 D
M3.2	M3.3	M4.1	M4.2	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1
■ 55 D	■50 C	■35 C	■30 C	■ 177 G	■ 133 F	Z 89 F	■ 89 E	■ 80 E	Z 57 E	■ 93 E	≥ 55 E	■ 28 E	■ 93 E
S1 1													

DCON MS с допуском h6.

Z 50 D


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(мм)	(MM)	(мм)		(мм)	(MM)
C3672.0	2.00	6.00	4.00	48.0	3	-	-
C3673.0	3.00	6.00	5.00	49.0	3	_	_
C3674.0	4.00	6.00	7.00	51.0	3	_	_
C3675.0	5.00	6.00	8.00	52.0	3	_	_
C3676.0	6.00	6.00	8.00	52.0	3	_	_
C3677.0	7.00	10.00	10.00	60.0	3	_	_
C3678.0	8.00	10.00	11.00	61.0	3	-	_
C36710.0	10.00	10.00	13.00	63.0	3	22.50	9.50
C36711.0	11.00	12.00	13.00	70.0	3	_	_
C36712.0	12.00	12.00	16.00	73.0	3	27.50	11.50
C36714.0	14.00	12.00	16.00	73.0	3	27.50	11.50
C36716.0	16.00	16.00	19.00	79.0	3	30.50	15.50
C36718.0	18.00	16.00	19.00	79.0	3	30.50	15.50
C36720.0	20.00	20.00	22.00	88.0	3	37.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных, титановых и жаропрочных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

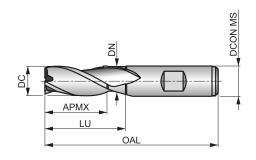
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 52 D	■ 58 D	■ 60 D	■ 44 D	■39 D	Z 36 D	≥ 29 C	Z 21 C	Z 36 D	Z 30 D	Z 32 D	Z 26 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	≥ 55 D	∠ 45 D	Z 36 C	∠ 49 D	Z 37 D	Z 30 B	∠ 45 C	Z 34 C	Z 25 C	Z 22 B	■ 18 B	■51 C	≥ 39 C
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
130 C	■ 148 F	■ 148 D	■ 143 D	■ 131 D	■ 50 D	■ 29 D	■ 15 D	■ 150 D	■ 29 C	24(■ 17 R	■13 R	■10 B

DCON MS с допуском h6.

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C3052.0	2.00	6.00	7.00	51.0	3	-	-
C3052.5	2.50	6.00	8.00	52.0	3	-	_
C3053.0	3.00	6.00	8.00	52.0	3	_	_
C3053.5	3.50	6.00	10.00	54.0	3	_	_
C3054.0	4.00	6.00	11.00	55.0	3	_	_
C3054.5	4.50	6.00	11.00	55.0	3	_	_
C3055.0	5.00	6.00	13.00	57.0	3	_	_
C3055.5	5.50	6.00	13.00	57.0	3	_	_
C3056.0	6.00	6.00	13.00	57.0	3	-	_
C3056.5	6.50	10.00	16.00	66.0	3	-	_
C3057.0	7.00	10.00	16.00	66.0	3	-	_
C3057.5	7.50	10.00	16.00	66.0	3	_	_
C3058.0	8.00	10.00	19.00	69.0	3	_	_
C3058.5	8.50	10.00	19.00	69.0	3	_	_
C3059.0	9.00	10.00	19.00	69.0	3	_	_
C30510.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C30511.0	11.00	12.00	22.00	79.0	3	_	_
C30512.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C30513.0	13.00	12.00	26.00	83.0	3	37.50	11.50
C30514.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C30515.0	15.00	12.00	26.00	83.0	3	37.50	11.50
C30516.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C30517.0	17.00	16.00	32.00	92.0	3	43.50	15.50
C30518.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C30519.0	19.00	16.00	32.00	92.0	3	43.50	15.50
C30520.0	20.00	20.00	38.00	104.0	3	53.50	19.50
C30522.0	22.00	20.00	38.00	104.0	3	53.50	19.50

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C30525.0	25.00	25.00	45.00	121.0	3	-	-
C30528.0	28.00	25.00	45.00	121.0	3	-	_
C30530.0	30.00	25.00	45.00	121.0	3	_	_
C30532.0	32.00	32.00	53.00	133.0	3	_	_



Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

844K

■35 C

∠ 15 B

∠ 14 B

■ 25 B

■ 10 B

■ 20 B

≥8B

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P2.1 P4.3 M1.1 M1.2 ■ 126 D ■ 141 D ■ 146 D ■ 108 D ■ 95 D ■84 C ■81 D ■65 C ■ 55 C ■ 48 C ■ 41 C **Z**34 C **∠** 69 D **≥** 58 D K3.1 M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 **K1.1 K1.2** K1.3 K2.1 K2.2 K2.3 **Z**61 D **Z** 50 C **Z** 47 C **∠**40 C **Z**36 B **Z** 25 B ■60 D ■ 44 D ■33 D ■111 D ■ 90 D ■72 C ■ 98 D ■75 D K4.1 K4.3 K4.4 K4.5 **N1.3 N2.1 N2.2 N2.3** N3.1 ■61 B **■**91 C **■**68 C ■50 C ■43 B ■36 B ■ 103 C **■**77 C **≥**89 E **≥**89 D ■ 80 D ■ 57 D ■93 D ■ 60 C N3.2 N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

■33 B

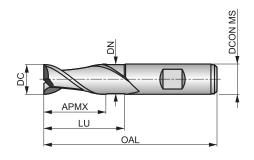
DCON MS с допуском h6.

■ 28 D

≥ 93 D

■ 45 C

■ 55 D

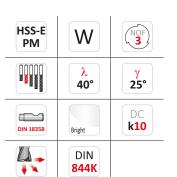

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C3523.0	3.00	6.00	8.00	52.0	3	-	_
C3524.0	4.00	6.00	11.00	55.0	3	_	_
C3525.0	5.00	6.00	13.00	57.0	3	_	_
C3526.0	6.00	6.00	13.00	57.0	3	_	_
C3528.0	8.00	10.00	19.00	69.0	3	_	_
C35210.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C35212.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C35214.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C35216.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C35218.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C35220.0	20.00	20.00	38.00	104.0	3	53.50	19.50

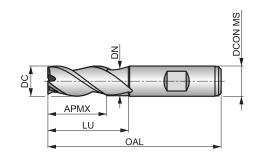
Фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для фрезерования преимущественно цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

		,			, (,, .				- · · · · · · · · · · · · · · · · · · ·				
P1.1	P1.2	P1.3	P2.1	P2.2	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2	N1.1	N1.2	N1.3
∠ 46 D	 52 D	 ■ 54 D	■ 40 D	Z 35 D	Z 32 D	Z 27 D	Z 28 D	Z 23 C	Z 22 C	■ 19 C	■ 142 F	■ 107 E	■ 72 E
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1					
■ 72 D	■64 D	146 D	75 D	44 D	■ 22 D	75 D	29 D	28 C					


DCON MS с допуском h6.

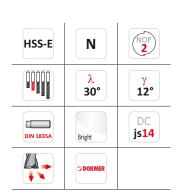

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C1592.0	2.00	6.00	7.00	51.0	2	_	_
C1593.0	3.00	6.00	8.00	52.0	2	_	_
C1594.0	4.00	6.00	11.00	55.0	2	_	-
C1595.0	5.00	6.00	13.00	57.0	2	_	_
C1596.0	6.00	6.00	13.00	57.0	2	_	_
C1598.0	8.00	10.00	19.00	69.0	2	_	_
C15910.0	10.00	10.00	22.00	72.0	2	_	_
C15912.0	12.00	12.00	26.00	83.0	2	_	_
C15914.0	14.00	12.00	26.00	83.0	2	37.50	11.50
C15916.0	16.00	16.00	32.00	92.0	2	43.50	15.50
C15918.0	18.00	16.00	32.00	92.0	2	43.50	15.50
C15920.0	20.00	20.00	38.00	104.0	2	53.50	19.50

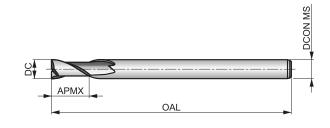
Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 40° и геометрию для фрезерования преимущественно цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2	N1.1	N1.2	N1.3
≥ 50 D	Z 56 D	≥ 58 D	∠ 43 D	Z 38 D	Z 34 D	Z 29 D	■ 31 D	Z 25 C	Z 24 C	Z 21 C	■ 142 F	■ 107 E	■ 72 E
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	S1.1					
■ 72 D	64 D	∠ 146 D	75 D	44 D	■ 22 D	75 D	29 D	30 C					


DCON MS с допуском h6.


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(мм)	(MM)		(MM)	(MM)
C33610.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C33612.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C33614.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C33616.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C33618.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C33620.0	20.00	20.00	38.00	104.0	3	53.50	19.50
C33622.0	22.00	20.00	38.00	104.0	3	53.50	19.50
C33625.0	25.00	25.00	45.00	121.0	3	64.50	24.50
C33630.0	30.00	25.00	45.00	121.0	3	64.50	24.50

Фреза удлиненной конструкции из быстрорежущей стали с кобальтом

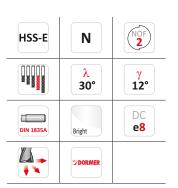
Конструкция фрезы имеет короткую режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

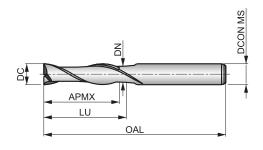
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■ 54 C	■ 40 C	Z 35 C	Z 32 C	Z 26 B	■ 19 B	Z 34 C	Z 29 C	Z 31 C	Z 25 B	Z 30 C	≥ 22 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 C	∠ 49 C	∠ 40 C	≥ 32 B	■ 44 C	⊿ 33 C	Z 27 A	∠ 40 B	■ 30 B	Z 22 B	∠ 19 A	∠ 16 A	∠ 46 B	Z 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	Z 81 E	∠ 60 D	■ 41 D	■ 41 C	⊿ 37 C	Z 26 C	■ 43 C	■ 25 C	■ 13 C	∠ 43 C	Z 30 B	Z 25 B	Z 20 A
S3.1	S4.1												

DCON MS с допуском h6.

∠ 12 A


∠ 15 A


	DC	DCON MS	APMX	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
C1676.0	6.00	6.00	13.00	180.0	2
C1678.0	8.00	8.00	19.00	180.0	2
C16710.0	10.00	10.00	22.00	200.0	2
C16712.0	12.00	12.00	26.00	200.0	2
C16716.0	16.00	16.00	32.00	200.0	2

Фреза из быстрорежущей стали с кобальтом удлиненной конструкции

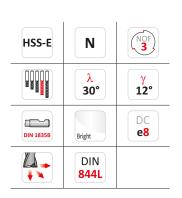
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

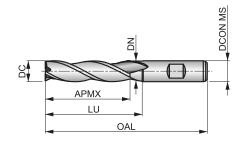
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 41 C	■ 46 C	■ 48 C	■35 C	■ 31 C	Z 28 C	Z 23 B	■ 17 B	Z 27 C	Z 23 C	Z 24 C	Z 20 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 C	■ 44 C	Z 36 C	≥ 29 B	⊿ 39 C	⊿ 30 C	■ 24 A	Z 36 B	Z 27 B	Z 20 B	■ 17 A	■ 14 A	■ 41 B	Z 31 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
■ 24 B	Z 76 E	■ 57 D	Z 38 D	■ 38 C	■ 34 C	Z 125 C	■40 C	■ 23 C	■ 12 C	∠ 40 C	Z 125 B	Z 120 B	∠ 15 A
S3.1	\$4.1												

DCON MS с допуском h6.

∠9A

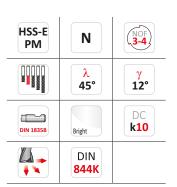

∠ 11 A

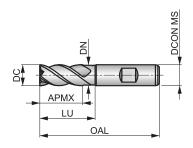

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(MM)		(MM)	(мм)
C1225.0	5.00	5.00	22.00	65.0	2	-	-
C1226.0	6.00	6.00	27.00	75.0	2	_	_
C1227.0	7.00	8.00	33.00	85.0	2	_	_
C1228.0	8.00	8.00	33.00	85.0	2	_	_
C12210.0	10.00	10.00	40.00	95.0	2	_	_
C12212.0	12.00	12.00	45.00	110.0	2	_	_
C12214.0	14.00	12.00	52.00	125.0	2	_	-
C12216.0	16.00	16.00	58.00	140.0	2	69.50	15.50
C12218.0	18.00	16.00	65.00	150.0	2	76.50	15.50
C12220.0	20.00	20.00	70.00	160.0	2	85.50	19.50
C12222.0	22.00	20.00	75.00	170.0	2	90.50	19.50

Фреза из быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30°, уменьшенную шейку и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 40 C	■ 45 C	■ 46 C	■34 C	Z 30 C	Z 28 C	Z 22 B	■ 16 B	Z 27 C	Z 23 C	Z 24 C	Z 20 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 C	■ 43 C	Z 35 C	Z 28 B	⊿ 38 C	Z 29 C	≥ 24 A	■ 35 B	Z 27 B	Z 20 B	∠ 17 A	∠ 14 A	∠ 40 B	≥ 30 B
K5.3	N1.1	N1.2	N1.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1	
Z 23 B	Z 76 E	 57 D	Z 38 D	■40 C	■23 C	■ 12 C	∠ 40 C	■25 B	Z 20 B	∠ 13 A	■ 10 A	∠ 8 A	


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)
C3463.0	3.00	6.00	12.00	56.0	3	_	_
C3464.0	4.00	6.00	19.00	63.0	3	-	_
C3465.0	5.00	6.00	24.00	68.0	3	-	_
C3466.0	6.00	6.00	24.00	68.0	3	-	_
C3467.0	7.00	10.00	30.00	80.0	3	-	_
C3468.0	8.00	10.00	38.00	88.0	3	-	_
C3469.0	9.00	10.00	38.00	88.0	3	-	_
C34610.0	10.00	10.00	45.00	95.0	3	_	_
C34611.0	11.00	12.00	45.00	102.0	3	-	_
C34612.0	12.00	12.00	53.00	110.0	3	-	_
C34613.0	13.00	12.00	53.00	110.0	3	64.50	11.50
C34615.0	15.00	12.00	53.00	110.0	3	64.50	11.50
C34616.0	16.00	16.00	63.00	123.0	3	74.50	15.50
C34620.0	20.00	20.00	75.00	141.0	3	90.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

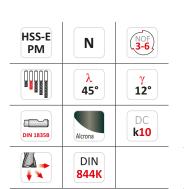
Конструкция фрезы имеет угол наклона спирали 45° и геометрию для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

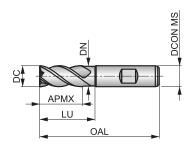
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 37 D	■33 C	■ 32 D	■ 26 C	■ 22 C	■19 C	■16 C	■ 13 C	■36 D	■30 D	■ 32 D	■ 26 C	Z 24 C	Z 21 C
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■19 B	■ 13 B	■ 30 D	■ 22 D	■ 17 D	■ 55 D	■ 45 D	■36 C	■49 D	■37 D	■30 B	■ 45 C	■34 C	■ 25 C
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■22 B	■ 18 B	■ 51 C	■39 C	■30 C	■ 43 D	■ 25 D	Z 29 C	■ 57 C	■10 B	■17 B	■7B	■13 B	■5 B
S4 1	\$4.2												

DCON MS с допуском h6.

■4B


■10 B


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(мм)	(MM)		(MM)	(MM)
C2993.0	3.00	6.00	8.00	52.0	3	-	_
C2994.0	4.00	6.00	11.00	55.0	3	_	_
C2995.0	5.00	6.00	13.00	57.0	3	_	_
C2996.0	6.00	6.00	13.00	57.0	3	_	-
C2998.0	8.00	10.00	19.00	69.0	4	_	-
C29910.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C29912.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C29914.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C29916.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C29918.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C29920.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 45° и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

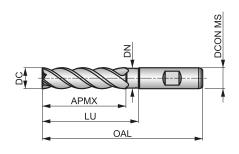
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 95 D	■84 C	■81 D	■ 65 C	■ 55 C	■48 C	■ 41 C	■ 34 C	■ 69 D	■ 58 D	■61 D	■ 50 C	■ 47 C	■ 40 C
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 36 B	■ 25 B	■60 D	■ 44 D	■33 D	■ 111 D	■90 D	■ 72 C	■ 98 D	■ 75 D	■61 B	■91 C	■68 C	■ 50 C
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 43 B	■36 B	■ 103 C	■77 C	■60 C	■93 D	■55 D	∠ 45 C	■ 85 C	■15 B	■33 B	■14 B	■ 25 B	■ 10 B
S4.1	S4.2												

DCON MS с допуском h6.

■8B

20 B


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(мм)	(MM)	(MM)	(мм)		(MM)	(мм)
C9073.0	3.00	6.00	8.00	52.0	3	_	_
C9074.0	4.00	6.00	11.00	55.0	3	-	_
C9075.0	5.00	6.00	13.00	57.0	3	_	_
C9076.0	6.00	6.00	13.00	57.0	3	_	_
C9078.0	8.00	10.00	19.00	69.0	4	-	_
C90710.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C90712.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C90714.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C90716.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C90718.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C90720.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C90722.0	22.00	20.00	38.00	104.0	5	53.50	19.50
C90725.0	25.00	25.00	45.00	121.0	5	64.50	24.50
C90728.0	28.00	25.00	45.00	121.0	6	64.50	24.50
C90730.0	30.00	25.00	45.00	121.0	6	64.50	24.50
C90732.0	32.00	32.00	53.00	133.0	6	72.50	31.50

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

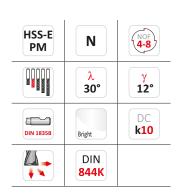
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 45°, уменьшенную шейку и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

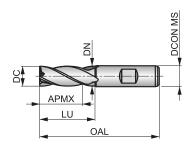
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 85 C	■ 75 B	■ 74 C	■ 59 B	■ 50 B	■ 44 B	■ 37 B	■31 B	■ 62 C	■ 52 C	■ 55 C	■ 45 B	■41 B	■35 B
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 32 A	■ 25 A	■55 C	■41 C	■31 C	■98 C	■80 C	■ 64 B	■ 87 C	■ 67 C	■54 A	■81 B	■61 B	■45 B
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 38 A	■32 A	■ 91 B	■ 69 B	■53 B	■83 C	■49 C	∠ 40 B	■35 B	■ 15 A	■33 A	■14 A	■ 25 A	■ 10 A
\$4.1	\$4.2												

DCON MS с допуском h6.

■8 A


20 A


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(мм)		(MM)	(мм)
C9206.0	6.00	6.00	24.00	68.0	3	_	-
C9208.0	8.00	10.00	38.00	88.0	4	_	_
C92010.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C92012.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C92014.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C92016.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C92018.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C92020.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C92022.0	22.00	20.00	75.00	141.0	5	90.50	19.50
C92025.0	25.00	25.00	90.00	166.0	5	109.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом

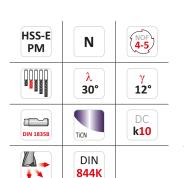
Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

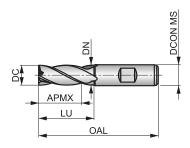
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 53 D	■ 59 D	■61 D	■ 45 D	■ 40 D	Z 36 D	Z 29 C	Z 22 C	Z 34 D	Z 29 D	Z 31 D	Z 25 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	 55 D	∠ 45 D	⊿ 36 C	∠ 149 D	Z 37 D	Z 30 B	∠ 45 C	■ 34 C	Z 25 C	■ 22 B	■ 18 B	■51 C	⊿ 39 C
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
⊿ 30 C	■ 95 F	■ 71 E	■ 48 E	Z 48 D	■ 43 D	Z 31 D	■50 D	■ 29 D	■ 15 D	≥ 50 D	■30 C	Z 125 C	Z 20 B
S3 1	S/1 1												

S3.1 S4.1 ≥ 15 B **≥** 12 B

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(мм)	(MM)	(MM)	(MM)		(мм)	(мм)
C2472.0	_	2.00	6.00	7.00	51.0	4	_	_
C2472.5	_	2.50	6.00	8.00	52.0	4	_	_
C2473.0	_	3.00	6.00	8.00	52.0	4	_	_
C2471/8 ²⁾	1/8	3.18	6.00	10.00	54.0	4	_	_
C2473.5	_	3.50	6.00	10.00	54.0	4	_	_
C2474.0	_	4.00	6.00	11.00	55.0	4	_	_
C2474.5	_	4.50	6.00	11.00	55.0	4	_	_
C2473/16 ²⁾	3/16	4.76	6.00	13.00	57.0	4	_	_
C2475.0	_	5.00	6.00	13.00	57.0	4	_	_
C2475.5	_	5.50	6.00	13.00	57.0	4	_	_
C2476.0	_	6.00	6.00	13.00	57.0	4	_	_
C2471/4 ²⁾	1/4	6.35	10.00	16.00	66.0	4	_	_
C2476.5	_	6.50	10.00	16.00	66.0	4	_	_
C2477.0	_	7.00	10.00	16.00	66.0	4	_	_
C2477.5	_	7.50	10.00	16.00	66.0	4	_	_
C2475/16 ²⁾	5/16	7.94	10.00	19.00	69.0	4	_	_
C2478.0	_	8.00	10.00	19.00	69.0	4	_	_
C2478.5	_	8.50	10.00	19.00	69.0	4	_	_
C2479.0	_	9.00	10.00	19.00	69.0	4	_	_
C2479.5	_	9.50	10.00	19.00	69.0	4	_	_
C2473/8 ²⁾	3/8	9.52	10.00	22.00	72.0	4	31.50	9.50
C24710.0	_	10.00	10.00	22.00	72.0	4	31.50	9.50
C24711.0	_	11.00	12.00	22.00	79.0	4	_	_
C24712.0	_	12.00	12.00	26.00	83.0	4	37.50	11.50
C2471/2 ²⁾	1/2	12.70	12.00	26.00	83.0	4	37.50	11.50


	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(мм)	(MM)	(MM)		(MM)	(MM)
C24713.0	_	13.00	12.00	26.00	83.0	4	37.50	11.50
C24714.0	_	14.00	12.00	26.00	83.0	4	37.50	11.50
C2479/16 ²⁾	9/16	14.29	12.00	26.00	83.0	4	37.50	11.50
C24715.0	_	15.00	12.00	26.00	83.0	4	37.50	11.50
C2475/8 ²⁾	5/8	15.88	16.00	32.00	92.0	4	43.50	15.50
C24716.0	_	16.00	16.00	32.00	92.0	4	43.50	15.50
C24717.0	_	17.00	16.00	32.00	92.0	4	43.50	15.50
C24718.0	_	18.00	16.00	32.00	92.0	4	43.50	15.50
C24719.0	_	19.00	16.00	32.00	92.0	4	43.50	15.50
C2473/4 ²⁾	3/4	19.05	20.00	38.00	104.0	4	53.50	18.50
C24720.0	-	20.00	20.00	38.00	104.0	4	53.50	19.50
C24721.0	_	21.00	20.00	38.00	104.0	4	53.50	19.50
C24722.0	_	22.00	20.00	38.00	104.0	5	53.50	19.50
C2477/8 ²⁾	7/8	22.22	20.00	38.00	104.0	5	53.50	19.50
C24723.0	_	23.00	20.00	38.00	104.0	5	53.50	19.50
C24724.0	_	24.00	25.00	45.00	121.0	5	64.50	23.50
C24725.0	-	25.00	25.00	45.00	121.0	5	64.50	24.50
C2471 ²⁾	1″	25.40	25.00	45.00	121.0	5	64.50	24.50
C24726.0	_	26.00	25.00	45.00	121.0	6	64.50	24.50
C24728.0	-	28.00	25.00	45.00	121.0	6	64.50	24.50
C24730.0	-	30.00	25.00	45.00	121.0	6	64.50	24.50
C24732.0	_	32.00	32.00	53.00	133.0	6	72.50	31.50
C24736.0 1)	_	36.00	32.00	53.00	133.0	6	72.50	31.50
C24740.0 1)	-	40.00	40.00	63.00	155.0	6	84.50	39.00
C24750.0 1)	_	50.00	50.00	75.00	177.0	8	96.50	48.00


 $^{^{1)}}$ Только HSS-E; нет возможности обработки центром фрезы. $^{2)}$ DC с допуском +0.0025" / – 0.0005".

Фреза из порошковой быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

■ 15 B

■14 B

■24 B

■ 10 B

■19 B

■8B

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 ■ 113 D ■ 126 D ■ 131 D ■ 97 D ■ 85 D **∠**75 C ■74 D ■ 59 C **≥**50 C ■ 44 C **Z**37 C **Z**31 C **∠** 62 D **Z** 52 D K1.3 K3.1 M2.1 **M2.2 M3.3** M4.1 K1.1 **K2.1** K2.3 K3.2 K3.3 K4.1 **≥** 55 D **Z** 45 C **Z** 26 B **Z** 25 B ■ 55 D ■41 D ■31 D ■97 D ■ 79 D ■ 63 C ■86 D ■66 D ■ 53 B ■80 C K4.2 K4.3 K4.4 K4.5 K5.1 **N1.1 N1.2** N1.3 N2.1 **N2.2** N2.3 N3.1 ■60 C ■ 44 C ■38 B ■31 B ■90 C **■**68 C **■** 52 C **■** 159 F **≥**80 E **Z**80 D ■72 D ■51 D ■84 D **Z** 120 E N3.3 **S1.1** N3.2 N4.1 **S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

■32 B

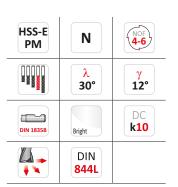
DCON MS с допуском h	6
----------------------	---

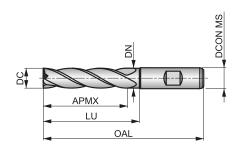
25 D

■84 D

■43 C

■35 C


■ 50 D


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(мм)		(MM)	(мм)
C2462.0	2.00	6.00	7.00	51.0	4	_	-
C2463.0	3.00	6.00	8.00	52.0	4	_	_
C2464.0	4.00	6.00	11.00	55.0	4	_	_
C2465.0	5.00	6.00	13.00	57.0	4	_	_
C2466.0	6.00	6.00	13.00	57.0	4	_	_
C2467.0	7.00	10.00	16.00	66.0	4	_	_
C2468.0	8.00	10.00	19.00	69.0	4	_	_
C24610.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C24611.0	11.00	12.00	22.00	79.0	4	_	_
C24612.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C24613.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C24614.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C24615.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C24616.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C24618.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C24620.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C24622.0	22.00	20.00	38.00	104.0	5	53.50	19.50
C24625.0	25.00	25.00	45.00	121.0	5	64.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30° и геометрию для фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

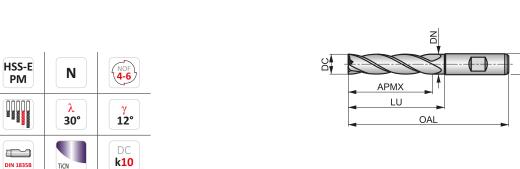
	17	,			. ,								
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 C	■ 52 C	■54 C	■ 40 C	■35 C	Z 32 C	Z 26 B	■ 19 B	∠ 14 C	≥ 12 C	■ 12 C	■ 10 B	Z 25 C	■ 19 C
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 C	∠ 49 C	∠ 40 C	Z 32 B	■ 44 C	Z 33 C	Z 27 A	∠ 40 B	≥ 30 B	Z 22 B	■ 19 A	■ 16 A	∠ 46 B	■ 34 B
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 27 B	≥ 81 E	Z 60 D	∠ 41 D	■ 41 C	Z 37 C	Z 26 C	■43 C	■ 25 C	■ 13 C	Z 43 C	■ 25 B	Z 20 B	∠ 13 A
C2 1	S/1 1												

DCON MS с допуском h6.

∠8 A

∠ 10 A

	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(MM)	(мм)		(мм)	(мм)
C2732.0		2.00	6.00	10.00	54.0	4	_	_
C2732.5		2.50	6.00	12.00	56.0	4	_	_
C2733.0		3.00	6.00	12.00	56.0	4	_	_
C2731/8 ²⁾	1/8	3.18	6.00	15.00	59.0	4	_	_
C2733.5		3.50	6.00	15.00	59.0	4	_	_
C2734.0		4.00	6.00	19.00	63.0	4	_	_
C2734.5		4.50	6.00	19.00	63.0	4	_	_
C2733/16 ²⁾	3/16	4.76	6.00	24.00	68.0	4	_	_
C2735.0		5.00	6.00	24.00	68.0	4	_	_
C2735.5		5.50	6.00	24.00	68.0	4	_	_
C2736.0		6.00	6.00	24.00	68.0	4	_	_
C2731/4 ²⁾	1/4	6.35	10.00	30.00	80.0	4	_	_
C2737.0	_	7.00	10.00	30.00	80.0	4	_	_
C2738.0	_	8.00	10.00	38.00	88.0	4	_	_
C2739.0	_	9.00	10.00	38.00	88.0	4	-	_
C2733/8 ²⁾	3/8	9.52	10.00	45.00	95.0	4	54.50	9.50
C27310.0	_	10.00	10.00	45.00	95.0	4	54.50	9.50
C27311.0	_	11.00	12.00	45.00	102.0	4	_	_
C27312.0	_	12.00	12.00	53.00	110.0	4	64.50	11.50
C2731/2 ²⁾	1/2	12.70	12.00	53.00	110.0	4	64.50	11.50
C27313.0	-	13.00	12.00	53.00	110.0	4	64.50	11.50
C27314.0	_	14.00	12.00	53.00	110.0	4	64.50	11.50
C27315.0	_	15.00	12.00	53.00	110.0	4	64.50	11.50
C2735/8 ²⁾	5/8	15.88	16.00	63.00	123.0	4	74.50	15.50
C27316.0	_	16.00	16.00	63.00	123.0	4	74.50	15.50


	DC	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(дюйм)	(MM)	(MM)	(мм)	(MM)		(MM)	(MM)
C27318.0	_	18.00	16.00	63.00	123.0	4	74.50	15.50
C2733/4 ²⁾	3/4	19.05	20.00	75.00	141.0	4	90.50	18.50
C27320.0	_	20.00	20.00	75.00	141.0	4	90.50	19.50
C27322.0	_	22.00	20.00	75.00	141.0	5	90.50	19.50
C27325.0	_	25.00	25.00	90.00	166.0	5	109.50	24.50
C2731 ²⁾	1″	25.40	25.00	90.00	166.0	5	109.50	24.50
C27328.0	_	28.00	25.00	90.00	166.0	6	109.50	24.50
C27330.0	_	30.00	25.00	90.00	166.0	6	109.50	24.50
C27332.0	_	32.00	32.00	106.00	186.0	6	125.50	31.50
C27340.0 1)	_	40.00	40.00	125.00	217.0	6	146.50	39.00

 $^{^{\}rm 1)}$ Только HSS-E; нет возможности обработки центром фрезы. $^{\rm 2)}$ DC с допуском +0.0025" / – 0.0005".

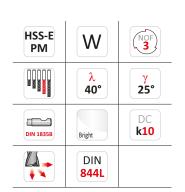
Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

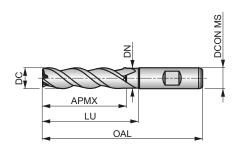
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30°, уменьшенную шейку и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

DIN 844L			

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 99 C	■ 111 C	■ 115 C	■85 C	■75 C	Z 66 B	■ 66 C	■ 53 B	∠ 45 B	■ 40 B	■ 34 B	Z 27 B	Z 55 C	Z 46 C
M2.1	M2.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1
∠ 49 C	∠ 40 B	Z 21 A	Z 20 A	■50 C	■37 C	■28 C	■86 C	■ 70 C	■56 B	■ 76 C	■ 58 C	■ 47 A	■71 B
K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1
■53 B	■ 39 B	■33 A	■ 28 A	■ 80 B	■ 60 B	■ 46 B	■ 139 E	■ 105 D	Z 70 D	Z 70 C	■ 63 C	■ 45 C	■73 C
N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2		
43 C	22 C	■ 173 C	■ 40 B	■ 30 B	■ 115 Δ	■ 27 A	114 Δ	■ 20 A	■110 A	■16 A	■ 18 Δ		

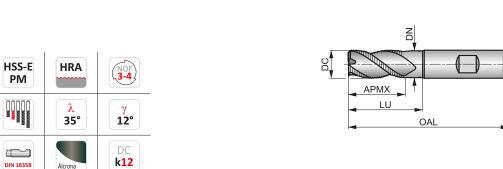

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)		(MM)	(MM)
C2952.0	2.00	6.00	10.00	54.0	4	_	_
2953.0	3.00	6.00	12.00	56.0	4	_	_
C2954.0	4.00	6.00	19.00	63.0	4	_	_
2955.0	5.00	6.00	24.00	68.0	4	_	_
2956.0	6.00	6.00	24.00	68.0	4	-	-
2957.0	7.00	10.00	30.00	80.0	4	-	_
2958.0	8.00	10.00	38.00	88.0	4	_	_
2959.0	9.00	10.00	38.00	88.0	4	-	-
29510.0	10.00	10.00	45.00	95.0	4	54.50	9.50
29511.0	11.00	12.00	45.00	102.0	4	_	_
29512.0	12.00	12.00	53.00	110.0	4	64.50	11.50
29515.0	15.00	12.00	53.00	110.0	4	64.50	11.50
29516.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C29518.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C29520.0	20.00	20.00	75.00	141.0	4	90.50	19.50
29525.0	25.00	25.00	90.00	166.0	5	109.50	24.50
C29530.0	30.00	25.00	90.00	166.0	6	109.50	24.50
C29532.0	32.00	32.00	106.00	186.0	6	125.50	31.50
29540.0 ¹)	40.00	40.00	125.00	217.0	6	146.50	39.00


 $^{^{1)}}$ Только HSS-E; нет возможности обработки центром фрезы.

Фреза из порошковой быстрорежущей стали с кобальтом удлиненной конструкции

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 40°, уменьшенную шейку и геометрию для фрезерования цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


N1.1 **N1.2 N1.3 N2.1 N2.2 N2.3** N3.1 N3.2 N3.3 N4.1 N4.2 ■114 E ■86 D ■58 D ■ 58 C **■**51 C **Z**37 C ■ 60 C ■ 35 C ■ 18 C ■ 60 C ■ 23 C

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(мм)	(мм)
C33310.0	10.00	10.00	45.00	95.0	3	54.50	9.50
C33312.0	12.00	12.00	53.00	110.0	3	64.50	11.50
C33314.0	14.00	12.00	53.00	110.0	3	64.50	11.50
C33316.0	16.00	16.00	63.00	123.0	3	74.50	15.50
C33318.0	18.00	16.00	63.00	123.0	3	74.50	15.50
C33320.0	20.00	20.00	75.00	141.0	3	90.50	19.50
C33325.0	25.00	25.00	90.00	166.0	3	109.50	24.50
C33330.0	30.00	25.00	90.00	166.0	3	109.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль HRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

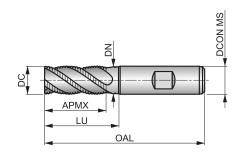
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
≥ 95 F	■84 E	■81 F	■ 65 E	■ 55 E	■ 48 E	■ 41 E	■34 E	■ 69 F	■ 58 F	■61 F	■ 50 E	■ 47 E	■ 40 E
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■36 D	■ 25 D	■ 60 F	■ 44 F	■33 F	■ 111 F	■90 F	■72 E	■98 F	■75 F	■61 E	■91 E	■ 68 E	■ 50 E
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 43 D	■ 36 D	■103 E	■ 77 E	■ 60 E	■ 93 F	■55 F	∠ 45 E	■35 E	■15 D	■ 33 D	■ 14 D	■ 25 D	■ 10 D
\$4.1	S4.2												

DCON MS с допуском h6.

■8 D

20 D


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(мм)	(мм)		(MM)	(мм)
C9226.0	6.00	6.00	13.00	57.0	3	-	_
C9227.0	7.00	10.00	16.00	66.0	3	_	_
C9228.0	8.00	10.00	19.00	69.0	3	_	_
C9229.0	9.00	10.00	19.00	69.0	3	_	-
C92210.0	10.00	10.00	22.00	72.0	3	31.50	9.50
C92211.0	11.00	12.00	22.00	79.0	3	_	_
C92212.0	12.00	12.00	26.00	83.0	3	37.50	11.50
C92213.0	13.00	12.00	26.00	83.0	3	37.50	11.50
C92214.0	14.00	12.00	26.00	83.0	3	37.50	11.50
C92215.0	15.00	12.00	26.00	83.0	3	37.50	11.50
C92216.0	16.00	16.00	32.00	92.0	3	43.50	15.50
C92218.0	18.00	16.00	32.00	92.0	3	43.50	15.50
C92220.0	20.00	20.00	38.00	104.0	3	53.50	19.50
C92222.0	22.00	20.00	38.00	104.0	3	53.50	19.50
C92224.0	24.00	25.00	45.00	121.0	4	64.50	23.50
C92225.0	25.00	25.00	45.00	121.0	4	64.50	24.50
C92228.0	28.00	25.00	45.00	121.0	4	64.50	24.50
C92232.0	32.00	32.00	53.00	133.0	4	72.50	31.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль HRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

S1.3

■ 16 D

S2.1

■36 D

S2.2

■16 D

S3.1

■ 27 D

S3.2

■11 D

S1.2

■37 E

N3.2

■68 F

S1.1

Z46 E

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 **≥** 93 F ■ 82 E ■ 80 F ■ 64 E ■ 54 E ■ 48 E ■ 40 E ■33 E ■66 F ■56 F ■ 59 F ■ 48 E ■ 47 E ■ 40 E K3.1 K3.2 **M3.3** M4.1 K1.1 K1.2 K1.3 **K2.2** K3.3 K4.1 K4.2 K4.3 ■26 D ■61 F ■34 F ■ 108 F ■88 F ■70 E ■96 F ■73 F ■ 59 E ■89 E ■ 67 E ■ 49 E

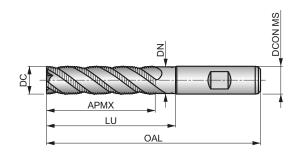
 ■36 D
 ■26 D
 ■61 F
 ■45 F
 ■34 F
 ■108 F

 K4.4
 K4.5
 K5.1
 K5.2
 K5.3
 N3.1

 ■42 D
 ■35 D
 ■100 E
 ■76 E
 ■58 E
 ■116 F

 S4.1
 S4.2

34.1 34.2 ■9D


	D.C.	DCONINC	ADAAV	OAL	NOF	111	DN
	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C4286.0	6.00	6.00	13.00	57.0	4	_	_
C4287.0	7.00	10.00	16.00	66.0	4	_	_
C4288.0	8.00	10.00	19.00	69.0	4	_	_
C4289.0	9.00	10.00	19.00	69.0	4	_	_
C42810.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C42811.0	11.00	12.00	22.00	79.0	4	_	_
C42812.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C42813.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C42814.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C42815.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C42816.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C42818.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C42820.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C42822.0	22.00	20.00	38.00	104.0	4	53.50	19.50
C42825.0	25.00	25.00	45.00	121.0	6	64.50	24.50
C42828.0	28.00	25.00	45.00	121.0	6	64.50	24.50
C42830.0	30.00	25.00	45.00	121.0	6	64.50	24.50
C42832.0	32.00	32.00	53.00	133.0	6	72.50	31.50
C42836.0	36.00	32.00	53.00	133.0	6	72.50	31.00
C42840.0	40.00	40.00	63.00	155.0	6	84.50	39.00

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 35°, уменьшенную шейку, стружколомающий профиль HRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

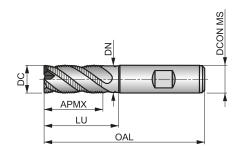
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 83 E	■73 D	■72 E	■ 58 D	■ 49 D	■43 D	■37 D	■ 30 D	■ 59 E	■50 E	■53 E	■ 43 D	■ 42 D	■36 D
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■32 C	■ 23 C	■ 55 E	■ 41 E	■31 E	■97 E	■79 E	■ 63 D	■86 E	■66 E	■ 53 D	■ 80 D	■ 60 D	■ 44 D
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■38 C	■ 31 C	■ 90 D	■ 68 D	■52 D	■ 104 E	■61 E	∠ 41 D	■34 D	■ 15 C	■ 32 C	■ 14 C	■ 24 C	■ 10 C
S4.1	S4.2												

DCON MS с допуском h6.

8 C

■ 19 C


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C4926.0	6.00	6.00	24.00	68.0	3	-	_
C4928.0	8.00	10.00	38.00	88.0	3	_	_
C49210.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C49212.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C49214.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C49216.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C49218.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C49220.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C49222.0	22.00	20.00	75.00	141.0	4	90.50	19.50
C49225.0	25.00	25.00	90.00	166.0	6	109.50	24.50
C49230.0	30.00	25.00	90.00	166.0	6	109.50	24.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль NRA и геометрию для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

S4.2

■ 5 E

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■50 G ■ 56 G ■ 58 G ■ 43 G ■ 38 G ■ 34 F ■ 32 G **26** F **22** F ■ 19 F ■ 16 F **∠** 13 F ■34 G ■29 G **K2.2** K3.1 M2.1 M2.2 M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.3 K3.2 ■31 G ■ 25 F **Z** 24 F **Z**21 F ■ 19 E ■13 E ■ 30 G **22** G ■ 17 G ■54 G ■ 44 G ■ 35 F ■48 G ■37 G N3.1 N3.2 K4.1 K4.2 K4.3 K4.4 **S1.1 S1.2 S1.3** ■30 F ■ 44 F ■33 F ■ 25 F ■21 E ■ 18 E ■50 F ■38 F ■29 F ■43 G **■**25 G **Z** 30 F ■ 25 F ■11 E

DCON MS с допуском h6.

S2.2

■8E

S3.1

■ 14 E

S3.2

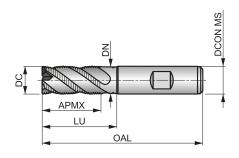
■6 E

S4.1

■11 E

S2.1

■ 19 E


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C4076.0	6.00	6.00	13.00	57.0	4	_	_
C4077.0	7.00	10.00	16.00	66.0	4	-	-
C4078.0	8.00	10.00	19.00	69.0	4	-	_
C4079.0	9.00	10.00	19.00	69.0	4	_	_
C40710.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C40711.0	11.00	12.00	22.00	79.0	4	-	_
C40712.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C40713.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C40714.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C40715.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C40716.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C40718.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C40720.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

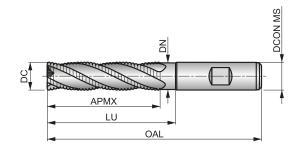
Конструкция фрезы имеет угол наклона спирали 35°, стружколомающий профиль NRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 93 G	■ 82 F	■80 G	■ 64 F	■ 54 F	■ 48 F	■ 40 F	Z 33 F	■ 66 G	■ 56 G	■59 G	■48 F	■ 47 F	■ 40 F
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 36 E	■ 26 E	■61 G	■ 45 G	■ 34 G	■ 108 G	■ 88 G	■70 F	■ 96 G	■ 73 G	■ 59 F	■89 F	■67 F	■ 49 F
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 42 E	■35 E	■100 F	■76 F	■ 58 F	■ 93 G	■ 55 G	∠ 46 F	■37 F	■16 E	■36 E	■ 16 E	■ 27 E	■ 11 E
S4.1	\$4.2												

DCON MS с допуском h6.

■ 21 E


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C9086.0	6.00	6.00	13.00	57.0	4	_	_
C9087.0	7.00	10.00	16.00	66.0	4	_	_
C9088.0	8.00	10.00	19.00	69.0	4	_	_
C9089.0	9.00	10.00	19.00	69.0	4	_	_
C90810.0	10.00	10.00	22.00	72.0	4	31.50	9.50
C90811.0	11.00	12.00	22.00	79.0	4	_	_
C90812.0	12.00	12.00	26.00	83.0	4	37.50	11.50
C90813.0	13.00	12.00	26.00	83.0	4	37.50	11.50
C90814.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C90815.0	15.00	12.00	26.00	83.0	4	37.50	11.50
C90816.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C90818.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C90820.0	20.00	20.00	38.00	104.0	4	53.50	19.50
C90822.0	22.00	20.00	38.00	104.0	4	53.50	19.50
C90825.0	25.00	25.00	45.00	121.0	6	64.50	24.50
C90830.0	30.00	25.00	45.00	121.0	6	64.50	24.50
C90832.0	32.00	32.00	53.00	133.0	6	72.50	31.50

Фреза из порошковой быстрорежущей стали с кобальтом для черновой обработки

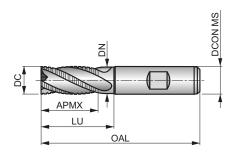
Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 35°, уменьшенную шейку, стружколомающий профиль NRA и геометрию для фрезерования большинства материалов. Покрытие Alcrona повышает стойкость и производительность.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

Р2.2 Р2.3 Р3.1 Р3.2 Р3.3 Р4.1 Р4.2 Р4.3 М1.1 М1.2 М2.1 М2.2 М3.1 М3.2

P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 83 F	■ 73 E	■ 72 F	■ 58 E	■ 49 E	■43 E	■ 37 E	■30 E	■59 F	■50 F	■ 53 F	■ 43 E	■ 42 E	■ 36 E
M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3
■ 32 D	■23 D	■ 55 F	■41 F	■31 F	■97 F	■79 F	■63 E	■86 F	■66 F	■ 53 E	■ 80 E	■ 60 E	■ 44 E
K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 38 D	■31 D	■90 E	■68 E	■ 52 E	■83 F	■49 F	■ 41 E	■34 E	■ 15 D	■ 32 D	■ 14 D	■ 24 D	■ 10 D
S4.1	S4.2												
■ 19 D	■8 D												

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C9486.0	6.00	6.00	24.00	68.0	4	_	-
C9488.0	8.00	10.00	38.00	88.0	4	_	_
C94810.0	10.00	10.00	45.00	95.0	4	54.50	9.50
C94812.0	12.00	12.00	53.00	110.0	4	64.50	11.50
C94814.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C94816.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C94818.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C94820.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C94825.0	25.00	25.00	90.00	166.0	6	109.50	24.50
C94830.0	30.00	25.00	90.00	166.0	6	109.50	24.50
C94832.0	32.00	32.00	106.00	186.0	6	125.50	31.50

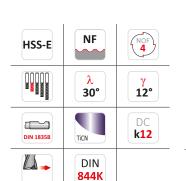


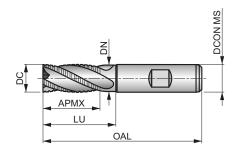
Фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30°, стружколомающий профиль NF и геометрию для фрезерования мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

844K

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 E	■ 52 E	■ 54 E	■ 40 E	■35 E	Z 32 E	Z 26 D	■ 19 D	≥ 34 E	≥ 29 E	Z 31 E	Z 25 D	≥ 30 E	Z 22 E
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 E	∠ 49 E	∠ 40 E	⊿ 32 D	∠ 44 E	Z 33 E	Z 27 D	∠ 40 D	⊿ 30 D	Z 22 D	■ 19 C	■ 16 C	∠ 46 D	Z 34 D
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
■ 127 D	■ 41 F	■ 141 F	■ 137 F	■ 126 F	■43 F	■ 25 F	■ 113 F	■ 143 F	■ 130 D	■ 25 D	20 C	■ 15 C	112 (


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C4006.0	6.00	6.00	13.00	57.0	4	-	_
C4008.0	8.00	10.00	19.00	69.0	4	-	_
C40010.0	10.00	10.00	22.00	72.0	4	_	_
C40012.0	12.00	12.00	26.00	83.0	4	_	_
C40014.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C40016.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C40018.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C40020.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30°, стружколомающий профиль NF и геометрию для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

■ 71 E

N2.3

■ 52 E

■ 54 E

N3.1

■86 E

44 D

N3.2

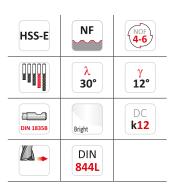
■ 50 E

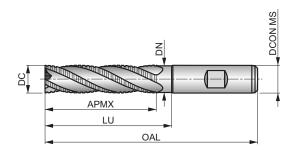
■ 66 D

N3.3

Z 26 E

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■ 93 E ■ 104 E ■ 108 E ■80 E ■ 70 E **∠**62 D ■ 59 E ■47 D **∠** 40 D ■ 35 D **Z** 30 D **Z** 24 D **∠** 48 E **∠**41 E K3.3 M2.1 **M2.2** M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K2.3 **K3.1** K3.2 K4.1


∠ 43 E **Z**35 D **Z**21 C **Z**20 C ■ 45 E ■33 E ■ 25 E ■80 E ■65 E ■ 52 D **N2.2** K4.2 K4.3 K4.4 K4.5 K5.3 N1.3 **N2.1** ■ 49 D ■36 D **■**31 C **■**26 C ■74 D ■56 D ■43 D **Z**82 F **∠**82 E ■ 74 E **S3.2 S4.2** N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S4.1 ≥**86 E \blacksquare 35 D ■ 30 D **■** 10 C ■ 27 C **■**14 C ■ 20 C **■** 10 C ■ 16 C **8**0

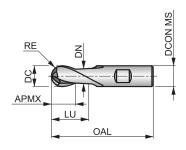

	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(мм)		(MM)	(MM)
C4136.0	6.00	6.00	13.00	57.0	4	_	-
C4138.0	8.00	10.00	19.00	69.0	4	_	_
C41310.0	10.00	10.00	22.00	72.0	4	_	_
C41312.0	12.00	12.00	26.00	83.0	4	_	_
C41314.0	14.00	12.00	26.00	83.0	4	37.50	11.50
C41316.0	16.00	16.00	32.00	92.0	4	43.50	15.50
C41318.0	18.00	16.00	32.00	92.0	4	43.50	15.50
C41320.0	20.00	20.00	38.00	104.0	4	53.50	19.50

Фреза из быстрорежущей стали с кобальтом удлиненной конструкции для черновой обработки

Конструкция фрезы имеет длинную режущую часть, угол наклона спирали 30°, уменьшенную шейку, стружколомающий профиль NF и геометрию для фрезерования преимущественно мягких сталей и цветных сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 40 D	■ 45 D	■ 46 D	■ 34 D	■30 D	Z 28 D	Z 22 C	■ 16 C	Z 27 D	Z 23 D	Z 24 D	Z 20 C	Z 25 D	■ 19 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 14 D	∠ 43 D	⊿ 35 D	Z 28 C	■ 38 D	Z 29 D	Z 24 B	⊿ 35 C	Z 27 C	Z 20 C	■ 17 B	■ 14 B	∠ 40 C	⊿ 30 C
K5.3	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1	S3.1	S4.1
1 23 C	■ 138 F	■ 138 D	■ 34 D	■ 125 D	■40 D	■ 23 D	■ 112 D	140 D	■ 25 C	20 C	■ 113 R	■ 110 B	■ 18 B


	DC	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C40310.0	10.00	10.00	45.00	95.0	4	_	-
C40312.0	12.00	12.00	53.00	110.0	4	-	-
C40314.0	14.00	12.00	53.00	110.0	4	64.50	11.50
C40316.0	16.00	16.00	63.00	123.0	4	74.50	15.50
C40318.0	18.00	16.00	63.00	123.0	4	74.50	15.50
C40320.0	20.00	20.00	75.00	141.0	4	90.50	19.50
C40330.0	30.00	25.00	90.00	166.0	5	109.50	24.50
C40332.0	32.00	32.00	106.00	186.0	6	125.50	31.00
C40336.0	36.00	32.00	106.00	186.0	6	125.50	31.50
C40340.0	40.00	40.00	125.00	217.0	6	146.50	39.00
C40345.0	45.00	40.00	125.00	217.0	6	146.50	39.50
C40350.0	50.00	50.00	150.00	252.0	6	171.50	48.00

Сферическая фреза из быстрорежущей стали с кобальтом

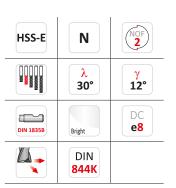
Конструкция фрезы имеет угол наклона спирали 30° для копировального фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

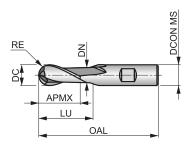
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■53 E	■ 59 E	■61 E	■ 45 E	∠ 40 E	Z 36 E	Z 29 D	Z 22 D	Z 34 E	Z 29 E	Z 31 E	Z 25 D	Z 30 E	Z 22 E
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 E	 55 E	∠ 45 E	Z 36 D	∠ 49 E	Z 37 E	■ 30 D	∠ 45 D	Z 34 D	Z 25 D	Z 22 C	■ 18 C	 ■ 51 D	≥ 39 D
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
Z 30 D	≥ 95 G	Z 71 F	∠ 48 F	∠ 48 E	∠ 43 E	Z 31 E	■50 E	■29 E	■ 15 E	≥ 50 E	■30 D	≥ 25 D	Z 20 C
S3.1	S4.1												

DCON MS с допуском h6; RE ± 0.05 мм.

12 C


■15 C


	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)
C5002.0	2.00	1.00	6.00	4.00	48.0	2	-	_
C5003.0	3.00	1.50	6.00	5.00	49.0	2	-	_
C5004.0	4.00	2.00	6.00	7.00	51.0	2	-	_
C5005.0	5.00	2.50	6.00	8.00	52.0	2	_	_
C5006.0	6.00	3.00	6.00	8.00	52.0	2	_	_
C5007.0	7.00	3.50	10.00	10.00	60.0	2	_	_
C5008.0	8.00	4.00	10.00	11.00	61.0	2	_	_
C5009.0	9.00	4.50	10.00	11.00	61.0	2	_	_
C50010.0	10.00	5.00	10.00	13.00	63.0	2	_	_
C50012.0	12.00	6.00	12.00	16.00	73.0	2	_	_
C50014.0	14.00	7.00	12.00	16.00	73.0	2	27.50	11.50
C50015.0	15.00	7.50	12.00	16.00	73.0	2	27.50	11.50
C50016.0	16.00	8.00	16.00	19.00	79.0	2	30.50	15.50
C50018.0	18.00	9.00	16.00	19.00	79.0	2	30.50	15.50
C50020.0	20.00	10.00	20.00	22.00	88.0	2	37.50	19.50
C50025.0	25.00	12.50	25.00	26.00	102.0	2	45.50	24.50

Сферическая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30° для копировального фрезерования преимущественно мягких сталей, цветных и титановых сплавов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

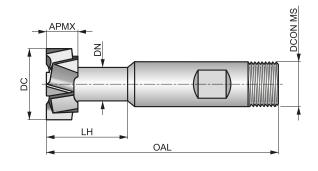
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	K1.1	K1.2
■ 46 D	■ 52 D	■ 54 D	■ 40 D	Z 35 D	Z 32 D	Z 26 C	■ 19 C	■ 34 D	Z 29 D	Z 31 D	Z 25 C	Z 30 D	Z 22 D
K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2
■ 17 D	∠ 49 D	∠ 40 D	Z 32 C	■ 44 D	Z 33 D	Z 27 B	■ 40 C	Z 30 C	Z 22 C	■ 19 B	■ 16 B	∠ 46 C	■ 34 C
K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S2.1
≥ 27 C	Z 81 F	Z 60 E	■ 41 E	■ 41 D	Z 37 D	Z 26 D	■43 D	■25 D	■13 D	∠ 43 D	■30 C	Z 25 C	Z 120 B
S3 1	S4 1												

DCON MS с допуском h6; RE ± 0.05 мм.

∠ 12 B

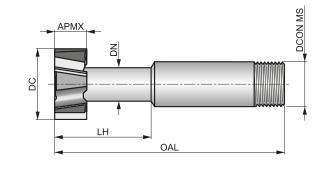
■ 15 B


	DC	RE	DCON MS	APMX	OAL	NOF	LU	DN
	(MM)	(мм)	(MM)	(MM)	(мм)		(мм)	(мм)
C5053.0	3.00	1.50	6.00	8.00	52.0	2	-	_
C5054.0	4.00	2.00	6.00	11.00	55.0	2	_	_
C5055.0	5.00	2.50	6.00	13.00	57.0	2	_	_
C5056.0	6.00	3.00	6.00	13.00	57.0	2	_	-
C5058.0	8.00	4.00	10.00	19.00	69.0	2	_	_
C50510.0	10.00	5.00	10.00	22.00	72.0	2	_	_
C50512.0	12.00	6.00	12.00	26.00	83.0	2	_	_
C50514.0	14.00	7.00	12.00	26.00	83.0	2	37.50	11.50
C50516.0	16.00	8.00	16.00	32.00	92.0	2	43.50	15.50
C50520.0	20.00	10.00	20.00	38.00	104.0	2	53.50	19.50
C50522.0	22.00	11.00	20.00	38.00	104.0	2	53.50	19.50
C50525.0	25.00	12.50	25.00	45.00	121.0	2	64.50	24.50
C50528.0	28.00	14.00	25.00	45.00	121.0	2	64.50	24.50
C50530.0	30.00	15.00	25.00	45.00	121.0	2	64.50	24.50

Фреза из быстрорежущей стали с кобальтом для обработки Т-образного паза

Конструкция фрезы для обработки Т-образного паза имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

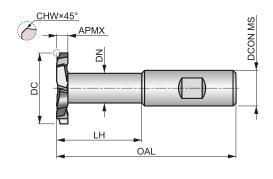

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 V	■ 45 V	■46 V	■ 34 V	■30 U	■27T	■ 29 U	■ 24 U	■ 20 T	■ 18 U	■15T	■12T	■ 27 S	■ 23 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 24 S	■ 20 S	■17 S	■15 S	■14 S	■10 S	■ 20 V	■ 15 V	■11 V	■37 U	■30 U	■ 24 U	■33 U	■25 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■20 U	■30 S	■ 23 S	■17 S	■14 S	■12 S	■ 34 U	■ 26 U	■ 20 U	■ 71 Y	■ 53 Y	■36 Y	■36 Y	■32 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 23 Y	■38 V	■22 V	■11 W	■38 Y	■ 30 V	■ 20 V	■ 10 U	■13 U	■7T	■ 10 U	■5T	■8 U	■ 4T

	APMX	DC	T DIN650	DN	LH	OAL	DCON MS	NOF
	(MM)	(MM)		(MM)	(мм)	(MM)	(MM)	
C80011.0X5.0	4.00	11.00	5	4.00	10.5	53.5	10.00	6
C80012.5X6.0	6.00	12.50	6	5.00	15.0	57.0	10.00	6
C80016.0X8.0	8.00	16.00	8	7.00	20.0	62.0	10.00	6
C80018.0X10.0	8.00	18.00	10	8.00	23.0	70.0	12.00	6
C80021.0X12.0	9.00	21.00	12	10.00	27.0	74.0	12.00	8
C80025.0X14.0	11.00	25.00	14	12.00	31.0	82.0	16.00	8
C80032.0X18.0	14.00	32.00	18	15.00	40.0	90.0	16.00	8
C80040.0X22.0	18.00	40.00	22	19.00	45.0	108.0	25.00	8
C80050.0X28.0	22.00	50.00	28	25.00	56.0	124.0	32.00	8

Фреза из быстрорежущей стали для обработки Т-образного паза

Конструкция фрезы для обработки Т-образного паза имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 27 V	■30 V	■31 V	■ 23 V	■ 20 U	■ 18T	■15 U	■12 U	■ 10T	■9U	 7 7	 6T	21 S	■ 17 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 18 S	■ 15 S	■ 12 S	■ 10 S	 ■ 9 S	■ 10 S	■ 20 V	■ 15 V	■ 11 V	■ 25 U	■ 20 U	■ 16 U	■ 22 U	■ 17 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 13 U	■ 20 S	■ 15 S	■ 11 S	■ 10 S	8 8	■23 U	■17 U	■ 13 U	■48 Y	■36 Y	■ 24 Y	■ 24 Y	22 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■16 Y	■26 V	■15 V	■8 W	Z 26 Y	■20 V	∠ 15 V	 ■ 5 U	Z 7U	 ■7 1	 ■ 5 U	 ■ 5T	■ 4U	Z 4T

DCON MS с допуском 0/-0.025 мм.

	APMX	APMX	DC	DC	T DIN650	DN	LH	OAL	DCONMS	DCON MS	NOF
	(дюйм)	(мм)	(дюйм)	(MM)		(мм)	(MM)	(MM)	(дюйм)	(MM)	
C8106.0	_	6.00	_	12.50	6.0	5.00	17.0	57.0	-	10.00	6
C8108.0	_	8.00	_	16.00	8.0	7.00	21.0	61.0	_	10.00	6
C81010.0	_	8.00	_	18.00	10.0	8.00	25.0	65.0	-	12.00	6
C81012.0	_	9.00	_	21.00	12.0	10.00	29.0	69.0	-	12.00	6
C81014.0	_	11.00	_	25.00	14.0	12.00	34.0	79.0	-	16.00	6
C81016.0	_	12.00	_	28.00	16.0	13.00	35.0	76.0	_	16.00	6
C81018.0	_	14.00	_	32.00	18.0	15.00	41.0	98.0	_	25.00	8
C81020.0	_	16.00	_	36.00	20.0	17.00	46.0	100.0	_	25.00	8
C81022.0	_	18.00	_	40.00	22.0	19.00	51.0	108.0	_	25.00	8

Фреза из быстрорежущей стали с кобальтом для обработки Т-образного паза с фаской

Конструкция фрезы для обработки Т-образного паза. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

■38 V

22 V

12.00

14.00

16.00

11 W

23 Y

DCON MS с допуском h6.

C82512.0X63.0

C82514.0X63.0

C82516.0X63.0

■38 Y

63.00

63.00

63.00

■ 35 V

0.15

0.15

0.15

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.2 P3.3 P4.1 P4.2 P4.3 P3.1 M1.1 M1.2 **40** V 45 V ■46 V ■34 V ■30 U ■27T **22** U ■ 18 U ■ 15 T ■ 13 U ■11T ■9T **21** S ■ 17 S K2.1 M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 **K1.2** K1.3 K2.2 K2.3 K3.1 K3.2 **■** 18 S ■ 15 S **■**12 S **■**10 S **9**5 **■**10 S ■ 25 V ■19 V ■ 14 V ■37 U ■ 30 U ■ 24 U ■33 U ■ 25 U N2.1 K4.1 K4.2 K4.3 K4.4 K5.1 N1.1 N1.2 N1.3 **N2.2** ■20 U **■**30 S **■** 23 S **■**17 S ■ 14 S **■** 12 S ■34 U **■** 26 U ■ 20 U ■ 71 Y ■36 Y ■36 Y ■32 Y ■ 53 Y **N2.3** N3.1 N3.2 N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

■ 10 U

■7 U

73.0

73.0

73.0

■7T

■5 U

130.0

130.0

130.0

■5T

25.00

25.00

25.00

■4 U

4T

12

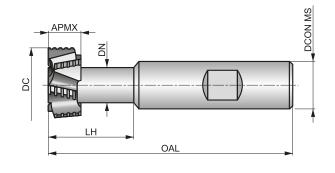
12

12

20 V

	APMX	DC	CHW	DN	LH	OAL	DCON MS	NOF
	(MM)	(мм)	(MM)	(MM)	(MM)	(мм)	(мм)	
C8253.0X40.0	3.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8254.0X40.0	4.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8255.0X40.0	5.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8256.0X40.0	6.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8258.0X40.0	8.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C82510.0X40.0	10.00	40.00	0.15	19.20	49.0	100.0	20.00	8
C8256.0X63.0	6.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C8258.0X63.0	8.00	63.00	0.15	24.20	73.0	130.0	25.00	12
C82510.0X63.0	10.00	63.00	0.15	24.20	73.0	130.0	25.00	12

24.20

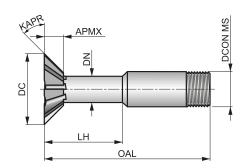

24.20

24.20

Фреза из быстрорежущей стали с кобальтом для черновой обработки Т-образного паза

Конструкция фрезы для черновой обработки Т-образного паза. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 V	■ 45 V	■ 46 V	■34 V	■30 U	■ 27 T	■29 U	■24 U	■20T	■ 18 U	■ 15 T	■12T	■ 34 S	■ 29 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 31 S	■ 25 S	■ 17 S	■ 15 S	■ 14 S	■15 S	■ 25 V	■ 19 V	■ 14 V	■ 43 U	■35 U	■ 28 U	■ 38 U	■ 29 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 24 U	■35 S	■ 27 S	■ 20 S	■17 S	■ 14 S	■40 U	■30 U	■ 23 U	■71 Y	■53 Y	■36 Y	■ 36 Y	■32 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 23 Y	■38 V	■ 22 V	■11 W	■38 Y	■30 V	■ 20 V	■10 U	■ 13 U	■7T	■ 10 U	■ 5T	■8U	■ 4T

,								
	APMX	DC	T DIN650	DN	LH	OAL	DCON MS	NOF
	(MM)	(мм)		(MM)	(MM)	(MM)	(мм)	
C80116.0X8.0	8.00	16.00	8	7.00	18.0	62.0	10.00	6
C80118.0X10.0	8.00	18.00	10	8.00	21.0	70.0	12.00	6
C80121.0X12.0	9.00	21.00	12	10.00	25.0	74.0	12.00	6
C80125.0X14.0	11.00	25.00	14	12.00	28.0	82.0	16.00	8
C80132.0X18.0	14.00	32.00	18	15.00	36.0	90.0	16.00	8

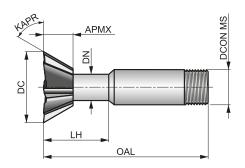
Фреза из быстрорежущей стали для обработки паза типа "ласточкин хвост"

Конструкция фрезы имеет угол 45° для обработки стандартного паза типа "ласточкин хвост" и резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
20 Y	■ 22 Y	■ 23 Y	■ 17 Y	■ 15 X	∠ 13 X	■ 15 X	■ 12 X	■ 10 X	■9 X	 ✓ 7 X	∠ 6X	■ 14 W	■ 12 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■12 W	■10 W	∠ 12 W	■ 10 W	∠ 9W	 ✓ 5 W	■15 Y	■11 Y	■8Y	■18 X	■ 15 X	■12 X	■16 X	■ 12 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 10 X	■15 W	■11 W	■8W	■7 W	■6W	■ 17 X	■ 13 X	■ 10 X	■ 36 Z	■ 27 Z	■ 18 Z	■18 Z	■ 16 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 12 Z	■19 Y	■11 Y	■ 6Z	■ 19 Z	■ 15 Y	■ 10 Y	 5 X	∠ 7W	∠ 7W	 ✓ 5 W	 ■ 5 W	∠ 4W	■ 4W

DCON MS с допуском 0/-0.025 мм.


	KAPR	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
	(°)	(MM)	(дюйм)	(MM)	(MM)	(MM)	(MM)	(дюйм)	(MM)	
C83713.0	45	3.00	_	13.00	4.75	19.5	63.5	_	12.00	6
C8375/8 1)	45	4.00	5/8	15.88	6.35	21.5	66.5	1/2	12.70	6
C83716.0	45	4.00	-	16.00	6.35	21.5	66.5	_	12.00	6
C83719.0	45	5.50	-	19.00	6.35	21.5	66.5	_	12.00	6
C8373/4 1)	45	5.50	3/4	19.05	6.35	21.5	66.5	1/2	12.70	6
C83722.0	45	6.50	-	22.00	7.15	22.5	68.5	_	12.00	6
C8377/8 1)	45	6.50	7/8	22.23	7.15	22.5	68.5	1/2	12.70	6
C83725.0	45	7.50	-	25.00	7.95	24.0	70.0	_	12.00	6
C8371 1)	45	8.00	1″	25.40	7.95	24.0	70.0	1/2	12.70	6
C83728.0	45	8.50	_	28.00	9.55	25.5	71.5	_	16.00	6
C83738.0	45	10.50	_	38.00	12.70	26.5	78.5	_	25.00	8

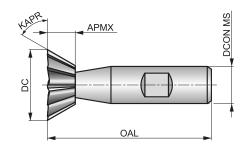
¹⁾ Стандарт BS 122/4.

Фреза из быстрорежущей стали для обработки паза типа "ласточкин хвост"

Конструкция фрезы имеет угол 60° для обработки стандартного паза типа "ласточкин хвост" и резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

	/ / \	поправочные коэффициенты опр	,	

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 20 Y	■ 22 Y	■ 23 Y	■ 17 Y	■15 X	∠ 13 X	■ 15 X	■ 12 X	■ 10 X	■ 9 X	 ■ 7 X	∠ 6 X	■ 14 W	■ 12 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■12 W	■ 10 W	■ 12 W	∠ 10 W	∠ 9W	∠ 5W	■15 Y	■11 Y	■8Y	■18 X	■15 X	■ 12 X	■16 X	■12 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 10 X	■ 15 W	■11 W	■8 W	■ 7 W	■6W	■ 17 X	■ 13 X	■ 10 X	■36 Z	■27 Z	■ 18 Z	■ 18 Z	■ 16 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 12 Z	■19 Y	■11 Y	■ 6 Z	■ 19 Z	■ 15 Y	■ 10 Y	 5 X	Z 7W	Z 7W	∠ 5W	 ■ 5 W	■ 4W	■ 4W


DCON MS с допуском 0/-0.025 мм.

	KAPR	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
	(°)	(мм)	(дюйм)	(мм)	(мм)	(мм)	(мм)	(дюйм)	(мм)	
C8351/2 1)	60	4.00	1/2	12.70	7.15	20.5	63.5	1/2	12.70	6
C83513.0	60	4.00	_	13.00	7.15	20.5	63.5	_	12.00	6
C8355/8 1)	60	5.50	5/8	15.88	7.55	23.5	66.5	1/2	12.70	6
C83516.0	60	5.50	_	16.00	7.55	23.5	66.5	_	12.00	6
C83519.0	60	7.00	-	19.00	8.35	24.5	67.5	-	12.00	6
C8353/4 1)	60	7.00	3/4	19.05	8.35	24.5	67.5	1/2	12.70	6
C83522.0	60	9.50	_	22.00	8.75	24.5	67.5	_	12.00	6
C8357/8 1)	60	9.50	7/8	22.23	8.75	24.5	67.5	1/2	12.70	6
C83525.0	60	12.00	-	25.00	8.75	27.0	70.0	_	12.00	6
C8351 1)	60	12.00	1"	25.40	8.75	27.0	70.0	1/2	12.70	6
C83528.0	60	12.50	_	28.00	11.10	28.0	73.0	_	16.00	6
C8351.1/8 1)	60	12.50	1.1/8	28.58	11.10	28.0	73.0	5/8	15.88	6
C83532.0	60	13.50	-	32.00	12.70	29.5	74.5	-	16.00	8
C8351.1/4 1)	60	13.50	1.1/4	31.75	12.70	29.5	74.5	5/8	15.88	8
C8351.3/8 1)	60	14.50	1.3/8	34.93	12.70	30.5	82.5	1″	25.40	8
C83535.0	60	14.50	_	35.00	12.70	30.5	82.5	_	25.00	8
C83538.0	60	16.00	_	38.00	17.45	32.0	84.0	_	25.00	8
C8351.1/2 1)	60	16.00	1.1/2	38.10	17.45	32.0	84.0	1″	25.40	8

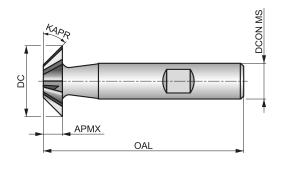
¹⁾ Стандарт BS 122/4.

Фреза из быстрорежущей стали с кобальтом для обработки паза типа "ласточкин хвост"

Конструкция фрезы имеет угол 45° или 60° для обработки стандартного паза типа "ласточкин хвост". Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

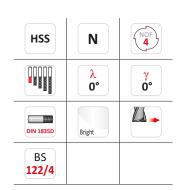
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■33 Y	■37 Y	■38 Y	■28 Y	■ 25 X	22 X	■ 22 X	■ 18 X	■ 15 X	■13 X	■11 X	■9 X	■ 27 W	■ 23 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■24 W	■20 W	■ 17 W	■ 15 W	■14 W	■10 W	■20 Y	■15 Y	■11 Y	■31 X	■ 25 X	■ 20 X	■ 27 X	■21 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 17 X	■ 25 W	■19 W	■ 14 W	■12 W	■10 W	■ 29 X	■21 X	■ 17 X	■ 59 Z	■ 44 Z	■ 30 Z	■ 30 Z	■ 27 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 19 Z	■31 Y	■18 Y	■9Z	■31 Z	■ 25 Y	■15 Y	■ 10 X	■ 13 W	■7 W	■ 10 W	■5 W	■8W	■4 W

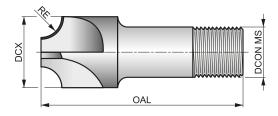

	KAPR	APMX	DC	OAL	DCON MS	NOF
	(°)	(MM)	(мм)	(MM)	(MM)	
C83012.0X45	45	3.50	12.00	54.0	10.00	10
C83016.0X45	45	4.00	16.00	60.0	12.00	10
C83020.0X45	45	5.00	20.00	63.0	12.00	10
C83025.0X45	45	6.30	25.00	67.0	12.00	10
C83032.0X45	45	8.00	32.00	71.0	16.00	12
C83012.0X60	60	5.00	12.00	54.0	10.00	10
C83016.0X60	60	6.30	16.00	60.0	12.00	10
C83020.0X60	60	8.00	20.00	63.0	12.00	10
C83025.0X60	60	10.00	25.00	67.0	12.00	10
C83032.0X60	60	12.50	32.00	71.0	16.00	12

Фреза из быстрорежущей стали с кобальтом для обработки паза обратный "ласточкин хвост"

Конструкция фрезы имеет угол 45° или 60° для обработки стандартного паза типа обратный "ласточкин хвост". Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

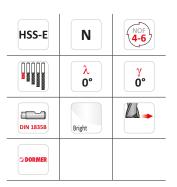

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■33 Y	■ 37 Y	■38 Y	■ 28 Y	■25 X	22 X	22 X	■ 18 X	■ 15 X	■ 13 X	■11 X	■9 X	■ 27 W	■ 23 W
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 24 W	■ 20 W	■ 17 W	■15 W	■14W	■10 W	■ 20 Y	■ 15 Y	■11 Y	■31 X	■ 25 X	■ 20 X	■ 27 X	■21 X
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 17 X	■ 25 W	■19 W	■14W	■12 W	■10 W	■ 29 X	■ 21 X	■ 17 X	■59 Z	■ 44 Z	■ 30 Z	■ 30 Z	■ 27 Z
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2
■ 19 Z	■31 Y	■18 Y	■9 Z	■31 Z	■ 25 Y	■15 Y	■ 10 X	■13 W	■7W	■ 10 W	■ 5 W	■8W	■4W

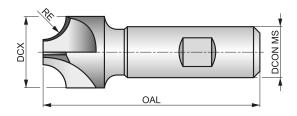

	KAPR	APMX	DC	OAL	DCON MS	NOF
	(°)	(MM)	(MM)	(MM)	(MM)	
C83112.0X45	45	3.50	12.00	54.0	10.00	10
C83116.0X45	45	4.00	16.00	60.0	12.00	10
C83120.0X45	45	5.00	20.00	63.0	12.00	10
C83125.0X45	45	6.30	25.00	67.0	12.00	10
C83132.0X45	45	8.00	32.00	71.0	16.00	12
C83112.0X60	60	5.00	12.00	54.0	10.00	10
C83116.0X60	60	6.30	16.00	60.0	12.00	10
C83120.0X60	60	8.00	20.00	63.0	12.00	10
C83125.0X60	60	10.00	25.00	67.0	12.00	10
C83132.0X60	60	12.50	32.00	71.0	16.00	12

Фреза из быстрорежущей стали для обработки скругления

Конструкция фрезы для обработки скругления имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

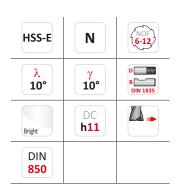
Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

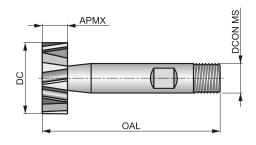

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 20 W	22 W	23 W	■ 17 W	■15 W	■ 13 W	■ 15 W	■ 12 W	∠ 10 W	■ 9W	∠ 7W	∠ 6W	■21 U	■ 17 U
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■18 U	■15 U	■ 12 U	■10 U	∠ 9U	 ■ 5 U	■ 20 W	■ 15 W	■ 11 W	■18 W	■ 15 W	■12 W	■16 W	■ 12 W
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 10 W	■15 U	■11 U	■8U	■7 U	■ 6U	■ 17 W	■ 13 W	■ 10 W	■36 X	■ 27 X	■18 X	■18 X	■ 16 X
N2.3	N3.1	N3.2	N3.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	
12 X	■19 X	■11 X	■6 X	■15 U	■10 U	 5 U	■7 U	 7 U	■5 U	 ■ 5 U	■ 4 U	∠ 4U	


	RE	DCX	DCONMS	DCON MS	OAL	NOF
	(дюйм)	(дюйм)	(дюйм)	(мм)	(MM)	
C7101/16	1/16	3/8	3/8	9.53	60.5	4
C7101/8	1/8	1/2	1/2	12.70	60.5	4
C7105/32	5/32	9/16	1/2	12.70	60.5	4
C7103/16	3/16	5/8	5/8	15.88	60.5	4
C7101/4	1/4	7/8	5/8	15.88	63.5	4
C7103/8	3/8	1.1/16	1″	25.40	76.0	4
C7101/2	1/2	1.3/8	1″	25.40	82.5	4

Фреза из быстрорежущей стали с кобальтом для обработки скругления

Конструкция фрезы для обработки скругления. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.


Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

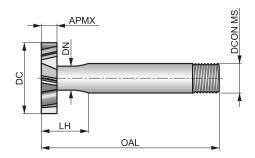

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■33 W	■37 W	■38 W	■28 W	■25 W	■22 W	■ 22 W	■18 W	■15 W	■ 13 W	■ 11 W	■ 9W	■ 27 U	■ 23 U
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 24 U	■ 20 U	■17 U	■ 15 U	■14 U	■ 10 U	■20 W	■15 W	■11 W	■31W	■ 25 W	■ 20 W	■ 27 W	■21W
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 17 W	■ 25 U	■19 U	■14 U	■ 12 U	■ 10 U	■ 29 W	■21 W	■ 17 W	■ 57 X	■ 43 X	■ 29 X	■ 29 X	■ 26 X
N2.3	N3.1	N3.2	N3.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	
■19 X	■ 30 X	■ 17 X	■ 9 X	■ 25 U	■ 20 U	■ 10 U	■13 U	■ 7 U	■ 10 U	■ 5 U	■8 U	■4 U	

	RE	DCX	DCON MS	OAL	NOF
	(MM)	(MM)	(MM)	(MM)	
C7001.0	1.00	10.00	10.00	60.0	4
C7001.5	1.50	10.00	10.00	60.0	4
C7002.0	2.00	10.00	10.00	60.0	4
C7002.5	2.50	10.00	10.00	60.0	4
C7003.0	3.00	12.00	12.00	60.0	4
C7003.5	3.50	12.00	12.00	60.0	4
C7004.0	4.00	15.00	12.00	60.0	4
C7005.0	5.00	18.00	16.00	70.0	4
C7006.0	6.00	21.00	16.00	70.0	4
C7007.0	7.00	24.00	16.00	70.0	4
C7008.0	8.00	24.00	16.00	70.0	4
C7009.0	9.00	28.00	20.00	85.0	4
C70010.0	10.00	28.00	20.00	85.0	4
C70012.0	12.00	35.00	20.00	100.0	4
C70012.5	12.50	35.00	20.00	100.0	4
C70014.0	14.00	42.00	25.00	100.0	4
C70015.0	15.00	48.00	25.00	105.0	5
C70016.0	16.00	48.00	25.00	105.0	5
C70020.0	20.00	60.00	32.00	115.0	6

Фреза из быстрорежущей стали с кобальтом для обработки паза под сегментную шпонку

Конструкция фрезы для обработки паза под сегментную шпонку имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 **40** V 45 V ■46 V ■34 V ■30 U ■27T ■ 29 U **24** U ■ 20 T ■ 18 U ■ 15 T ■ 12 T **■**34 S ■ 29 S


K2.3 K3.1 M2.1 M2.2 M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K3.2 **■**31 S ■ 25 S **■**17 S ■15 S **■**14 S ■15 S ■ 25 V ■19 V ■ 14 V ■37 U ■ 30 U ■ 24 U ■33 U ■ 25 U **N1.1** N1.2 N1.3 N2.1 K4.1 K4.2 K4.4 **N2.2** ■ 20 U **■**30 S **■** 23 S **■** 17 S ■ 14 S ■ 12 S ■ 34 U ■ 26 U ■ 20 U ■ 71 Y ■ 53 Y ■36 Y ■36 Y ■32 Y N3.1 N3.2 **N2.3** N3.3 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2 23** Y ■38 V 22 V 11 W ■38 Y 30 V 20 V ■ 10 U ■ 13 U **■**7T ■ 10 U ■5T ■8 U **4**T

	APMX	DC	OAL	DCON MS	NOF
	(MM)	(MM)	(MM)	(MM)	
C8224.5X1.0	1.00	4.50	50.0	6.00	6
C8227.5X1.5	1.50	7.50	50.0	6.00	6
C8227.5X2.0	2.00	7.50	50.0	6.00	6
C82210.5X2.0	2.00	10.50	50.0	6.00	8
C82210.5X2.5	2.50	10.50	50.0	6.00	8
C82210.5X3.0	3.00	10.50	50.0	6.00	
					8
C82213.5X3.0	3.00	13.50	56.0	10.00	8
C82213.5X4.0	4.00	13.50	56.0	10.00	8
C82216.5X3.0	3.00	16.50	56.0	10.00	8
C82216.5X4.0	4.00	16.50	56.0	10.00	8
C82216.5X5.0	5.00	16.50	56.0	10.00	8
C82219.5X3.0	3.00	19.50	63.0	10.00	10
C82219.5X4.0	4.00	19.50	63.0	10.00	10
C82219.5X5.0	5.00	19.50	63.0	10.00	10
C82222.5X5.0	5.00	22.50	63.0	10.00	10
C82222.5X6.0	6.00	22.50	63.0	10.00	10
C82222.5X8.0	8.00	22.50	63.0	10.00	10
C82225.5X6.0	6.00	25.50	63.0	10.00	12
C82228.5X6.0	6.00	28.50	63.0	10.00	12
C82228.5X8.0	8.00	28.50	63.0	10.00	12
C82228.5X10.0	10.00	28.50	71.0	12.00	12
C82232.5X8.0	8.00	32.50	71.0	12.00	12
C82232.5X10.0	10.00	32.50	71.0	12.00	12
C82245.5X10.0	10.00	45.50	71.0	12.00	12

Фреза из быстрорежущей стали для обработки паза под сегментную шпонку

Конструкция фрезы для обработки паза под сегментную шпонку имеет резьбовой хвостовик для надежного закрепления инструмента. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

Z26 Y

■20 V

Применени	е инструмен	та, начальны	е значения сн	корости резан	ния (м/мин) и	и индекс пода	ачи. Подача и	і поправочнь	іе коэффициє	нты определ	яются по таб	лицам, начин	ая с стр. 194.
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 27 V	■30 V	■31 V	■23 V	■ 20 U	■ 18T	■15 U	■12 U	■ 10T	■9U	 7 T	 6T	21 S	■ 17 S
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■ 18 S	■15 S	■ 12 S	■ 10 S	 ■ 95	■ 10 S	■ 20 V	■ 15 V	■ 11 V	■ 25 U	■ 20 U	■ 16 U	■ 22 U	■ 17 U
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 13 U	■ 20 S	■ 15 S	■ 11 S	■ 10 S	■ 85	■23 U	■17 U	■ 13 U	■48 Y	■36 Y	■ 24 Y	■ 24 Y	■ 22 Y
N2.3	N3.1	N3.2	N3.3	N4.1	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2

∠ 15 V

■ 10 U

Z7U

Z7T

Z5 U

5T

■4U

Z4T

DCON MS с допуском 0/-0.025	MM.	
		Nr.

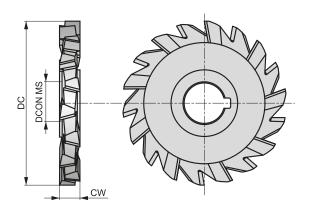
■ 26 V

■ 15 V

■8 W

■ 16 Y

	, mini.										
	Nr.	APMX	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
		(дюйм)	(MM)	(дюйм)	(MM)	(MM)	(MM)	(MM)	(дюйм)	(MM)	
C82010.5X2.0	_	_	2.00	_	10.50	3.90	12.0	57.0	_	12.00	6
C82010.5X2.5	_	_	2.50	_	10.50	3.90	12.5	57.0	_	12.00	6
C82010.5X3.0	_	_	3.00	_	10.50	4.20	13.0	57.0	_	12.00	6
C820204 1)	204	1/16	1.59	1/2	12.70	3.30	11.6	57.0	1/2	12.70	6
C820404 1)	404	1/8	3.18	1/2	12.70	4.85	13.2	57.0	1/2	12.70	6
C82013.5X2.0	_	_	2.00	_	13.50	4.00	12.0	57.0	_	12.00	6
C82013.5X2.5	_	_	2.50	_	13.50	4.00	12.5	57.0	_	12.00	6
C82013.5X3.0	_	_	3.00	_	13.50	5.00	13.0	57.0	_	12.00	6
C82013.5X4.0	-	_	4.00	_	13.50	5.00	14.0	57.0	_	12.00	6
C820405 1)	405	1/8	3.18	5/8	15.88	5.65	13.2	57.0	1/2	12.70	6
C820505 1)	505	5/32	3.97	5/8	15.88	6.35	14.0	57.0	1/2	12.70	6
C82016.5X2.5	_	_	2.50	_	16.50	4.00	12.5	57.0	_	12.00	6
C82016.5X3.0	_	_	3.00	_	16.50	5.00	13.0	57.0	_	12.00	6
C82016.5X4.0	-	_	4.00	_	16.50	5.00	14.0	57.0	_	12.00	6
C82016.5X5.0	_	_	5.00	_	16.50	5.60	15.0	57.0	_	12.00	6
C820406 1)	406	1/8	3.18	3/4	19.05	5.50	13.2	57.0	1/2	12.70	6
C820506 1)	506	5/32	3.97	3/4	19.05	6.35	14.0	57.0	1/2	12.70	6
C820606 1)	606	3/16	4.76	3/4	19.05	7.15	14.8	57.0	1/2	12.70	6
C82019.5X3.0	_	_	3.00	_	19.50	5.60	13.0	57.0	_	12.00	6
C82019.5X4.0	_	_	4.00	_	19.50	5.60	14.0	57.0	_	12.00	6
C82019.5X5.0	_	_	5.00	_	19.50	6.00	15.0	57.0	_	12.00	6
C820507 1)	507	5/32	3.97	7/8	22.23	6.35	14.0	63.5	1/2	12.70	8
C820607 1)	607	3/16	4.76	7/8	22.23	7.15	14.8	63.5	1/2	12.70	8
C820807 1)	807	1/4	6.35	7/8	22.23	8.75	16.4	63.5	1/2	12.00	8
C82022.5X4.0	_	_	4.00	_	22.50	5.60	14.0	63.5	_	12.00	8


	Nr.	APMX	APMX	DC	DC	DN	LH	OAL	DCONMS	DCON MS	NOF
		(дюйм)	(MM)	(дюйм)	(мм)	(мм)	(мм)	(MM)	(дюйм)	(MM)	
C82022.5X5.0	_	- (діопін)	5.00	(Alonin)	22.50	6.00	15.0	63.5	(доли)	12.00	8
C82022.5X6.0	_	_	6.00	_	22.50	6.50	16.0	63.5	_	12.00	8
C820608 1)	608	3/16	4.76	1″	25.40	7.15	14.8	70.0	1/2	12.70	8
C820808 ¹⁾	808	1/4	6.35	 1"	25.40	8.75	16.4	70.0	1/2	12.70	8
C82025.5X5.0	_	_	5.00	_	25.50	7.50	15.0	70.0	_	12.00	8
C82025.5X6.0	_	_	6.00	_	25.50	7.50	16.0	70.0	_	12.00	8
C82025.5X8.0	_	_	8.00	_	25.50	8.00	18.0	70.0	_	12.00	8
C82028.5X5.0	_	_	5.00	_	28.50	8.00	17.0	70.0	_	12.00	8
C82028.5X6.0	_	_	6.00	_	28.50	8.50	18.0	70.0	_	12.00	8
C82028.5X8.0	_	_	8.00	_	28.50	9.00	20.0	70.0	_	12.00	8
C820610 1)	610	3/16	4.76	1.1/4	31.75	7.95	16.8	70.0	1/2	12.70	10
C820810 1)	810	1/4	6.35	1.1/4	31.75	9.50	18.4	70.0	1/2	12.70	10
C8201210 1)	1210	3/8	9.53	1.1/4	31.75	11.95	21.5	70.0	1/2	12.70	10
C82032.5X5.0 1)	_	_	5.00	_	32.50	8.00	17.0	70.0	-	12.00	10
C82032.5X6.0	_	_	6.00	_	32.50	8.50	18.0	70.0	-	12.00	10
C82032.5X8.0	_	_	8.00	_	32.50	9.00	20.0	70.0	_	12.00	10
C820811 1)	811	1/4	6.35	1.3/8	34.93	11.10	26.4	76.0	1/2	12.70	10
C8201211 1)	1211	3/8	9.53	1.3/8	34.93	11.95	29.5	76.0	1/2	12.70	10
C82035.5X6.0	_	_	6.00	_	35.50	9.50	26.0	76.0	_	12.00	10
C82035.5X8.0	_	_	8.00	_	35.50	11.50	28.0	76.0	-	12.00	10
C820812 1)	812	1/4	6.35	1.1/2	38.10	11.10	26.4	76.0	1/2	12.70	10
C8201212 1)	1212	3/8	9.53	1.1/2	38.10	11.95	29.5	76.0	1/2	12.70	10
C82038.5X8.0	_	_	8.00	_	38.50	11.50	28.0	76.0	-	12.00	10
C82038.5X10.0	_	_	10.00	_	38.50	11.50	30.0	76.0	_	12.00	10
C82045.5X10.0	_	_	10.00	_	45.50	11.50	30.0	76.0	-	12.00	12

¹⁾ Стандарт BS 122/4.

Дисковая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет крупный шаг зубьев с трехсторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

■ 44 X

25 X

■ 13 X

27 X

■ 44 S

■30 V

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P2.3 P3.2 P3.3 P4.1 P4.2 P3.1 P4.3 M1.1 M1.2 ■ 46 X ■ 52 X ■ 54 X ■ 40 X ■ 35 X ■31 X ■ 29 X 24 X **20** X ■ 18 X ■ 15 X ■ 12 X ■41 X ■ 35 X M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 **K1.1 K1.2** K1.3 K2.1 K2.2 K2.3 K3.1 ■37 X ■30 X **23** X ■20 X ■18 X ■ 10 X ■ 30 X **22** X ■ 17 X ■ 49 X ■ 40 X ■ 32 X ■ 44 X ■33 X K3.3 K4.1 K4.3 K4.4 K4.5 **N1.1 N1.2** N1.3 **N2.1** N2.2 ■27 X ■ 40 X ■30 X ■22 X ■19 X ■ 16 X ■ 46 X ■ 34 X ■ 27 X ■83 X ■ 42 X ■37 X ■ 62 X ■ 42 X **N2.3** N3.1 N3.3 N3.2 N4.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2**

■ 15 W

20 W

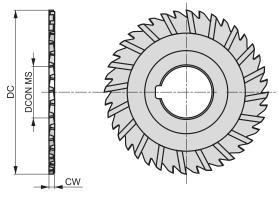
■14 S

■ 15 W

■ 10 S

■ 12 W

88


20 W

	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D20050.0X4.0	50.00	4.0	16.00	16
D20050.0X5.0	50.00	5.0	16.00	16
D20063.0X6.0	63.00	6.0	22.00	18
D20063.0X8.0	63.00	8.0	22.00	18
D20080.0X6.0	80.00	6.0	27.00	20
D20080.0X8.0	80.00	8.0	27.00	20
D20080.0X10.0	80.00	10.0	27.00	18
D200100.0X8.0	100.00	8.0	32.00	22
D200100.0X10.0	100.00	10.0	32.00	22
D200100.0X12.0	100.00	12.0	32.00	20
D200100.0X14.0	100.00	14.0	32.00	20
D200100.0X16.0	100.00	16.0	32.00	20
D200125.0X10.0	125.00	10.0	32.00	24
D200125.0X12.0	125.00	12.0	32.00	22

Дисковая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет малый шаг зубьев с трехсторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

HSS-E	28-44 NOF	λ 15°
γ 10°	Bright	DC js16
DIN 885A		

44 X

■25 X

■ 13 X

44 S

■ 30 V

■ 27 X

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.1 P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 ■ 46 X ■ 52 X ■54 X ■ 40 X ■ 35 X ■31 X **29** X **24** X **20** X ■ 18 X ■ 15 X ■ 12 X ■41 X ■ 35 X M2.1 **M2.2** M3.1 M3.2 M3.3 M4.1 K1.1 K1.2 K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 ■37 X ■30 X **23** X **20** X ■ 18 X ■ 10 X ■30 X ■ 22 X ■ 17 X ■49 X ■ 40 X ■32 X ■ 44 X ■ 33 X K4.1 K4.2 K4.3 K4.4 K5.1 **N1.1** N1.2 N1.3 N2.1 **N2.2** ■ 27 X ■40 X ■30 X ■ 22 X ■19 X ■16 X ■ 46 X ■34 X ■ 27 X ■83 X ■ 42 X ■37 X ■62 X ■ 42 X N3.1 N3.2 **N2.3** N3.3 N4.1 **S1.1 S1.2 S1.3 S2.2 S3.1 S3.2 S4.1 S4.2 S2.1**

■ 15 W

20 W

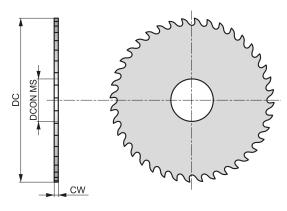
■ 14 S

■ 15 W

■ 10 S

■ 12 W

8 S


20 W

	DC	CW	DCON MS	NOF
	(мм)	(MM)	(MM)	
D76363.0X1.6	63.00	1.6	22.00	32
D76363.0X2.0	63.00	2.0	22.00	32
D76363.0X2.5	63.00	2.5	22.00	32
D76363.0X3.0	63.00	3.0	22.00	28
D76363.0X3.5	63.00	3.5	22.00	28
D76380.0X2.0	80.00	2.0	27.00	36
D76380.0X2.5	80.00	2.5	27.00	36
D76380.0X3.0	80.00	3.0	27.00	32
D76380.0X3.5	80.00	3.5	27.00	32
D763100.0X2.0	100.00	2.0	32.00	44
D763100.0X3.0	100.00	3.0	32.00	40
D763125.0X2.0	125.00	2.0	32.00	44
D763125.0X3.0	125.00	3.0	32.00	44

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет крупный шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

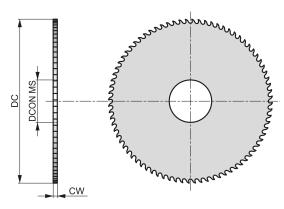
HSS

15°

Bright

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	45 0	46 0	340	300	■ 29 P	■ 24 P	■ 18 P	□ 14 P	□ 12 P	Z 12 P	Z 10 P	■ 12 P	□ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
400	30.0	22 0	37 0	300	330	25 0	■ 30 P	23 P	340	260	■ 600 R	450 R	■ 300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							
■ 769 R	■692 R	■500 R	■339 R	■ 200 R	■ 100 O	■60 R							

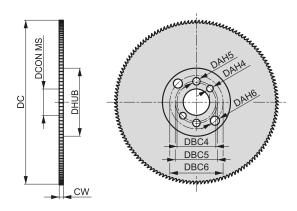

	DC	CW	DCON MS	NOF
	(мм)	(MM)	(MM)	
D74550.0X.5	50.00	0.5	13.00	48
D74550.0X.6	50.00	0.6	13.00	48
D74550.0X.8	50.00	0.8	13.00	40
D74550.0X1.0	50.00	1.0	13.00	40
D74550.0X1.2	50.00	1.2	13.00	40
D74550.0X1.5	50.00	1.5	13.00	32
D74550.0X1.6	50.00	1.6	13.00	32
D74550.0X2.0	50.00	2.0	13.00	32
D74563.0X.5	63.00	0.5	16.00	64
D74563.0X.6	63.00	0.6	16.00	48
D74563.0X.8	63.00	0.8	16.00	48
D74563.0X1.0	63.00	1.0	16.00	48
D74563.0X1.2	63.00	1.2	16.00	40
D74563.0X1.5	63.00	1.5	16.00	40
D74563.0X1.6	63.00	1.6	16.00	40
D74563.0X2.0	63.00	2.0	16.00	40
D74580.0X1.0	80.00	1.0	22.00	48
D74580.0X1.2	80.00	1.2	22.00	48
D74580.0X1.5	80.00	1.5	22.00	48
D74580.0X1.6	80.00	1.6	22.00	48
D74580.0X2.0	80.00	2.0	22.00	40
D74580.0X2.5	80.00	2.5	22.00	40
D74580.0X3.0	80.00	3.0	22.00	40
D745100.0X1.0	100.00	1.0	22.00	64
D745100.0X1.2	100.00	1.2	22.00	64
D745100.0X1.5	100.00	1.5	22.00	48
D745100.0X1.6	100.00	1.6	22.00	48
D745100.0X2.0	100.00	2.0	22.00	48

	DC	CW	DCON MS	NOF
	νc	CVV	DCON WIS	NOI
	(MM)	(MM)	(MM)	
D745100.0X2.5	100.00	2.5	22.00	48
D745100.0X3.0	100.00	3.0	22.00	40
D745100.0X4.0	100.00	4.0	22.00	40
D745125.0X1.0	125.00	1.0	22.00	80
D745125.0X1.2	125.00	1.2	22.00	64
D745125.0X1.5	125.00	1.5	22.00	64
D745125.0X1.6	125.00	1.6	22.00	64
D745125.0X2.0	125.00	2.0	22.00	64
D745125.0X2.5	125.00	2.5	22.00	48
D745125.0X3.0	125.00	3.0	22.00	48
D745125.0X4.0	125.00	4.0	22.00	48
D745160.0X1.6	160.00	1.6	32.00	80
D745160.0X2.0	160.00	2.0	32.00	64
D745160.0X2.5	160.00	2.5	32.00	64
D745160.0X3.0	160.00	3.0	32.00	64
D745160.0X4.0	160.00	4.0	32.00	48
D745200.0X1.6	200.00	1.6	32.00	80
D745200.0X2.0	200.00	2.0	32.00	80
D745200.0X2.5	200.00	2.5	32.00	80
D745200.0X3.0	200.00	3.0	32.00	64
D745200.0X4.0	200.00	4.0	32.00	64
D745250.0X2.0	250.00	2.0	32.00	100
D745250.0X2.5	250.00	2.5	32.00	80
D745250.0X3.0	250.00	3.0	32.00	80

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет малый шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■ 30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■ 25 Q	■ 30 P	■ 23 P	■34 Q	■ 26 Q	■ 600 R	■ 450 R	■ 300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							
■769 R	■692 R	■ 500 R	■339 R	■ 200 R	■ 100 Q	■ 60 R							


	DC	CW	DCON MS	NOF
	(мм)	(MM)	(MM)	
D74732.0X.3	32.00	0.3	8.00	80
D74732.0X.4	32.00	0.4	8.00	80
D74732.0X.5	32.00	0.5	8.00	80
D74732.0X.6	32.00	0.6	8.00	64
D74732.0X.8	32.00	0.8	8.00	64
D74732.0X1.0	32.00	1.0	8.00	64
D74732.0X1.2	32.00	1.2	8.00	48
D74732.0X1.5	32.00	1.5	8.00	48
D74732.0X1.6	32.00	1.6	8.00	48
D74732.0X2.0	32.00	2.0	8.00	48
D74740.0X.3	40.00	0.3	10.00	100
D74740.0X.4	40.00	0.4	10.00	100
D74740.0X.5	40.00	0.5	10.00	80
D74740.0X.6	40.00	0.6	10.00	80
D74740.0X.8	40.00	0.8	10.00	80
D74740.0X1.0	40.00	1.0	10.00	64
D74740.0X1.2	40.00	1.2	10.00	64
D74740.0X1.5	40.00	1.5	10.00	64
D74740.0X1.6	40.00	1.6	10.00	64
D74740.0X2.0	40.00	2.0	10.00	48
D74750.0X.3	50.00	0.3	13.00	128
D74750.0X.4	50.00	0.4	13.00	100
D74750.0X.5	50.00	0.5	13.00	100
D74750.0X.6	50.00	0.6	13.00	100
D74750.0X.8	50.00	0.8	13.00	80
D74750.0X1.0	50.00	1.0	13.00	80
D74750.0X1.2	50.00	1.2	13.00	80
D74750.0X1.5	50.00	1.5	13.00	64

	DC	CW	DCON MS	NOF
	νc	CVV	DCON M3	NOI
	(MM)	(MM)	(MM)	
D74750.0X1.6	50.00	1.6	13.00	64
D74750.0X2.0	50.00	2.0	13.00	64
D74750.0X2.5	50.00	2.5	13.00	64
D74750.0X3.0	50.00	3.0	13.00	48
D74763.0X.5	63.00	0.5	16.00	128
D74763.0X.6	63.00	0.6	16.00	100
D74763.0X.8	63.00	0.8	16.00	100
D74763.0X1.0	63.00	1.0	16.00	100
D74763.0X1.2	63.00	1.2	16.00	80
D74763.0X1.5	63.00	1.5	16.00	80
D74763.0X1.6	63.00	1.6	16.00	80
D74763.0X2.0	63.00	2.0	16.00	80
D74763.0X2.5	63.00	2.5	16.00	64
D74763.0X3.0	63.00	3.0	16.00	64
D74763.0X4.0	63.00	4.0	16.00	64
D74780.0X.5	80.00	0.5	22.00	128
D74780.0X.6	80.00	0.6	22.00	128
D74780.0X.8	80.00	0.8	22.00	128
D74780.0X1.0	80.00	1.0	22.00	100
D74780.0X1.2 D74780.0X1.5	80.00 80.00	1.2 1.5	22.00 22.00	100 100
D74780.0X1.6	80.00	1.6	22.00	100
D74780.0X1.0	80.00	2.0	22.00	80
D74780.0X2.5	80.00	2.5	22.00	80
D74780.0X3.0	80.00	3.0	22.00	80
D74780.0X4.0	80.00	4.0	22.00	64
D747100.0X.5	100.00	0.5	22.00	160
D747100.0X.6	100.00	0.6	22.00	160
D747100.0X.8	100.00	0.8	22.00	128
D747100.0X1.0	100.00	1.0	22.00	128
D747100.0X1.2	100.00	1.2	22.00	128
D747100.0X1.5	100.00	1.5	22.00	100
D747100.0X1.6	100.00	1.6	22.00	100
D747100.0X2.0	100.00	2.0	22.00	100
D747100.0X2.5	100.00	2.5	22.00	100
D747100.0X3.0	100.00	3.0	22.00	80
D747100.0X4.0	100.00	4.0	22.00	80
D747125.0X1.0	125.00	1.0	22.00	160
D747125.0X1.2	125.00	1.2	22.00	128
D747125.0X1.5	125.00	1.5	22.00	128
D747125.0X1.6	125.00	1.6	22.00	128
D747125.0X2.0	125.00	2.0	22.00	128
D747125.0X2.5 D747125.0X3.0	125.00 125.00	2.5 3.0	22.00 22.00	100 100
D747125.0X3.0	125.00	4.0	22.00	100
D747160.0X1.0	160.00	1.0	32.00	160
D747160.0X1.0	160.00	1.2	32.00	160
D747160.0X1.2	160.00	1.5	32.00	160
D747160.0X1.6	160.00	1.6	32.00	160
D747160.0X2.0	160.00	2.0	32.00	128
D747160.0X2.5	160.00	2.5	32.00	128
D747160.0X3.0	160.00	3.0	32.00	128
D747160.0X4.0	160.00	4.0	32.00	100
D747160.0X5.0	160.00	5.0	32.00	100
D747200.0X1.0	200.00	1.0	32.00	200
D747200.0X1.2	200.00	1.2	32.00	200
D747200.0X2.0	200.00	2.0	32.00	160
D747200.0X3.0	200.00	3.0	32.00	128

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет крупный шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

18°

■769 R

■692 R

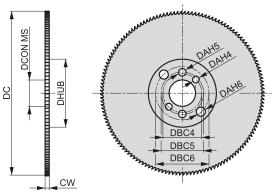
■ 500 R

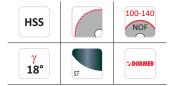
■339 R

■ 200 R

■ 100 Q

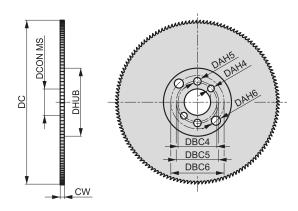
■ 60 R


	- ' '				. ,								
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■ 25 Q	■30 P	■ 23 P	■34 Q	■ 26 Q	■ 600 R	■ 450 R	■300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							


	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(мм)	(MM)		(MM)	(мм)						
D752250.0X2.0X128	250.00	2.0	32.00	128	6	100	8	45	9	50	11	63
D752275.0X2.5X110	275.00	2.5	32.00	110	8	100	8	45	9	50	11	63
D752300.0X2.5X160	300.00	2.5	32.00	160	6	100	8	45	9	50	11	63
D752315.0X2.5X160	315.00	2.5	32.00	160	6	100	8	45	9	50	11	63
D752350.0X2.5X180	350.00	2.5	32.00	180	6	120	8	45	9	50	11	63

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет крупный шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.


Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194. P1.2 P1.3 P2.1 P2.2 P3.1 P3.2 P4.1 M1.1 M1.2 M2.1 M2.2 M3.1 M3.2 ■ 40 Q ■ 45 Q ■46 Q ■34 Q ■30 Q **29** P **24** P ■ 18 P **■**14 P **■**12 P **■**12 P **■** 10 P **■** 12 P **■**10 P K5.1 K1.1 K1.2 K1.3 **K2.1** K2.2 K3.2 K4.1 K5.2 **N1.1 N1.2 N1.3** ■ 40 Q ■30 Q ■22 Q ■37 Q ■30 Q ■33 Q ■25 Q ■ 30 P ■23 P ■ 34 Q ■26 Q ■ 600 R ■450 R ■300 R **N2.2 N2.1 N2.3** N3.1 N3.2 N3.3 N4.1 ■769 R ■692 R ■ 500 R ■339 R ■200 R ■ 100 Q ■ 60 R

	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(MM)	(MM)		(MM)	(мм)	(MM)	(мм)	(MM)	(мм)	(мм)	(мм)
D753250.0X2.0	250.00	2.0	32.00	100	8	100	8	45	9	50	11	63
D753300.0X2.5	300.00	2.5	32.00	120	8	100	8	45	9	50	11	63
D753315.0X2.5	315.00	2.5	32.00	120	8	100	8	45	9	50	11	63
D753350.0X2.5	350.00	2.5	32.00	140	8	120	8	45	9	50	11	63

Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет малый шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

18°

■769 R

■692 R

■ 500 R

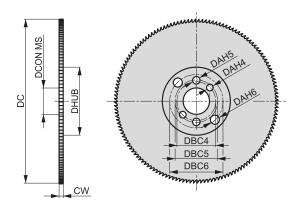
■339 R

■ 200 R

■ 100 Q

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.

	- ''	•											
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■ 25 Q	■30 P	■ 23 P	■34 Q	■ 26 Q	■ 600 R	■ 450 R	■ 300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							

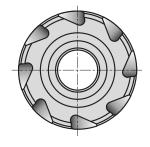

■ 60 R

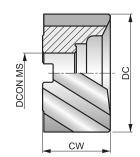
	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(MM)	(мм)	(MM)		(MM)							
D750200.0X1.8	200.00	1.8	32.00	130	5	100	8	45	9	50	11	63
D750225.0X2.0	225.00	2.0	32.00	140	5	100	8	45	9	50	11	63
D750250.0X2.0	250.00	2.0	32.00	160	5	100	8	45	9	50	11	63
D750275.0X2.5	275.00	2.5	32.00	180	5	100	8	45	9	50	11	63
D750300.0X2.5	300.00	2.5	32.00	180	5	100	8	45	9	50	11	63
D750315.0X2.5	315.00	2.5	32.00	200	5	100	8	45	9	50	11	63
D750350.0X2.5	350.00	2.5	32.00	220	5	120	8	45	9	59	11	63

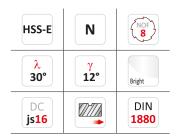
Дисковая фреза из быстрорежущей стали

Конструкция фрезы имеет малый шаг зубьев с односторонней геометрией для обработки глубоких пазов или отрезки заготовок. Обработка быстрорежущей стали паром снижает вероятность налипания стружки и повышает стойкость.

18°


	ee.p)e	a,	e 511a 1e111111 en	opoem pesa.	,, .	HerreoHe	· ····································		е поэффици.	b. ob.eHev.			a e e.p
P1.1	P1.2	P1.3	P2.1	P2.2	P3.1	P3.2	P4.1	M1.1	M1.2	M2.1	M2.2	M3.1	M3.2
■ 40 Q	■ 45 Q	■ 46 Q	■34 Q	■30 Q	■ 29 P	■ 24 P	■ 18 P	■ 14 P	■ 12 P	■ 12 P	■ 10 P	■ 12 P	■ 10 P
K1.1	K1.2	K1.3	K2.1	K2.2	K3.1	K3.2	K4.1	K4.2	K5.1	K5.2	N1.1	N1.2	N1.3
■ 40 Q	■30 Q	■ 22 Q	■37 Q	■30 Q	■33 Q	■25 Q	■ 30 P	■ 23 P	■ 34 Q	■ 26 Q	■ 600 R	■ 450 R	■300 R
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1							
■769 R	■692 R	■ 500 R	■339 R	■ 200 R	■ 100 Q	■ 60 R							


	DC	CW	DCON MS	NOF	Р	DHUB	DAH4	DBC4	DAH5	DBC5	DAH6	DBC6
	(мм)	(мм)	(MM)		(мм)	(мм)	(мм)	(мм)	(мм)	(MM)	(MM)	(мм)
D751200.0X1.8X160	200.00	1.8	32.00	160	4	100	8	45	9	50	11	63
D751200.0X1.8X200	200.00	1.8	32.00	200	3	100	8	45	9	50	11	63
D751225.0X2.0X180	225.00	2.0	32.00	180	4	100	8	45	9	50	11	63
D751225.0X2.0X220	225.00	2.0	32.00	220	3	100	8	45	9	50	11	63
D751250.0X2.0X200	250.00	2.0	32.00	200	4	100	8	45	9	50	11	63
D751250.0X2.0X250	250.00	2.0	32.00	250	3	100	8	45	9	50	11	63
D751275.0X2.5X220	275.00	2.5	32.00	220	4	100	8	45	9	50	11	63
D751275.0X2.5X280	275.00	2.5	32.00	280	3	100	8	45	9	50	11	63
D751300.0X2.5X220	300.00	2.5	32.00	220	4	100	8	45	9	50	11	63
D751300.0X2.5X300	300.00	2.5	32.00	300	3	100	8	45	9	50	11	63
D751315.0X2.5X240	315.00	2.5	32.00	240	4	100	8	45	9	50	11	63
D751315.0X2.5X320	315.00	2.5	32.00	320	3	100	8	45	9	50	11	63
D751350.0X2.5X280	350.00	2.5	32.00	280	4	120	8	45	9	50	11	63
D751350.0X2.5X350	350.00	2.5	32.00	350	3	120	8	45	9	50	11	63

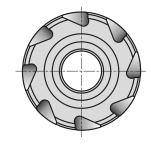


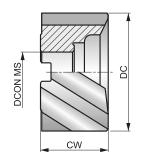
Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом

Конструкция фрезы имеет угол наклона спирали 30°. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

∠8 A

∠4A


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 C	■ 45 C	■46 C	■34 C	■30 C	Z 27 B	■29 C	■ 24 B	Z 20 B	■18 B	■ 15 B	■ 12 B	■34 C	■ 29 C
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■31 C	■ 25 B	∠ 17 B	■ 15 B	■ 14 A	■ 10 A	■20 C	■15 C	■ 11 C	■ 37 C	■ 30 C	■24 B	■33 C	■ 25 C
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■ 20 A	■ 30 B	■ 23 B	■ 17 B	■ 14 A	■12 A	■ 34 B	■ 26 B	■20 B	Z 76 E	 Z 57 D	■ 38 D	■38 C	■ 34 C
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 25 C	■ 40 C	■23 C	■12 C	■ 40 C	■ 15 C	■ 17 C	■30 B	Z 20 B	■ 10 A	■ 13 A	∠ 7 A	■ 10 A	 5 A
C/ 1	6/12												


	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D40040.0	40.00	32.0	16.00	8
D40050.0	50.00	36.0	22.00	8
D40063 0	63.00	40.0	27.00	8

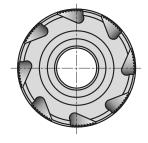
Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом

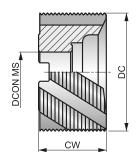
Конструкция фрезы имеет угол наклона спирали 30°. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Покрытие TiCN повышает стойкость и производительность.

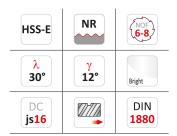
HSS-E	N	NOF 8
λ 30°	γ 12°	TiCN
DC js16		DIN 1880

■8 A

■ 16 A


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■86 C	■96 C	■ 100 C	■74 C	■65 C	■ 57 B	■ 52 C	■ 42 B	■35 B	■31 B	■26 B	■21 B	■ 48 C	■41 C
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■43 C	■35 B	■35 B	■30 B	■27 A	■ 20 A	■ 35 C	■ 26 C	■19 C	■ 62 C	■ 50 C	■40 B	■ 54 C	■ 42 C
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■34 A	■ 50 B	■38 B	■ 28 B	■24 A	■ 20 A	■ 57 B	■43 B	■33 B	■ 159 E	■ 120 D	■80 D	■80 C	■72 C
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■51 C	■84 C	■ 50 C	■ 25 C	■84 C	Z 32 C	Z 35 C	■35 B	■25 B	■ 15 A	■ 27 A	■14 A	■ 20 A	■ 10 A
S4.1	S4.2												


	DC	CW	DCON MS	NOF
	(MM)	(мм)	(MM)	
D42040.0	40.00	32.0	16.00	8
D42050.0	50.00	36.0	22.00	8
D42063.0	63.00	40.0	27.00	8

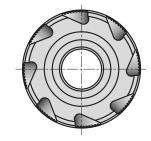


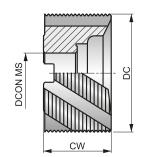
Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30° и стружколомающий профиль NR. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Полированные поверхности снижают вероятность налипания стружки и повышают стойкость инструмента.

∠8B

∠4B


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 40 D	■ 45 D	■ 46 D	■ 34 D	■30 D	Z 27 C	■ 29 D	■24 C	Z 20 C	■ 18 C	■ 15 C	■ 12 C	■ 34 D	■ 29 D
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2
■31 D	■ 25 C	■ 17 C	■ 15 C	■ 14 B	■ 10 B	■ 20 D	■ 15 D	■11 D	■37 D	■ 30 D	■ 24 C	■33 D	■ 25 D
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2
■20 B	■30 C	■ 23 C	■ 17 C	■ 14 B	■ 12 B	■34 C	■26 C	■ 20 C	Z 76 F	■ 57 E	■ 38 E	■38 D	■34 D
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2
■ 25 D	■ 40 D	■ 23 D	■ 12 D	■ 40 D	■ 15 D	■ 17 D	■30 C	Z 20 C	■ 10 B	■ 13 B	Z 7 B	■ 10 B	≥ 5B
C/ 1	642												


	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D40240.0	40.00	32.0	16.00	6
D40250.0	50.00	36.0	22.00	6
D40263.0	63.00	40.0	27.00	8

Насадная цилиндрическая фреза из быстрорежущей стали с кобальтом для черновой обработки

Конструкция фрезы имеет угол наклона спирали 30° и стружколомающий профиль NR. Устанавливается на стандартную оправку для торцевых фрез и подходит для фрезерования большинства материалов. Покрытие ТіСN повышает стойкость и производительность.

HSS-E	NR	NOF 6-8
<mark>λ</mark> 30°	γ 12°	TiCN
DC js16		DIN 1880

■84 D

Z 32 D

Z35 D

Применение	Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 194.													
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2	
■ 86 D	■96 D	■ 100 D	■74 D	■65 D	■ 57 C	■52 D	■ 42 C	■35 C	■31 C	■ 26 C	■ 21 C	■ 48 D	■ 41 D	
M2.1	M2.2	M3.1	M3.2	M3.3	M4.1	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3	K3.1	K3.2	
■ 43 D	■35 C	■35 C	■30 C	■ 27 B	■ 20 B	■35 D	■26 D	■ 19 D	■ 62 D	■50 D	■ 40 C	■ 54 D	■ 42 D	
K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3	N2.1	N2.2	
■ 34 B	■ 50 C	■38 C	■28 C	■ 24 B	■ 20 B	■ 57 C	■ 43 C	■33 C	 159 F	■ 120 E	■ 80 E	■80 D	■72 D	
N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	

■ 15 B

20 B

■ 10 B


■ 51 D	■84 D
S4.1	S4.2
■ 16 B	■8B

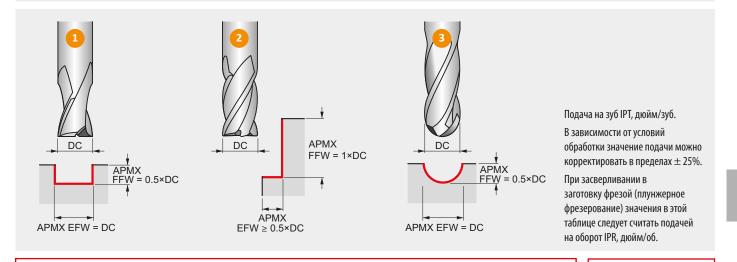
■ 50 D

25 D

	DC	CW	DCON MS	NOF
	(MM)	(MM)	(MM)	
D42240.0	40.00	32.0	16.00	6
D42250.0	50.00	36.0	22.00	6
D42263.0	63.00	40.0	27.00	8

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб (f_z) :


- 1. Определение индекса подачи (например, 48С, где "С" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы (f_z) .

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

		ø DC, mm																		
		1.00	2.00	3.00	4.00	5.00	6.00	8.00	10.00	12.00	16.00	20.00	25.00	28.00	32.00	36.00	40.00	63.00	80.00	100.00
	Α	0.002	0.003	0.003	0.005	0.005	0.005	0.007	0.009	0.011	0.015	0.018	0.023	0.027	0.030	0.033	0.034	0.043	0.045	0.042
	В	0.003	0.004	0.004	0.006	0.006	0.007	0.009	0.012	0.014	0.018	0.023	0.029	0.033	0.038	0.041	0.043	0.054	0.057	0.052
9,	C	0.004	0.004	0.005	0.007	0.008	0.008	0.011	0.015	0.017	0.023	0.029	0.036	0.042	0.047	0.051	0.054	0.067	0.071	0.065
мм/зуб	D	0.005	0.006	0.006	0.009	0.010	0.010	0.014	0.018	0.022	0.029	0.036	0.045	0.052	0.059	0.064	0.067	0.084	0.089	0.082
396, 1	E	0.006	0.007	0.008	0.011	0.012	0.013	0.017	0.023	0.027	0.036	0.045	0.056	0.065	0.074	0.080	0.084	0.105	0.111	0.102
포	F	0.007	0.008	0.010	0.013	0.014	0.016	0.020	0.028	0.032	0.043	0.054	0.067	0.078	0.089	0.096	0.101	0.126	0.133	0.122
Подача	G	0.009	0.010	0.012	0.016	0.017	0.019	0.024	0.033	0.039	0.052	0.065	0.081	0.094	0.107	0.115	0.121	0.151	0.160	0.147
6	Н	0.010	0.012	0.014	0.019	0.021	0.022	0.029	0.040	0.047	0.062	0.078	0.097	0.112	0.128	0.138	0.145	0.181	0.192	0.176
	ı	0.012	0.015	0.017	0.023	0.025	0.027	0.035	0.048	0.056	0.075	0.093	0.116	0.135	0.153	0.166	0.174	0.218	0.230	0.212
	J	0.015	0.017	0.020	0.027	0.030	0.032	0.042	0.057	0.067	0.090	0.112	0.139	0.162	0.184	0.199	0.209	0.261	0.276	0.254

Значения в таблице актуальны только для концевых и насадных цилиндрических фрез.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб IPT:

- 1. Определение индекса подачи (например, 157С, где "С" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы IPT.

ТОЛЬКО ДЛЯ МОНОЛИТНЫХ ФРЕЗ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

										Ø	DC, дюй	im								
		1/16	3/32	1/8	5/32	3/16	7/32	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	1 1/8	1 1/4	1 1/2
		.0625	.0938	.1250	.1563	.1875	.2188	.2500	.3125	.3750	.4375	.5000	.5625	.6250	.7500	.8750	1.0000	1.1250	1.2500	1.5000
	Α	.0001	.0001	.0001	.0002	.0002	.0002	.0002	.0003	.0004	.0004	.0005	.0006	.0006	.0007	.0008	.0009	.0011	.0012	.0013
9	В	.0001	.0002	.0002	.0002	.0002	.0002	.0003	.0004	.0004	.0005	.0006	.0007	.0007	.0009	.0011	.0012	.0014	.0015	.0017
зуб, дюйм/зуб	C	.0002	.0002	.0002	.0003	.0003	.0003	.0004	.0004	.0005	.0006	.0007	.0008	.0009	.0011	.0013	.0015	.0017	.0019	.0020
, SE	D	.0002	.0002	.0002	.0004	.0004	.0004	.0004	.0006	.0007	.0008	.0009	.0010	.0011	.0013	.0017	.0019	.0021	.0023	.0026
	E	.0002	.0003	.0003	.0004	.0005	.0005	.0006	.0007	.0008	.0010	.0011	.0013	.0014	.0017	.0020	.0023	.0027	.0029	.0032
Подача на	F	.0003	.0003	.0004	.0005	.0006	.0006	.0007	.0008	.0010	.0012	.0014	.0016	.0017	.0020	.0024	.0028	.0032	.0035	.0039
одан	G	.0004	.0004	.0005	.0006	.0007	.0007	.0008	.0009	.0012	.0014	.0017	.0019	.0020	.0024	.0030	.0033	.0039	.0042	.0046
=	Н	.0004	.0005	.0006	.0007	.0008	.0008	.0009	.0011	.0014	.0017	.0020	.0022	.0024	.0029	.0035	.0040	.0046	.0050	.0056
	I	.0005	.0006	.0007	.0009	.0010	.0010	.0011	.0014	.0017	.0020	.0024	.0027	.0030	.0035	.0043	.0048	.0056	.0060	.0067
	J	.0006	.0007	.0008	.0011	.0012	.0012	.0014	.0017	.0020	.0024	.0028	.0032	.0035	.0042	.0051	.0058	.0067	.0072	.0080

Значения в таблице актуальны только для концевых и насадных цилиндрических фрез.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

1 Фрезерование паза

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от глубины резания.

APMX FFW / DC	25 %	50%	100%	150 %
(X.V	1.25	1.00	0.75	0.50
x.f ⇒	1.25	1.00	0.75	0.50

2 Фрезерование уступа

Поправочные коэффициенты для скорости резания V и подачи на зуб f_z в зависимости от ширины фрезерования (в % от диаметра фрезы).

APMX EFW / DC	5%	10 %	15%	20%	25 %	30%	40 %	≥ 50 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.00
x.f ⇒	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

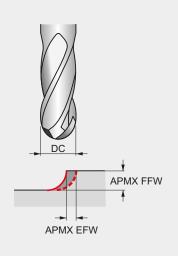
Рекомендуется избегать обработки с шириной фрезерования 50% от диаметра фрезы.

за Копировальное фрезерование (сферическими фрезами)

Поправочные коэффициенты для скорости резания V в зависимости от глубины резания.

APMX FFW / DC	5 %	10 %	15 %	20%	25%	30%	40 %	50%
(X.V	2.29	1.67	1.40	1.25	1.15	1.09	1.02	1.00

3b


Значения шага f_e между проходами для достижения теоретической шероховатости.

DC	μт	2	4	8	16	32	63	125	250
2		0.13	0.18	0.25	0.36	0.50	0.70	0.97	1.32
3		0.15	0.22	0.31	0.44	0.62	0.86	1.20	1.66
4		0.18	0.25	0.36	0.50	0.71	1.00	1.39	1.94
5		0.20	0.28	0.40	0.56	0.80	1.12	1.56	2.18
6		0.22	0.31	0.44	0.62	0.87	1.22	1.71	2.40
8		0.25	0.36	0.51	0.71	1.01	1.41	1.98	2.78
10		0.28	0.40	0.57	0.80	1.13	1.58	2.22	3.12
12		0.31	0.44	0.62	0.88	1.24	1.73	2.44	3.43
14	y /i // i /	0.33	0.47	0.67	0.95	1.34	1.87	2.63	3.71
16		0.36	0.51	0.72	1.01	1.43	2.00	2.82	3.97
18		0.38	0.54	0.76	1.07	1.52	2.13	2.99	4.21
20		0.40	0.57	0.80	1.13	1.60	2.24	3.15	4.44
22	→ f _e ←	0.42	0.59	0.84	1.19	1.68	2.35	3.31	4.66
25	- ' e -	0.45	0.63	0.89	1.26	1.79	2.51	3.53	4.97
28		0.47	0.67	0.95	1.34	1.89	2.65	3.73	5.27

Указанные значения шага измеряются только в мм.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

Как использовать таблицу определения поправочного коэффициента для подачи на зуб (f_z) при копировальном фрезеровании:

- Определение ближайшего значения к выбранной ширине фрезерования в % от диаметра фрезы (APMX EFW) по верхней строке таблицы.
- 2. Определение ближайшего значения к выбранной глубине резания в % от диаметра фрезы (APMX FFW) по левому столбцу таблицы.
- 3. В ячейке на пересечении выбранных параметров будет значение поправочного коэффициента для подачи на зуб фрезы (f_z) .

Пример для копировального фрезерования:

- 1. Применение сферической фрезы Ø8 мм с глубиной резания 0.8 мм (APMX FFW) с целью получения поверхности с шероховатостью 32 мкм.
- 2. Поправочный коэффициент для скорости резания при глубине резания 10% от диаметра фрезы = 1.67 (таблица 3a).
- 3. Шаг между проходами для достижения теоретической шероховатости 32 мкм = 1.01 мм (таблица 3b).
- 4. Поправочный коэффициент для подачи на зуб при глубине резания 10% и ширине фрезерования 1.01 / 8 = 12.6% определяется по таблице 3с и в данном случае будет = 2.33.

Поправочные коэффициенты для подачи на зуб f₂ в зависимости от ширины фрезерования АРМХ ЕFW и глубины резания АРМХ FFW (в % от диаметра фрезы).

APMX FFW	APMX EFW	5 %	10%	15 %	20%	25 %	30 %	35%	40 %	50 %
5%		5.26	3.82	3.21	2.87	2.65	2.50	2.40	2.34	2.29
10%		3.82	2.78	2.33	2.08	1.92	1.82	1.75	1.70	1.67
15 %		3.21	2.33	1.96	1.75	1.62	1.53	1.47	1.43	1.40
20%		2.87	2.08	1.75	1.56	1.44	1.36	1.31	1.28	1.25
25 %	x .f	2.65	1.92	1.62	1.44	1.33	1.26	1.21	1.18	1.15
30%	$\stackrel{\wedge}{\Longrightarrow}$	2.50	1.82	1.53	1.36	1.26	1.19	1.14	1.11	1.09
35%		2.40	1.75	1.47	1.31	1.21	1.14	1.10	1.07	1.05
40 %		2.34	1.70	1.43	1.28	1.18	1.11	1.07	1.04	1.02
45 %		2.31	1.68	1.41	1.26	1.16	1.10	1.05	1.03	1.01
50%		2.29	1.67	1.40	1.25	1.15	1.09	1.05	1.02	1.00

Для повышения качества обрабатываемой поверхности инструмент следует наклонять по отношению к поверхности заготовки под углом $10\dots15^\circ$.

МОНОЛИТНЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ПОДАЧА НА ЗУБ

Как использовать таблицу определения подачи на зуб (f_z):

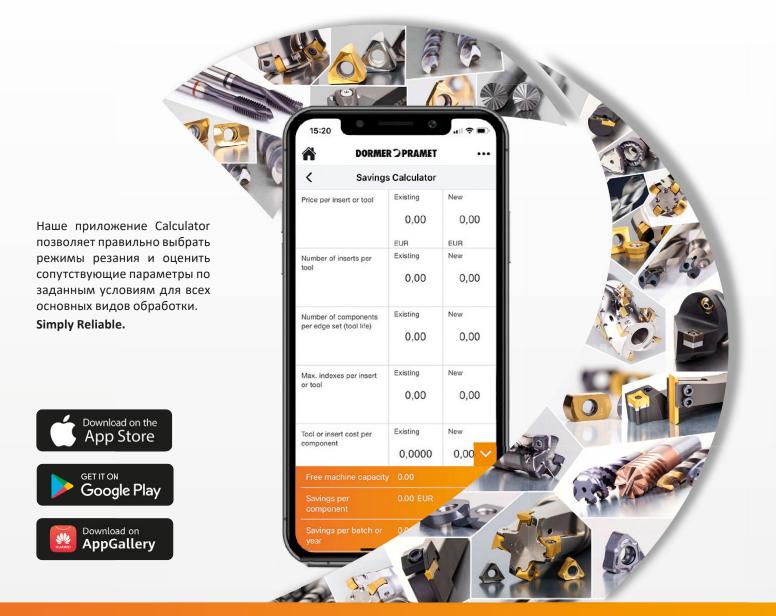
- 1. Определение индекса подачи (например, 40V, где "V" это индекс подачи)
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы (f_z).

Подача на зуб для фрез: С800, С801, С810, С820, С822, С825, С830, С835, С837, С831, С700, С710, D745, D747, D750, D751, D752, D753, D200, D763.

									ø DC	, MM							
		10.0	12.0	16.0	20.0	25.0	32.0	38.0	50.0	63.0	80.0	100.0	125.0	160.0	200.0	300.0	350.0
	Р	-	_	_	_	-	0.200	-	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
	Q	-	_	_	_	_	0.040	_	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
	R	-	-	_	_	_	0.600	-	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600
Подача на зуб, мм/зуб	S	0.020	0.020	0.020	0.040	0.040	0.040	0.040	0.050	0.050	0.060	0.070	0.080	0.090	0.100	0.100	0.100
, M	T	0.020	0.020	0.030	0.050	0.050	0.050	0.060	0.060	0.060	_	-	_	_	_	_	_
a 3y6	U	0.030	0.030	0.030	0.050	0.060	0.060	0.060	0.060	0.060	_	_	_	_	_	_	_
14a H	V	0.030	0.030	0.040	0.060	0.060	0.060	0.070	0.070	0.070	0.080	0.090	0.100	0.110	0.120	0.120	0.120
Пода	W	0.040	0.050	0.050	0.060	0.060	0.070	0.070	0.070	0.070	0.090	0.100	0.110	0.110	0.120	0.120	0.120
	X	0.050	0.050	0.060	0.070	0.080	0.100	0.110	0.110	0.110	0.110	0.110	0.120	0.130	0.140	0.140	0.140
	Υ	0.060	0.060	0.070	0.090	0.100	0.110	0.130	0.130	_	-	-	-	_	_	_	_
	Z	0.070	0.070	0.090	0.110	0.120	0.110	0.150	_	_	_	-	_	_	_	-	_

ДИСКОВЫЕ ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ – ВЫБОР ШАГА

Выбор шага дисковых фрез D750, D751, D752, D753



DORMER > PRAMET

CALCULATOR OA PYKOЙ

МОНОЛИТНЫЕ ФРЕЗЫ – ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

БЫСТРОРЕЖУЩАЯ СТАЛЬ

Материал инструмента

Быстрорежущая сталь	HSS	Среднелегированная быстрорежущая сталь имеет хорошую обрабатываемость, а также важное сочетание прочности и износостойкости, что делает такой материал привлекательным для изготовления большого ассортимента режущего инструмента, например, сверл, метчиков и фрез.
Быстрорежущая сталь с кобальтом	HSS-E	Быстрорежущая сталь с кобальтом HSS-E имеет повышенную красностойкость. Структура материала позволяет получить хорошее сочетание прочности и износостойкости. Хорошая обрабатываемость материала делает его пригодным для изготовления сверл, метчиков и монолитных фрез.
Порошковая быстрорежущая сталь с кобальтом	HSS-E PM	Быстрорежущая сталь с кобальтом HSS-E-PM изготавливается методом порошковой металлургии. Благодаря такому методу получения быстрорежущая сталь имеет однородную структуру, высокую прочность и хорошую обрабатываемость шлифованием. Изготовленный из такого материала режущий инструмент имеет значительное преимущество в производительности и надежности.

	Марка	Твердость (HV10)	C %	W %	Mo %	Cr %	V %	Co %	Материал инструмента
HSS	M2	810 – 850	0.9	6.4	5.0	4.2	1.8	_	HSS
HSS-E	M35	830 – 870	0.93	6.4	5.0	4.2	1.8	4.8	IICCO
ПЭЭ-Е	M42	870 – 960	1.08	1.5	9.4	3.9	1.2	8.0	HSCO
	ASP 2017	860 – 900	0.8	3.0	3.0	4.0	1.0	8.0	
HSS-E PM	ASP 2030	870 – 910	1.28	6.4	5.0	4.2	3.1	8.5	HSCO методом порошковой металлургии
	ASP 2052	870 – 910	1.6	10.5	2.0	4.8	5.0	8.0	

ТВЕРДЫЙ СПЛАВ

Материал инструмента

Твердый сплав

HM

Композитный материал, состоящий из твердых карбидов и металлической связки, полученный методом порошковой металлургии. Основу составляют карбиды вольфрама (WC), которые определяют твердость материала. Дополнительные кубические карбиды тантала (TaC), титана (TiC) и ниобия (NbC) дополняют карбиды вольфрама (WC) для получения нужных эксплуатационных свойств. Кобальт (Co) выступает в роли связки для создания прочности твердого сплава.

Твердый сплав характеризуется высокой прочностью на сжатие, твердостью и износостойкостью при ограниченной прочности на растяжение и изгиб. Твердый сплав используется в метчиках, развертках, фрезах и резьбофрезах.

Свойства	Быстрорежущая сталь	Твердый сплав	K10/30F (часто используется для твердосплавного инструмента)
Твердость (HV30)	800 – 950	1300 – 1800	1600
Плотность, г/см ³	8.0 – 9.0	7.2 – 15.0	14.45
Предел прочности на сжатие, МПа	3000 – 4000	3000 - 8000	6250
Предел прочности на изгиб, МПа	2500 – 4000	1000 – 4700	4300
Термостойкость, °С	550	1000	900
Модуль упругости Е, кН/мм²	260 – 300	460 – 630	580
Размер зерна, мкм	_	0.2 – 10.0	0.8

Соотношение карбидов вольфрама (WC) и кобальтовой связки (Co) позволяет получить следующие свойства твердого сплава.

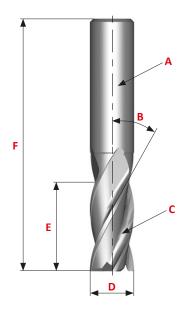
Характеристика	Больше карбидов вольфрама (WC)	Больше кобальтовой связки (Со)
Твердость	Более высокая твердость	Более низкая твердость
Прочность на сжатие	Более высокая прочность на сжатие	Более низкая прочность на сжатие
Прочность на изгиб	Более низкая прочность на изгиб	Более высокая прочность на изгиб

Размер зерна также оказывает влияние на свойства материала. Мелкозернистая структура имеет более высокую твердость, крупнозернистая — более высокую прочность.

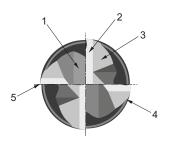
ОБРАБОТКА ПОВЕРХНОСТИ И ПОКРЫТИЕ

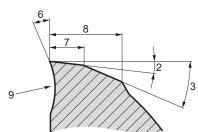
Обработка поверхности

Полирование (без покрытия)	Bright	Непокрытые полированные поверхности снижают вероятность налипания стружки и позволяют сохранить остроту режущих кромок для обработки вязких материалов заготовок.
Обработка быстрорежущей стали паром	ST	Обработка быстрорежущей стали паром создает тонкую оксидную пленку на поверхности инструмента, которая снижает вероятность налипания стружки и лучше смачивается СОЖ. Такой вид обработки поверхности используется преимущественно на сверлах и метчиках.


Покрытие

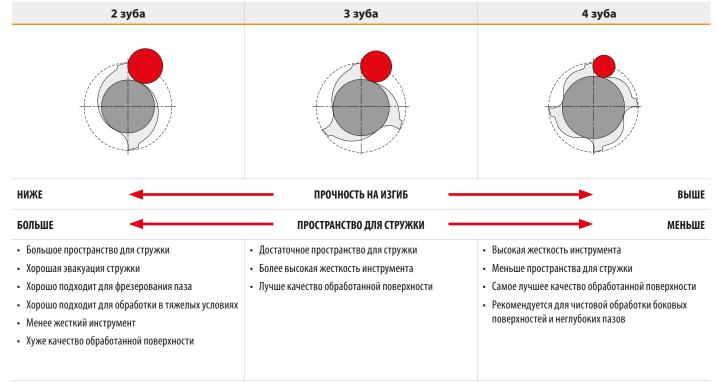
покрытие		
Покрытие TiCN	TiCN	Покрытие TiCN наносится с помощью технологии PVD, является более твердым покрытием в сравнении с TiN и имеет более низкий коэффициент трения. Высокая твердость и прочность покрытия позволяют значительно повысить износостойкость режущего инструмента и производительность обработки.
Покрытие TiAIN, TiAIN-Top и X-CEED	TIAIN TIAIN Top	Покрытие TiAIN наносится с помощью технологии PVD и обеспечивает высокую прочность и стабильность к окислению. Такие свойства повышают стойкость инструмента, позволяя работать с более высокой производительностью. Инструмент с покрытием TiAIN подходит для применения без СОЖ. Покрытие TiAIN-Top аналогично покрытию TiAIN, но инструмент после нанесения покрытия подвергается дополнительной обработке для сглаживания дефектов, что дополнительно снижает вероятность налипания стружки. Специальное покрытие X-CEED TiAIN, также известное как Futura-Nano, разработано для повышения красностойкости инструмента и для применения в тяжелых условиях обработки.
Покрытие AlTiN	Altin	Покрытие AlTiN является обновлением традиционного покрытия TiAlN и имеет высокую прочность, красностойкость и сопротивление окислению.
Покрытие AlCrN, Alcrona, Alcrona-Top и Alcrona-Pro	Alcrona Top Alcrona Pro	Покрытие Alcrona (AlCrN) обычно используется для фрез и имеет два уникальных свойства: высокая красностойкость и сопротивление окислению. При использовании режущего инструмента в условиях высоких термических и механических нагрузок такое покрытие позволяет получить исключительную износостойкость. Для разного инструмента и применения доступно несколько вариантов такого покрытия.
Покрытие TiSiN	TISIN	Покрытие TiSiN разработано для экстремальных условий резания твердых материалов заготовок с высокой скоростью. Это многослойное покрытие имеет нанокомпозитный наружный слой с кристаллами Si ₃ N ₄ в матрице TiN для защиты режущих кромок от высокой температуры, окисления и абразивного износа. Инструмент с покрытием TiSiN можно применять без подвода COЖ или в условиях минимального подвода COЖ.


ОБРАБОТКА ПОВЕРХНОСТИ И ПОКРЫТИЕ


Примеры свойств инструмента с обработкой поверхности или покрытием

Покрытие	Цвет	Материал покрытия	Твердость HV	Толщина мкм	Структура покрытия	Коэф. трения в сравнении со сталью	Максимальная температура °€
ST	Темно-серый	Fe ₃ O ₄	400	макс. 5	Изменение наружной поверхности	-	550
TICN	Сине-серый	TiCN	3000	1-4	Многослойное градиентное покрытие	0.4	500
TIAIN	Черно-серый	TiAIN	3300	3	Нано- структурированное покрытие	0.3 – 0.35	900
AlCrN	Сине-серый	AICrN	3200	_	Однослойное покрытие	0.35	1100

- **А** Хвостовик
- В Угол подъема стружечной канавки
- С Стружечная канавка
- **D** Диаметр резания (DC)
- Е Длина режущей части (АР)
- **F** Общая длина (OAL)



- Канавка
- 2 Первичный задний угол
- **3** Вторичный задний угол
- 4 Задняя часть зуба
- 5 Режущая кромка
- 6 Передний угол
- 7 Ширина первичной задней поверхности
- 8 Ширина вторичной задней поверхности
- 9 Передняя поверхность

Особенности концевых фрез – Выбор количества зубьев (NOF)

Количество зубьев фрезы зависит от:

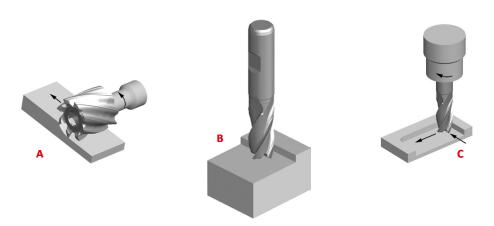
- Обрабатываемого материала
- Размеров заготовки
- Условия обработки

Особенности концевых фрез – Угол подъема стружечной канавки

Повышение количества зубьев создает более равномерную нагрузку на каждый зуб, что позволяет получить обработанную поверхность более высокого качества. С повышением угла стружечной канавки возрастает осевая нагрузка (FV).

Большое значение осевой силы FV может создать:

- Избыточную нагрузку и износ шпинделя
- Ситуацию с вытягиванием фрезы из оснастки. Для того чтобы этого избежать, следует применять патроны Weldon, гидравлические или силовые патроны.


Общие указания по фрезерованию

Фрезерование — это процесс получения обработанной поверхности постепенным удалением определенного количества материала, называемого припуском, при помощи относительно медленного перемещения (подачи) фрезы, вращающейся с относительно высокой скоростью.

Отличительной чертой фрезерования является удаление каждым режущим зубом части припуска в форме мелкосегментной стружки.

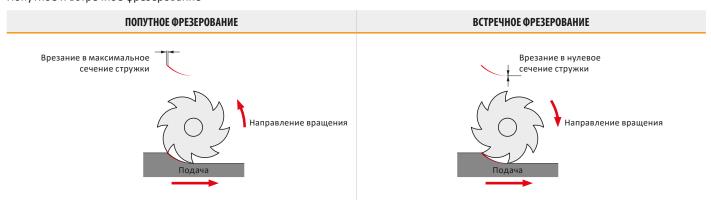
Типы фрезерования

Три основных типа показаны ниже: (A) обработка плоскостей цилиндрической частью фрезы, (B) обработка плоскостей торцевой частью фрезы и (C) фрезерование уступов и пазов.

При цилиндрическом фрезеровании ось вращения фрезы параллельна обрабатываемой поверхности. Цилиндрическая фреза имеет несколько режущих зубьев, расположенных на поверхности цилиндра, каждый из которых последовательно срезает с заготовки слой металла. Фрезы для торцевого фрезерования могут иметь прямые или спиральные режущие зубья, работающие в перпендикулярном или периферийном направлении.

При торцевом фрезеровании инструмент закрепляется в шпинделе станка так, чтобы ось вращения была перпендикулярна обрабатываемой поверхности. Обработка поверхности достигается за счет действия режущих кромок, расположенных на торце и периферии фрезы.

При фрезеровании концевыми фрезами инструмент вращается, как правило, перпендикулярно к обработанной поверхности. Концевые фрезы могут быть наклонены для обработки конических поверхностей. Режущие кромки расположены на торце и периферии инструмента.


Область применения фрез

Объем снимаемого материала и область применения фрезы сильно связаны между собой. Для каждой из областей применения имеются различные значения объема снимаемого материала, который возрастает с увеличением ширины фрезерования. В каталоге различные области применения обозначаются простыми пиктограммами.

Фрезерование стенок	Фрезерование плоскостей	Фрезерование пазов	Плунжерное фрезерование	Фрезерование под углом
Ширина фрезерования должна быть не более 25% диаметра концевой фрезы.	Ширина фрезерования должна быть не более 90% диаметра концевой фрезы, глубина резания не более 10% диаметра.	Фрезерование пазов (шпоночных). Ширина фрезерования равна диаметру фрезы.	Засверливание возможно только фрезами с режущими кромками на торце. При засверливании подачу следует снижать в два раза.	Врезание в материал заготовки происходит под углом (с подачей по двум координатам).

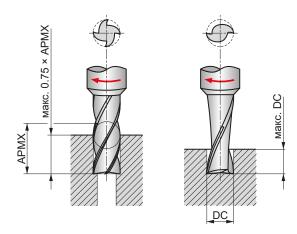
Эффективность фрезерования

Попутное и встречное фрезерование

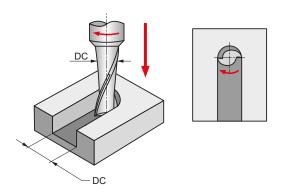
При попутном фрезеровании направление вектора скорости резания фрезы совпадает с подачей. Каждый зуб фрезы врезается в максимальное сечение стружки. В условиях горизонтального применения результирующая сила резания прижимает заготовку к столу станка.

Важно, чтобы в механизме подачи не было зазоров, так как в момент врезания может произойти сдвиг стола на величину зазора. Попутное фрезерование повышает качество обработки и стойкость инструмента.

При встречном фрезеровании вектор скорости резания фрезы и подача направлены в противоположные стороны. Резание начинается с нулевого значения толщины стружки, в результате чего происходит избыточное трение по задней поверхности инструмента и упрочнение поверхностного слоя заготовки. Результирующая сила резания стремится оторвать заготовку от стола. Встречное фрезерование может оказаться более предпочтительным при черновой обработке заготовок с твердым поверхностным слоем.


ПЕРИФЕРИЙНОЕ (ЦИЛИНДРИЧЕСКОЕ) ФРЕЗЕРОВАНИЕ

При периферийном фрезеровании цилиндрической режущей частью фрезы ось вращения инструмента параллельна обрабатываемой поверхности.


Плунжерное фрезерование

Перемещение фрезы вдоль оси вращения параллельно обрабатываемой поверхности.

Для плунжерного фрезерования необходимо наличие режущих кромок на торцевой части фрезы. Концевые фрезы с возможностью засверливаться имеютторцевые режущие кромки с перекрытием оси вращения. Примером такой обработки может быть фрезерование закрытого шпоночного паза в середине шейки вала. Глубина обработки при плунжерном фрезеровании может быть до 75% длины режущей части фрезы. Глубина отверстия при засверливании в сплошном материале не должна превышать значения 50...100% DC.

Фрезерование паза

При фрезеровании паза ширина фрезерования равна диаметру фрезы.

При обработке в полный паз одновременно происходит встречное и попутное фрезерование.

Выбор концевой фрезы

Рекомендуется применять самый короткий инструмент с наибольшим диаметром. При использовании слишком длинных фрез с большим вылетом может потребоваться снижение подачи на 25%. Короткие фрезы имеют высокую жесткость, и значение подачи может быть увеличено на 25%.

Скорость резания

Монолитные фрезы из твердого сплава следует применять на более высоких скоростях резания, чем монолитные фрезы из быстрорежущей стали. Легкое резание с невысокой подачей на высокой скорости резания может значительно повысить качество обрабатываемой поверхности.

При фрезеровании паза скорость резания следует снижать на 20%. Скорость резания следует снижать во всех случаях обработки твердых материалов или в тяжелых условиях. Повышение скорости резания возможно при фрезеровании мягких материалов или в легких условиях, при чистовой обработке.

Охлаждение

Применение СОЖ рекомендуется для обработки вязких материалов, жаропрочных и титановых сплавов. СОЖ помогает эвакуировать стружку из зоны резания. СОЖ необходимо направлять под высоким давлением непосредственно в зону резания.

ФОРМУЛЫ ДЛЯ РАСЧЕТА

Терминология и расчетные формулы

Формулы необходимы для определения необходимых параметров резания.

Формулы (метрическая система)			Величина Формулы		і (британская система)	
	V _C	м/мин	Скорость резания	SFM	фут/мин	
$V_c = \frac{n \cdot DC \cdot p}{1000}$	n	об/мин	Частота вращения шпинделя	RPM	об/мин	$SFM = \frac{RPM \cdot DC \cdot p}{12}$
v.· 1000	V _f	мм/мин	Минутная подача	IPM	дюйм/мин	12
$n = \frac{v_c \cdot 1000}{DC \cdot p}$	f _z	мм/зуб	Подача на зуб	IPT	дюйм/зуб	$RPM = \frac{SFM \cdot 12}{DC \cdot p}$
$V_f = f_z \cdot z \cdot n$	DC	MM	Диаметр резания	DC	дюйм	$IPM = IPT \cdot T \cdot RPM$
$f_z = \frac{V_f}{z \cdot n}$	Z	-	Количество зубьев	Т	_	$IPT = \frac{IPM}{T \cdot RPM}$
	APMX FFW	MM	Глубина резания	DOC	дюйм	$IPT = \frac{1}{T \cdot RPM}$
$Q = \frac{V_f \cdot APMX FFW \cdot APMX EFW}{1000}$	APMX EFW	MM	Ширина фрезерования	WOC	дюйм	$MRR = IPM \cdot DOC \cdot WOC$
7,000	Q	см³/мин	Объем снимаемого материала	MRR	дюйм³/мин	

ВОЗМОЖНЫЕ ТРУДНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Проблема		Решение
Скалывание режущих кромок	 Подача СОЖ или воздуха Снижение глубины резания Проверка износа оснастки Снижение подачи Выключение СОЖ 	 Проверка биения Проверка стабильности закрепления заготовки
Износ по задней поверхности	 Использование фрезы с покрытием Смена встречного фрезерования на попутное Смена типа СОЖ Использование фрезы с большим углом спирали Повышение подачи 	• Снижение скорости резания
Вибрация	 Применение фрезы с большим диаметром Повышение подачи Использование фрезы с большим углом спирали Уменьшение вылета фрезы Снижение скорости резания 	 Проверка и замена оснастки Применение фрезы с большим количеством зубьев
Отжатие	 Снижение глубины резания Повышение подачи Использование фрезы с большим углом спирали Смена типа СОЖ Применение фрезы с большим диаметром 	 Уменьшение вылета фрезы Применение фрезы с большим количеством зубьев Смена встречного фрезерования на попутное
Плохое качество обработки	 Уменьшение вылета фрезы Повышение скорости резания Снижение подачи Использование фрезы с большим углом спирали Применение фрезы с большим количеством зубьев 	 Подача СОЖ или воздуха Снижение глубины резания
Волнистость поверхности	 Использование фрезы с меньшим углом спирали Уменьшение вылета фрезы Снижение глубины резания Проверка и замена оснастки 	
Появление трещин	 Снижение глубины резания Снижение подачи Уменьшение вылета фрезы При забивании канавок стружкой использовать фрезу с меньшим количеством зубьев 	
Плохое удаление стружки	 Подача СОЖ или воздуха Снижение глубины резания Снижение подачи Применение фрезы с меньшим количеством зубьев Повышение скорости резания 	
Задиры и заусенцы на заготовке	 Использование фрезы с меньшим углом спирали Снижение подачи Снижение глубины резания Применение инструмента с другой геометрией 	
Налипание стружки	 Подача СОЖ, повышение концентрации СОЖ Использование фрезы с покрытием Повышение скорости резания Использование фрезы с большим углом спирали 	

БОРФРЕЗЫ

		ФРЕЗЕРОВАНИЕ – СОДЕРЖАНИЕ
<u></u> 6		ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG ISO 13399
<u> 12</u>	ЫE	инструкция
<u></u> 19	ИТН 3Ы	ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА
117	МОНОЛИТНЫЕ ФРЕЗЫ	ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ
<u></u> 201	M	ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
<u></u> 212		БОРФРЕЗЫ
<u> </u>		РЕЗЬБОФРЕЗЫ
314		инструкция
□ 326	Z	НАВИГАТОР
<u></u> 347	ИНАМИ	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ
<u></u> 407	ACT	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ
<u></u> 477	И	ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ
<u></u> 506	IbiM	дисковые фрезы
<u></u> 519	ЛЕНЬ	копировальные фрезы
<u></u> 611	со сменными плас	высокоподачные фрезы
<u></u> 643	3bl C(ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ
<u></u> 665	ФРЕЗЫ	ДРУГИЕ ПЛАСТИНЫ
<u></u> 689		ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

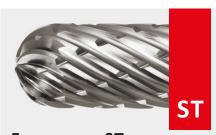
ТВЕРДОСПЛАВНЫЕ БОРФРЕЗЫ

Большой выбор высококачественных твердосплавных борфрез различных форм и конструкций позволяет подобрать наилучшее решение для применения в любой отрасли промышленности.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА

- Высококачественный твердый сплав режущей части и хвостовика в сочетании с особо точным производственным процессом позволяет получить инструмент, обладающий высокой надежностью и отменным качеством, которое так ценит Dormer Pramet.
- Каждая геометрия борфрезы была разработана для обработки определенного материала заготовки с высокой

эффективностью: ST для конструкционных сталей, VA для нержавеющих сталей, AL для цветных сплавов и полимеров, AS для жаропрочных и титановых сплавов, GRP для композиционных материалов и DC для общей обработки большинства материалов.


ХВОСТОВИК

- Изготавливается из упрочненной и закаленной стали
- Обеспечивает высокую жесткость и прочность
- Предотвращает деформации и вибрации
- Увеличивает стойкость инструмента
- Точность изготовления по ІТ6 (для твердосплавного хвостовика) и ІТ7 (для стального хвостовика) повышает надежность закрепления инструмента

ПАЙКА

- Специальные компоненты позволяют получить надежное и прочное паяное соединение режущей части и хвостовика
- Безупречная ударная прочность позволяет инструменту выдерживать высокие нагрузки
- Способность выдерживать высокие температуры без потери свойств

ГЕОМЕТРИИ БОРФРЕЗ

Геометрия ST

Является первым выбором для высокопроизводительной обработки конструкционных сталей


- Специальная стружколомающая геометрия добавляет весомый вклад в обработку сталей
- Позитивная геометрия обеспечивает получение гладкой обработанной поверхности
- В процессе обработки выделяется меньше тепла, что увеличивает стойкость борфрез

Геометрия VA

Является первым выбором для высокопроизводительной обработки **нержавеющих сталей**

- Острая геометрия позволяет предотвратить упрочнение заготовки
- Увеличенный объем снимаемого материала

Геометрия AL

Для цветных металлов и полимеров

 Большой шаг спирали и глубокие канавки для быстрого удаления материала

ТВЕРДОСПЛАВНЫЕ БОРФРЕЗЫ

СФЕРИЧЕСКАЯ И СПИРАЛЬНАЯ ЗАТОЧКА

- Пересекающаяся (сферическая) заточка
- Имеет увеличенную прочность в центральной части инструмента
- Снижает вероятность забивания стружкой
- Улучшенная режущая способность в центральной части борфрезы

Пересекающаяся заточка

Спиральная заточка

ПОКРЫТИЕ TIAIN

- Повышенная стойкость в трудных условиях обработки
- Благодаря пониженному коэффициенту трения стружка легче удаляется
- Ниже вероятность наростообразования, характерного для режущего инструмента с неглубокими канавками

Геометрия AS

Оптимальный выбор для обработки жаропрочных и титановых сплавов

- Эргономичность
- Высокое качество обработанной поверхности
- Быстрое и плавное резание

Геометрия GRP

Является первым выбором для обработки стеклопластика и композитных материалов

- Борфрезы с геометрией GRP доступны в исполнении с заточенной для засверливания торцевой частью с углами 135° и 180°
- Геометрия разработана для снижения вероятности скалывания и улучшения качества поверхности на входе и выходе из заготовки

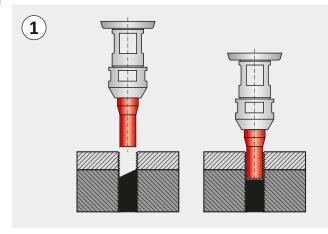
Геометрия DC

Идеально подходит для общего применения

- Улучшает контроль над процессом резания
- Увеличивает объем снимаемого материала

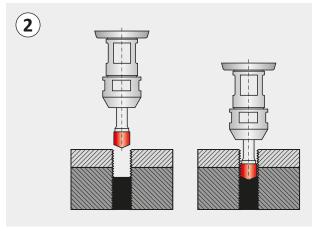
ТВЕРДОСПЛАВНЫЕ БОРФРЕЗЫ

ДЛЯ УДАЛЕНИЯ ВИНТОВ И ШПИЛЕК


Специально разработанные борфрезы для аккуратного удаления сломанных винтов и шпилек без повреждения резьбового отверстия и всей детали.

ХАРАКТЕРИСТИКИ И ПРЕИМУЩЕСТВА

- Специальные размеры для стандартных диаметров резьбы
- Хвостовики с большим вылетом и конической переходной шейкой для простоты доступа
- Специально разработанная геометрия для обработки высокопрочных материалов
- Снижение повреждений имеющихся резьбовых отверстий
- Максимальное использование возможности сверления по центру резьбы
- Сохранение резьбы и детали
- Стабильное качество


ОПЕРАЦИИ

типы борфрез

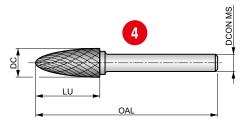
3EHKOBKA 150°

ПРИМЕНЕНИЕ

- Выберите борфрезу требуемого размера для сломанного винта
- Используйте бормашину с правосторонним направлением вращения
- Удерживайте борфрезу перпендикулярно сломанному винту
- Выровняйте поверхность излома операция (1).
- Используйте борфрезу с зенковкой для подготовки направляющего углубления для сверла операция (2).

DORMER PRAMET

Наше приложение Calculator позволяет оценить экономическое преимущество от использования режущего инструмента в разных операциях обработки. Полезное приложение, которое всегда под рукой! **Simply Reliable.**


DORMER

Параболическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.3 P3.2 P3.3 P4.1 P4.2 M1.1 M1.2 M2.1 M2.2 M2.3 M3.1 M3.2 M3.3 K3.1 K3.2 K3.3 K4.1 K4.2 K4.3 K4.4 N3.1 N3.2 N3.3 H1.1 **S1.1 S1.2 S1.3 S2.1 S2.2** S3.1 **S3.2** S4.1 S4.2 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Продукция этой серии доступна в наборах Р880 или Р890.

8 эчение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8113.0X3.0	3.00	3.00	14.00	38.0
P8116.3X3.0	6.30	3.00	12.70	45.0
P8116.0X6.0	6.00	6.00	18.00	50.0
P8118.0X6.0	8.00	6.00	20.00	65.0
P8119.6X6.0	9.60	6.00	19.00	64.0
P81112.7X6.0	12.70	6.00	25.00	70.0
P81116.0X6.0	16.00	6.00	25.00	70.0

БОРФРЕЗЫ – ОБЗОР

Поз.	Описание	Поз.	Описание
1	Серия	6	Технологические возможности
2	Описание	7	Область применения
3	Изображение	8	Обозначение
4	Схематический чертеж	9	Размеры
5	Особенности		

БОРФРЕЗЫ – ПИКТОГРАММЫ

Применение Основное применение Возможное применение Материал инструмента нм Твердый сплав Форма борфрезы Цилиндрическая без торцевой заточки Параболическая Коническая со сферической вершиной Цилиндрическая с торцевой заточкой Параболическая заостренная Коническая Цилиндрическая со сферической вершиной Факелоподобная Коническая обратная Сферическая Коническая с углом 60° E Эллиптическая Коническая с углом 90° Конструкция вершины борфрезы С элементом сверла С торцевой заточкой С элементом концевой фрезы Покрытие Полирование (без покрытия) Bright

Покрытие TiAIN

БОРФРЕЗЫ – ПИКТОГРАММЫ Угол при вершине 60° 150° Угол при вершине 135° Угол при вершине 60° Угол при вершине 150° 90° Угол при вершине 90° Угол при вершине 180° Геометрия борфрезы DC ΑL AS Для общего применения Для обработки цветных сплавов и полимеров Для обработки жаропрочных сплавов ST Для обработки конструкционных сталей GRP Для обработки композиционных материалов VA Для обработки нержавеющих сталей BR Для удаления сломанных винтов и шпилек Стандарт инструмента Dormer Стандарт Технологические возможности Обработка фасонных поверхностей Обработка обратных поверхностей Удаление сломанных винтов и шпилек 1 Удаление сломанных винтов и шпилек 2 Обработка скруглений Обработка плоскостей Обработка узких полостей Гравировка и свободная обработка Обработка уступов

Обработка фасок

Другие пиктограммы

материалов

Диаметр винта

Вырезание изделий из композиционных

Обработка зубчатых колес

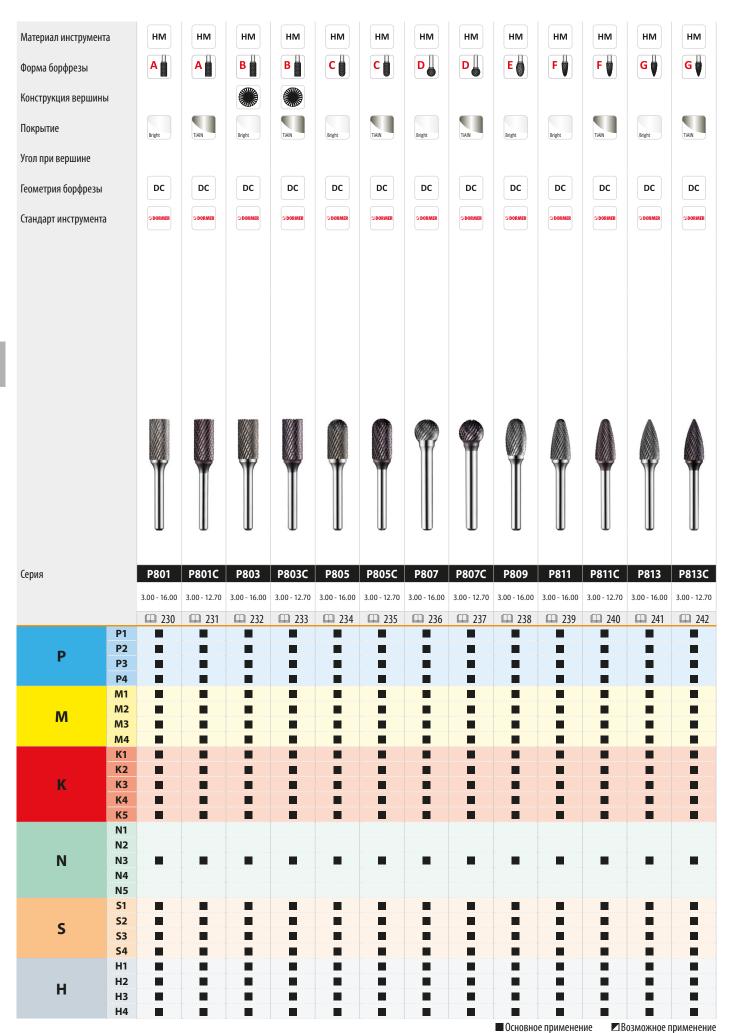
БОРФРЕЗЫ - МАТЕРИАЛ ИНСТРУМЕНТА

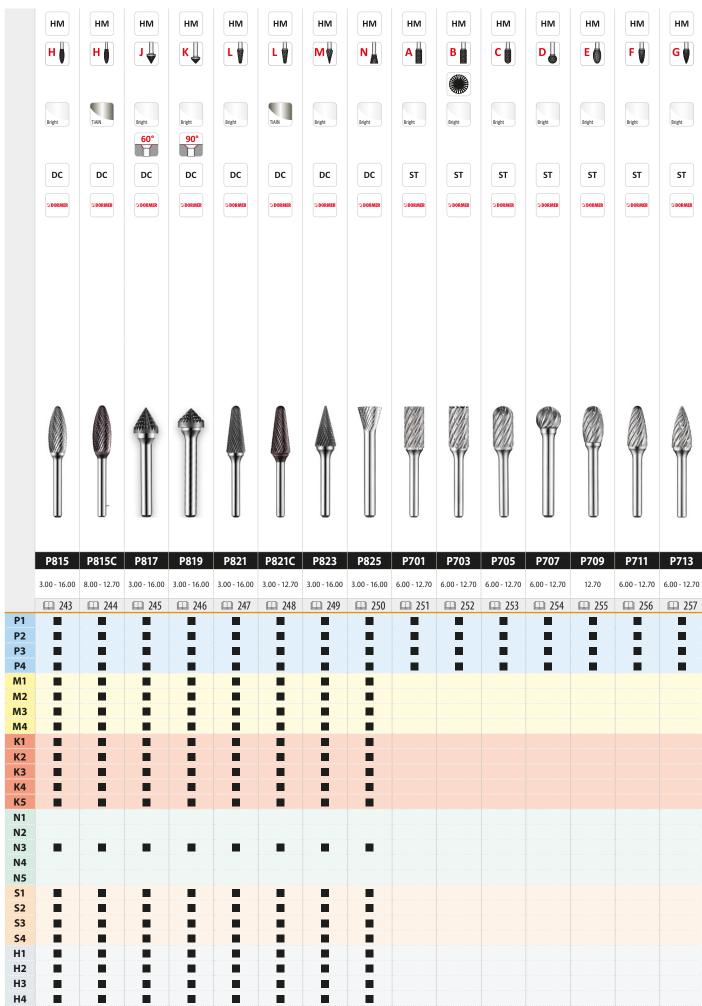
Материал инструмента Композитный материал, состоящий из твердых карбидов и металлической связки, полученный методом порошковой металлургии. Основу составляют карбиды вольфрама (WC), которые определяют твердость материала. Дополнительные кубические карбиды тантала (ТаС), титана (ТіС) и ниобия (NbC) дополняют карбиды вольфрама (WC) для получения нужных эксплуатационных свойств. Кобальт (Со) выступает в роли связки для создания прочности твердого сплава. Твердый сплав характеризуется высокой прочностью на сжатие, твердостью и износостойкостью при ограниченной прочности на растяжение и изгиб. Твердый сплав используется в метчиках, развертках, фрезах и резьбофрезах.

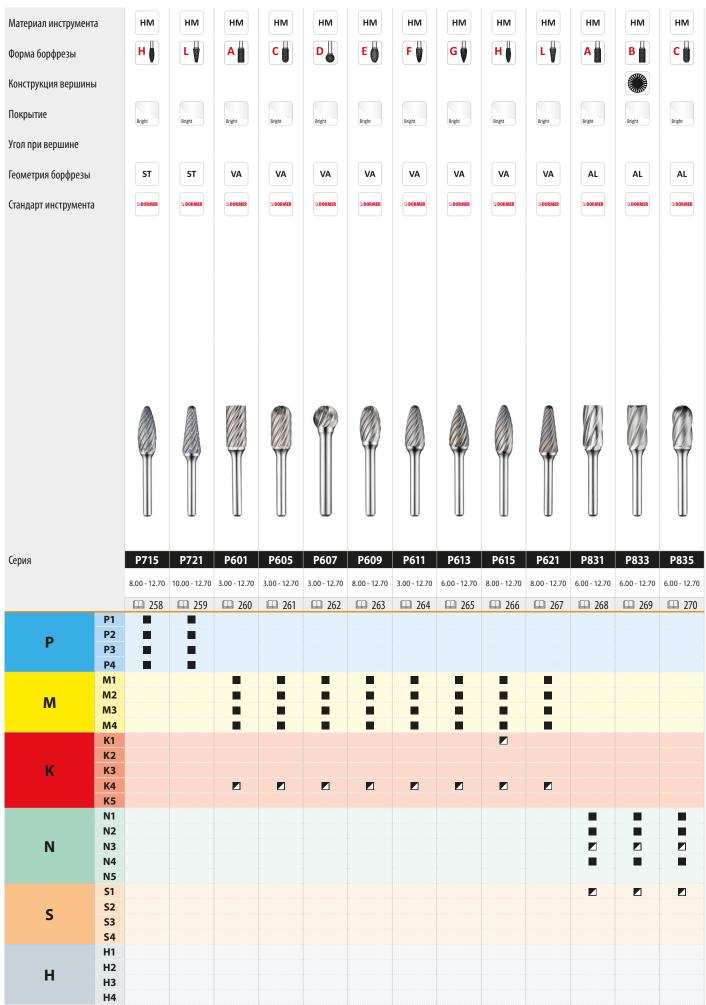
БОРФРЕЗЫ – ОБРАБОТКА ПОВЕРХНОСТИ И ПОКРЫТИЕ

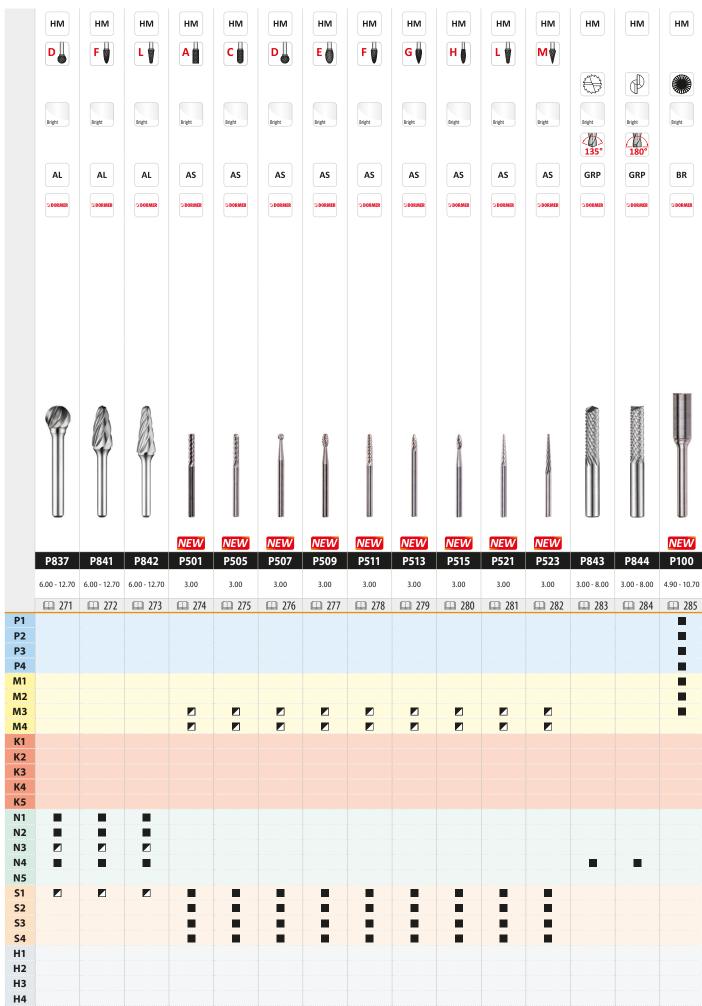
Обработка поверхности

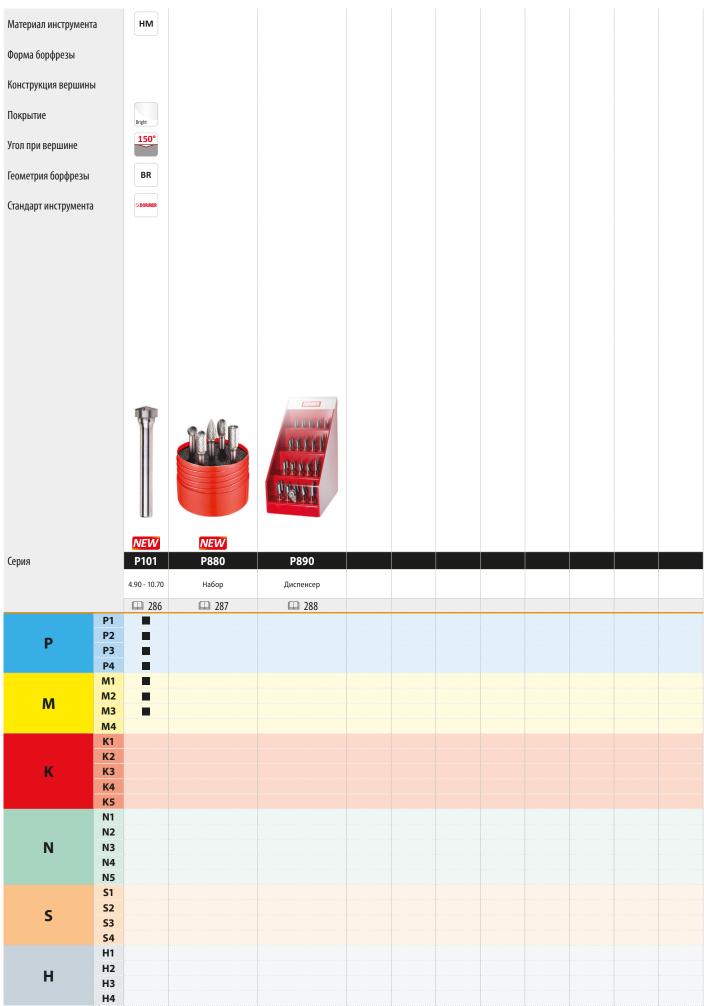
Полирование (без покрытия)


Непокрытые полированные поверхности снижают вероятность налипания стружки и позволяют сохранить остроту режущих кромок для обработки вязких материалов заготовок.


Покрытие


Покрытие TiAIN



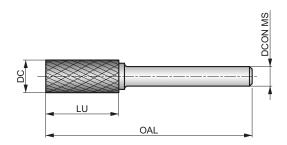

Покрытие TiAIN наносится с помощью технологии PVD и обеспечивает высокую прочность и стабильность к окислению. Такие свойства повышают стойкость инструмента, позволяя работать с более высокой производительностью. Инструмент с покрытием TiAIN подходит для применения без СОЖ.

РЕКОМЕНДУЕМАЯ ЧАСТОТА ВРАЩЕНИЯ

AL DC											
					n, об/мин						
ISO			DC, mm								
		3	6	8	10	12	16	20			
Р	мин.	64 000	32 000	24 000	20 000	16 000	12 000	10 000			
r	макс.	83 000	42 000	32 000	25 000	21 000	16 000	13 000			
A.A.	мин.	45 000	23 000	17 000	14 000	12 000	9 000	7 000			
M	макс.	64 000	32 000	24 000	20 000	16 000	12 000	10 000			
W	мин.	58 000	29 000	22 000	19 000	15 000	11 000	9 000			
K	макс.	77 000	39 000	29 000	23 000	20 000	15 000	12 000			
NI.	мин.	64 000	32 000	24 000	20 000	16 000	12 000	10 000			
N	макс.	96 000	48 000	36 000	29 000	24 000	18 000	15 000			
c	мин.	45 000	23 000	17 000	14 000	12 000	9 000	7 000			
S	макс.	58 000	29 000	22 000	18 000	15 000	11 000	9 000			
	мин.	51 000	26 000	20 000	16 000	13 000	10 000	8 000			
Н	макс.	71 000	36 000	27 000	22 000	18 000	14 000	11 000			

ST BR							
				n, об/мин			
ISO				DC, mm			
		3	6	8	10	12	
D	мин.	100 000	65 000	60 000	55 000	35 000	
r	макс.	60 000	45 000	35 000	30 000	20 000	

VA BR								
				n, об/мин				
ISO		DC, mm						
		3	6	8	10	12		
M	мин.	100 000	65 000	60 000	55 000	35 000		
IVI	макс.	60 000	30 000	25 000	20 000	15 000		


GRP							
		n, об/мин					
ISO		DC, mm					
		3	6	8			
N4	мин.	25 000	20 000	18 000			
11/4	макс.	30 000	25 000	22 000			

AS		
		n, об/мин
ISO		DC, mm
		3
ς	мин.	60 000
3	макс.	80 000

Цилиндрическая борфреза из твердого сплава без торцевой заточки

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

P1.3

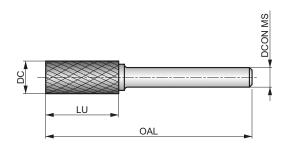
P1.1

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

Р2.1 Р2.2 Р2.3 Р3.1 Р3.2 Р3.3 Р4.1 Р4.2 Р4.3 М1.1 М1.2

M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	N3.3
S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	H1.1	H2.1	H2.2	H3.1	H3.2

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8013.0X3.0	3.00	3.00	14.00	38.0
P8016.3X3.0	6.30	3.00	12.70	45.0
P8016.0X6.0	6.00	6.00	18.00	50.0
P8018.0X6.0	8.00	6.00	19.00	64.0
P8019.6X6.0	9.60	6.00	19.00	64.0
P80112.7X6.0	12.70	6.00	25.00	70.0
P80116.0X6.0	16.00	6.00	25.00	70.0

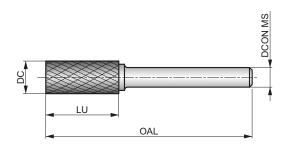
P801C

Цилиндрическая борфреза из твердого сплава без торцевой заточки

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	N3.3
S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	H1.1	H2.1	H2.2	H3.1	H3.2
H4.1	H4.2												


DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

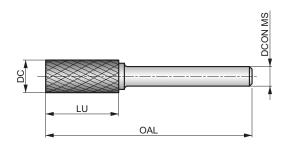
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P801C3.0X3.0	3.00	3.00	14.00	38.0
P801C6.0X6.0	6.00	6.00	18.00	50.0
P801C8.0X6.0	8.00	6.00	19.00	64.0
P801C9.6X6.0	9.60	6.00	19.00	64.0
P801C12.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава с торцевой заточкой

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 **S1.1 S1.2 S2.2 S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2 **S1.3 S2.1 S3.1** H4.1 H4.2

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880 или P890.

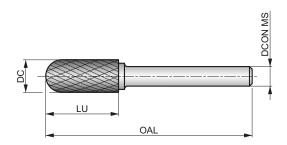

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8033.0X3.0	3.00	3.00	14.00	38.0
P8036.3X3.0	6.30	3.00	12.70	45.0
P8036.0X6.0	6.00	6.00	18.00	50.0
P8038.0X6.0	8.00	6.00	19.00	64.0
P8039.6X6.0	9.60	6.00	19.00	64.0
P80312.7X6.0	12.70	6.00	25.00	70.0
P80316.0X6.0	16.00	6.00	25.00	70.0

P803C

Цилиндрическая борфреза из твердого сплава с торцевой заточкой

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 K4.4 H3.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.2 H4.1 H4.2


DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P803C3.0X3.0	3.00	3.00	14.00	38.0
P803C6.0X6.0	6.00	6.00	18.00	50.0
P803C8.0X6.0	8.00	6.00	19.00	64.0
P803C9.6X6.0	9.60	6.00	19.00	64.0
P803C12.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава со сферической вершиной

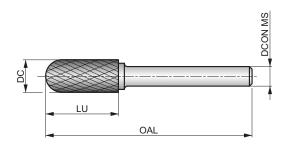
Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

H4.2

H4.1

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 N3.1 N3.2 N3.3 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880 или P890.

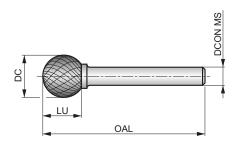

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8053.0X3.0	3.00	3.00	14.00	38.0
P8056.3X3.0	6.30	3.00	12.70	45.0
P8056.0X6.0	6.00	6.00	18.00	50.0
P8058.0X6.0	8.00	6.00	19.00	64.0
P8059.6X6.0	9.60	6.00	19.00	64.0
P80512.7X6.0	12.70	6.00	25.00	70.0
P80516.0X6.0	16.00	6.00	25.00	70.0

P805C

Цилиндрическая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 K4.4 H3.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.2 H4.1 H4.2


DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880.

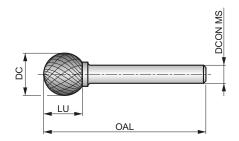
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P805C3.0X3.0	3.00	3.00	14.00	38.0
P805C6.0X6.0	6.00	6.00	18.00	50.0
P805C8.0X6.0	8.00	6.00	19.00	64.0
P805C9.6X6.0	9.60	6.00	19.00	64.0
P805C12.7X6.0	12.70	6.00	25.00	70.0

Сферическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 N3.1 N3.2 N3.3 **S1.1 S1.2 S1.3 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8073.0X3.0	3.00	3.00	2.50	38.0
P8074.0X3.0	4.00	3.00	3.40	38.0
P8076.3X3.0	6.30	3.00	5.00	38.0
P8076.0X6.0	6.00	6.00	4.70	50.0
P8078.0X6.0	8.00	6.00	6.00	52.0
P8079.6X6.0	9.60	6.00	8.00	54.0
P80712.7X6.0	12.70	6.00	11.00	56.0
P80716.0X6.0	16.00	6.00	14.00	59.0

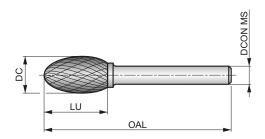
P807C

Сферическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 P1.3 M1.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 H3.1 **S1.1 S1.2 S1.3 S2.1 S3.1 S4.1 S4.2** H1.1 H2.1 H2.2 H3.2 **S2.2 S3.2**

H4.1 H4.2

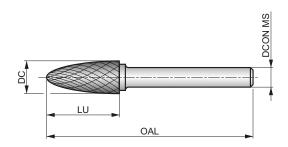

DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P807C3.0X3.0	3.00	3.00	2.50	38.0
P807C6.0X6.0	6.00	6.00	4.70	50.0
P807C8.0X6.0	8.00	6.00	6.00	52.0
P807C9.6X6.0	9.60	6.00	8.00	54.0
P807C12.7X6.0	12.70	6.00	11.00	56.0

Эллиптическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 **S1.1 S1.2 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2 **S1.3 S2.1** H4.1 H4.2


DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция \Rightarrow той серии доступна в наборах P880.

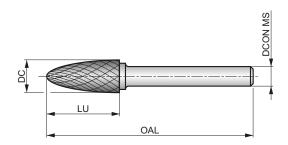
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8093.0X3.0	3.00	3.00	6.00	38.0
P8096.3X3.0	6.30	3.00	9.50	42.0
P8096.0X6.0	6.00	6.00	10.00	50.0
P8098.0X6.0	8.00	6.00	15.00	60.0
P8099.6X6.0	9.60	6.00	16.00	60.0
P80912.7X6.0	12.70	6.00	22.00	67.0
P80916.0X6.0	16.00	6.00	25.00	70.0

Параболическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 H3.1 **S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.2 H4.1 H4.2

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция этой серии доступна в наборах P880 или P890.

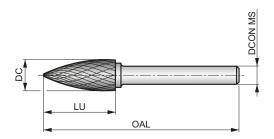

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8113.0X3.0	3.00	3.00	14.00	38.0
P8116.3X3.0	6.30	3.00	12.70	45.0
P8116.0X6.0	6.00	6.00	18.00	50.0
P8118.0X6.0	8.00	6.00	20.00	65.0
P8119.6X6.0	9.60	6.00	19.00	64.0
P81112.7X6.0	12.70	6.00	25.00	70.0
P81116.0X6.0	16.00	6.00	25.00	70.0

P811C

Параболическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 N3.1 N3.2 N3.3 K4.4 **S1.1 S1.2 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2 **S1.3** H4.1 H4.2


DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция \Rightarrow той серии доступна в наборах P880.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P811C3.0X3.0	3.00	3.00	14.00	38.0
P811C6.0X6.0	6.00	6.00	18.00	50.0
P811C9.6X6.0	9.60	6.00	19.00	64.0
P811C12.7X6.0	12.70	6.00	25.00	70.0

Параболическая заостренная борфреза из твердого сплава

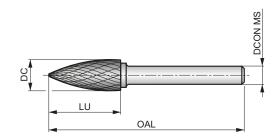
Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	N3.3
S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	H1.1	H2.1	H2.2	H3.1	H3.2
H4.1	H4.2												

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Продукция этой серии доступна в наборах Р880 или Р890.

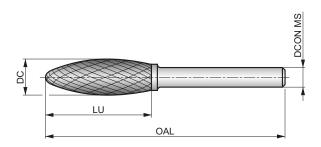

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8133.0X3.0	3.00	3.00	14.00	38.0
P8136.3X3.0	6.30	3.00	12.70	45.0
P8136.0X6.0	6.00	6.00	18.00	50.0
P8138.0X6.0	8.00	6.00	19.00	64.0
P8139.6X6.0	9.60	6.00	19.00	64.0
P81312.7X6.0	12.70	6.00	25.00	70.0
P81316.0X6.0	16.00	6.00	25.00	70.0

P813C

Параболическая заостренная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAIN повышает стойкость и производительность.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 N3.1 N3.2 N3.3 K4.4 **S1.1 S1.2 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2 **S1.3** H4.1 H4.2


DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7. Продукция \Rightarrow той серии доступна в наборах P880.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P813C3.0X3.0	3.00	3.00	14.00	38.0
P813C6.0X6.0	6.00	6.00	18.00	50.0
P813C9.6X6.0	9.60	6.00	19.00	64.0
P813C12.7X6.0	12.70	6.00	25.00	70.0

Факелоподобная борфреза из твердого сплава

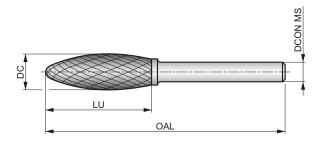
Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	N3.3
S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	H1.1	H2.1	H2.2	H3.1	H3.2
H4.1	H4.2												

DC \leq 6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

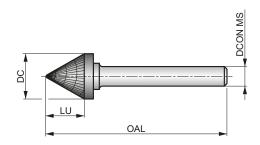
Продукция этой серии доступна в наборах Р880.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8153.0X3.0	3.00	3.00	6.00	38.0
P8156.0X6.0	6.00	6.00	14.00	50.0
P8158.0X6.0	8.00	6.00	19.00	64.0
P8159.6X6.0	9.60	6.00	19.00	65.0
P81512.7X6.0	12.70	6.00	32.00	77.0
P81516.0X6.0	16.00	6.00	36.00	81.0

P815C

Факелоподобная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Припаянный стальной хвостовик. Покрытие TiAlN повышает стойкость и производительность.

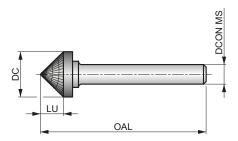

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K4.4 N3.1 N3.2 N3.3 H3.2 **S1.1 S1.2 S1.3 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H4.1 H4.2

Припаянный стальной хвостовик DCON MS с допуском h7.									
Обозначение	DC	DCON MS	LU	OAL					
	(MM)	(MM)	(MM)	(MM)					
P815C8.0X6.0	8.00	6.00	19.00	64.0					
P815C12.7X6.0	12.70	6.00	32.00	77.0					

Коническая борфреза из твердого сплава с углом 60°

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M4.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 K4.4 N3.1 N3.2 N3.3 **S1.1** H3.1 **S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.2 H4.1 H4.2


DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8173.0X3.0	3.00	3.00	2.50	38.0
P8176.0X6.0	6.00	6.00	4.00	50.0
P8179.6X6.0	9.60	6.00	8.00	56.0
P81712.7X6.0	12.70	6.00	11.00	59.0
P81716.0X6.0	16.00	6.00	14.50	63.0

Коническая борфреза из твердого сплава с углом 90°

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

P1.2

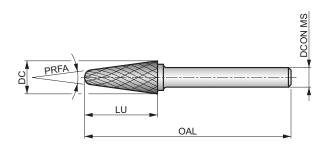
P1.3

P1.1

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2

M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 N3.1 N3.2 N3.3 **S1.1 S1.2 S1.3 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2 H4.2 H4.1


DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8193.0X3.0	3.00	3.00	1.50	38.0
P8196.0X6.0	6.00	6.00	3.00	50.0
P8199.6X6.0	9.60	6.00	4.70	53.0
P81912.7X6.0	12.70	6.00	6.30	55.0
P81916.0X6.0	16.00	6.00	8.00	57.0

Коническая борфреза из твердого сплава со сферической вершиной

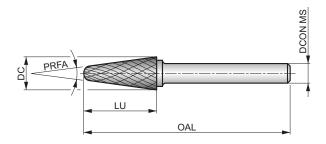
Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	N3.3
S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	H1.1	H2.1	H2.2	H3.1	H3.2
H4.1	H4.2												

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Продукция этой серии доступна в наборах Р880 или Р890.


Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P8213.0X3.0	3.00	3.00	14.00	38.0	8
P8216.0X6.0	6.00	6.00	18.00	50.0	14
P8218.0X6.0	8.00	6.00	25.40	70.0	14
P8219.6X6.0	9.60	6.00	30.00	76.0	14
P82112.7X6.0	12.70	6.00	32.00	77.0	14
P82116.0X6.0	16.00	6.00	33.00	78.0	14

P821C

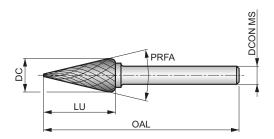
Коническая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм. Покрытие TiAlN повышает стойкость и производительность.

H4.2

H4.1

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.1 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 **K2.1 K1.2** K4.4 N3.1 N3.2 N3.3 **S1.1 S1.2 S1.3 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1 H3.2


DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P821C3.0X3.0	3.00	3.00	14.00	38.0	8
P821C12.7X6.0	12.70	6.00	32.00	77.0	14

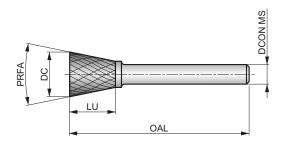
Коническая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N3.1	N3.2	N3.3
S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2	H1.1	H2.1	H2.2	H3.1	H3.2
H4.1	H4.2												

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.


Продукция этой серии доступна в наборах Р880.

Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P8233.0X3.0	3.00	3.00	11.00	38.0	14
P8236.3X3.0	6.30	3.00	12.70	49.0	22
P8236.0X6.0	6.00	6.00	20.00	50.0	14
P8239.6X6.0	9.60	6.00	16.00	64.0	28
P82312.7X6.0	12.70	6.00	22.00	71.0	28
P82316.0X6.0	16.00	6.00	25.00	71.0	31

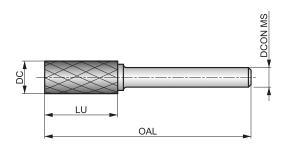
Коническая обратная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию DC с двойной насечкой для общего применения и обработки большинства материалов. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

H4.2

H4.1

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. P1.1 P1.2 P1.3 P2.2 P2.3 P3.1 P3.2 P3.3 P4.1 P4.2 P4.3 M1.1 M1.2 M2.1 **M2.2 M2.3** M3.1 M3.2 M3.3 M4.1 M4.2 K1.1 K4.4 N3.1 N3.2 N3.3 H3.2 **S1.1 S1.2 S1.3 S2.1 S2.2** S3.1 **S3.2 S4.1 S4.2** H1.1 H2.1 H2.2 H3.1

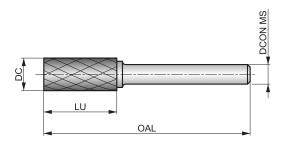

DC≤6.00 мм: DCON MS с допуском h6; DC>6.00 мм: припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P8253.0X3.0	3.00	3.00	4.00	38.0	10
P8256.3X3.0	6.30	3.00	6.00	39.0	12
P8256.0X6.0	6.00	6.00	8.00	50.0	10
P8259.6X6.0	9.60	6.00	9.50	55.0	16
P82512.7X6.0	12.70	6.00	12.70	58.0	28
P82516.0X6.0	16.00	6.00	19.00	64.0	18

Цилиндрическая борфреза из твердого сплава без торцевой заточки

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

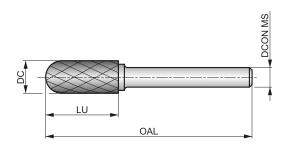

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(мм)
P7016.0X6.0	6.00	6.00	18.00	50.0
P7018.0X6.0	8.00	6.00	19.00	64.0
P7019.6X6.0	9.60	6.00	19.00	64.0
P70112.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава с торцевой заточкой

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

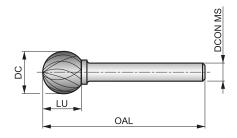

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3
				_	_	_		_			_

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P7036.0X6.0	6.00	6.00	18.00	50.0
P7038.0X6.0	8.00	6.00	19.00	64.0
P7039.6X6.0	9.60	6.00	19.00	64.0
P70312.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

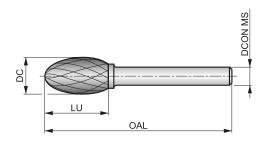


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P7056.0X6.0	6.00	6.00	18.00	50.0
P7058.0X6.0	8.00	6.00	19.00	64.0
P7059.6X6.0	9.60	6.00	19.00	64.0
P70512.7X6.0	12.70	6.00	25.00	70.0

Сферическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3
_											

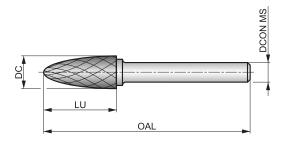
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P7076.0X6.0	6.00	6.00	4.70	50.0
P7078.0X6.0	8.00	6.00	6.00	52.0
P7079.6X6.0	9.60	6.00	8.00	54.0
P70712.7X6.0	12.70	6.00	11.00	56.0

Эллиптическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Припаянный стальной хвостовик.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3

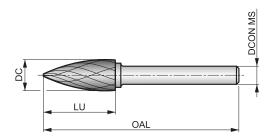

Припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P70912.7X6.0	12.70	6.00	22.00	67.0

Параболическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

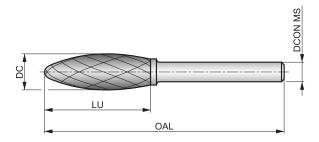

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3

Обозначение	DC	DCON MS	LU	OAL
	(мм)	(MM)	(MM)	(MM)
P7116.0X6.0	6.00	6.00	18.00	50.0
P7118.0X6.0	8.00	6.00	20.00	65.0
P7119.6X6.0	9.60	6.00	19.00	64.0
P71112.7X6.0	12.70	6.00	25.00	70.0

Параболическая заостренная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.



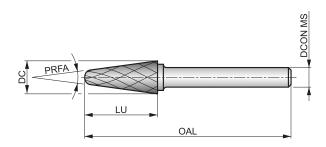
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(мм)
P7136.0X6.0	6.00	6.00	18.00	50.0
P7138.0X6.0	8.00	6.00	19.00	64.0
P7139.6X6.0	9.60	6.00	19.00	64.0
P71312.7X6.0	12.70	6.00	25.00	70.0

Факелоподобная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Припаянный стальной хвостовик.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3

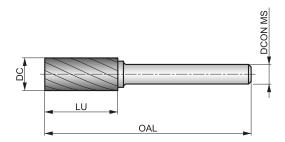

Припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P7158.0X6.0	8.00	6.00	19.00	64.0
P71512.7X6.0	12.70	6.00	32.00	77.0

Коническая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию ST со стружколомающей насечкой для обработки конструкционных сталей. Припаянный стальной хвостовик.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

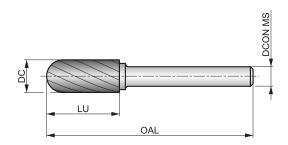

Припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P72110.0X6.0	10.00	6.00	20.00	65.0	14
P7219.6X6.0	9.60	6.00	30.00	76.0	14
P72112.7X6.0	12.70	6.00	32.00	77.0	14

Цилиндрическая борфреза из твердого сплава без торцевой заточки

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

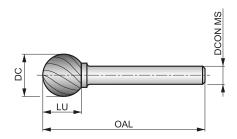

M1.1	M1.2	M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K4.1	K4.2

Обозначение	DC	DCON MS	LU	OAL
	(мм)	(MM)	(MM)	(MM)
P6013.0X3.0	3.00	3.00	14.00	38.0
P6016.3X3.0	6.30	3.00	12.70	45.0
P6016.0X6.0	6.00	6.00	18.00	50.0
P6018.0X6.0	8.00	6.00	19.00	64.0
P6019.6X6.0	9.60	6.00	19.00	64.0
P60112.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

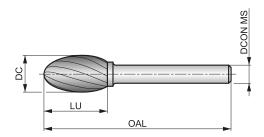

M1.1	M1.2	M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K4.1	K4.2

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P6053.0X3.0	3.00	3.00	14.00	38.0
P6056.3X3.0	6.30	3.00	12.70	45.0
P6056.0X6.0	6.00	6.00	18.00	50.0
P6058.0X6.0	8.00	6.00	19.00	64.0
P6059.6X6.0	9.60	6.00	19.00	64.0
P60512.7X6.0	12.70	6.00	25.00	70.0

Сферическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.


M1.1 M1.2 M2.1 M2.2 M2.3 M3.1 M3.2 M3.3 M4.1 M4.2 K4.1 K4.2

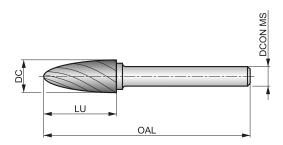
Обозначение	DC	DCON MS	LU	OAL
	(мм)	(MM)	(мм)	(MM)
P6073.0X3.0	3.00	3.00	2.50	38.0
P6076.3X3.0	6.30	3.00	5.00	38.0
P6076.0X6.0	6.00	6.00	4.70	50.0
P6078.0X6.0	8.00	6.00	6.00	52.0
P6079.6X6.0	9.60	6.00	8.00	54.0
P60712.7X6.0	12.70	6.00	11.00	56.0

Эллиптическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Припаянный стальной хвостовик.

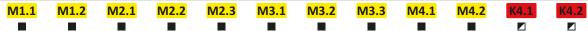
Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M1.1	M1.2	M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K4.1	K4.2

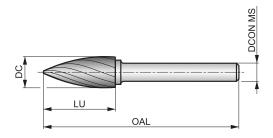

Припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P6098.0X6.0	8.00	6.00	15.00	60.0
P6099.6X6.0	9.60	6.00	16.00	60.0
P60912.7X6.0	12.70	6.00	22.00	67.0

Параболическая борфреза из твердого сплава


Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Цельная твердосплавная конструкция для диаметра до 6 мм включительно; припаянный стальной хвостовик для диаметра > 6 мм.

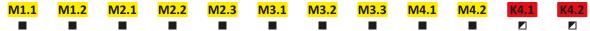
Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.



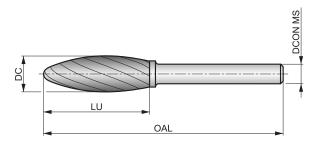
Обозначение	DC	DCON MS	LU	OAL
	(мм)	(MM)	(MM)	(MM)
P6113.0X3.0	3.00	3.00	14.00	38.0
P6116.3X3.0	6.30	3.00	12.70	45.0
P6116.0X6.0	6.00	6.00	18.00	50.0
P6118.0X6.0	8.00	6.00	20.00	65.0
P6119.6X6.0	9.60	6.00	19.00	64.0
P61112.7X6.0	12.70	6.00	25.00	70.0

Параболическая заостренная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.



Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.



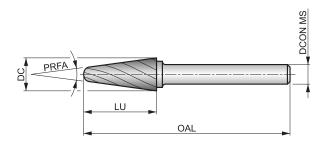
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(мм)	(MM)
P6136.0X6.0	6.00	6.00	18.00	50.0
P6138.0X6.0	8.00	6.00	19.00	64.0
P6139.6X6.0	9.60	6.00	19.00	64.0
P61312.7X6.0	12.70	6.00	25.00	70.0

Факелоподобная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Припаянный стальной хвостовик.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M1.1	M1.2	M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K4.1	K4.2


Припаянный стальной хвостовик DCON MS с допуском h7.

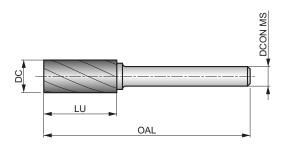
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P6158.0X6.0	8.00	6.00	19.00	64.0
P6159.6X6.0	9.60	6.00	19.00	65.0
P61512.7X6.0	12.70	6.00	32.00	77.0

Коническая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию VA для обработки нержавеющих сталей. Припаянный стальной хвостовик.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M1.1	M1.2	M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K4.1	K4.2

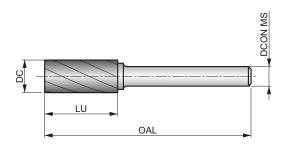

Припаянный стальной хвостовик DCON MS с допуском h7.

Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P6218.0X6.0	8.00	6.00	25.40	70.0	14
P62110.0X6.0	10.00	6.00	20.00	65.0	14
P62112.7X6.0	12.70	6.00	32.00	77.0	14

Цилиндрическая борфреза из твердого сплава без торцевой заточки

Конструкция борфрезы имеет позитивную геометрию AL с широкими канавками для обработки цветных сплавов и полимеров. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

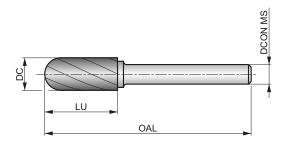

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N4.1	N4.2	N4.3	S1.1

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(мм)	(MM)
P8316.0X6.0	6.00	6.00	18.00	50.0
P8319.6X6.0	9.60	6.00	19.00	64.0
P83112.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава с торцевой заточкой

Конструкция борфрезы имеет позитивную геометрию AL с широкими канавками для обработки цветных сплавов и полимеров. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

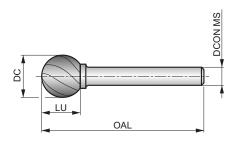

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N4.1	N4.2	N4.3	S1.1

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(мм)	(мм)
P8336.0X6.0	6.00	6.00	18.00	50.0
P8339.6X6.0	9.60	6.00	19.00	64.0
P83312.7X6.0	12.70	6.00	25.00	70.0

Цилиндрическая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет позитивную геометрию АL с широкими канавками для обработки цветных сплавов и полимеров. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

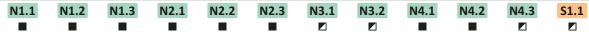
Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.


N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N4.1	N4.2	N4.3	S1.1

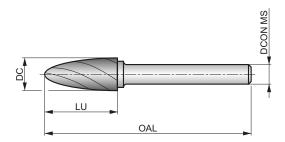
Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(мм)	(MM)
P8356.0X6.0	6.00	6.00	18.00	50.0
P8359.6X6.0	9.60	6.00	19.00	64.0
P83512.7X6.0	12.70	6.00	25.00	70.0

Сферическая борфреза из твердого сплава

Конструкция борфрезы имеет позитивную геометрию AL с широкими канавками для обработки цветных сплавов и полимеров. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.



Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

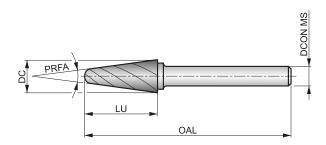


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(мм)
P8376.0X6.0	6.00	6.00	4.70	50.0
P8379.6X6.0	9.60	6.00	8.00	54.0
P83712.7X6.0	12.70	6.00	11.00	56.0

Параболическая борфреза из твердого сплава

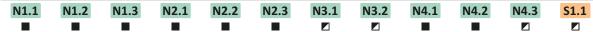
Конструкция борфрезы имеет позитивную геометрию AL с широкими канавками для обработки цветных сплавов и полимеров. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

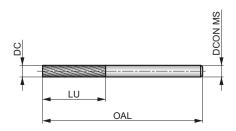

N1.1	N1.2	N1.3	N2.1	N2.2	N2.3	N3.1	N3.2	N4.1	N4.2	N4.3	S1.1

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8416.0X6.0	6.00	6.00	18.00	50.0
P8419.6X6.0	9.60	6.00	19.00	64.0
P84112.7X6.0	12.70	6.00	25.00	70.0

Коническая борфреза из твердого сплава со сферической вершиной


Конструкция борфрезы имеет позитивную геометрию AL с широкими канавками для обработки цветных сплавов и полимеров. Цельная твердосплавная конструкция для диаметра 6 мм; припаянный стальной хвостовик для диаметра > 6 мм.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.


Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(MM)	(MM)	(°)
P8426.0X6.0	6.00	6.00	18.00	50.0	14
P8429.6X6.0	9.60	6.00	30.00	76.0	14
P84212.7X6.0	12.70	6.00	32.00	77.0	14

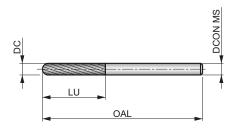
Цилиндрическая борфреза из твердого сплава без торцевой заточки

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

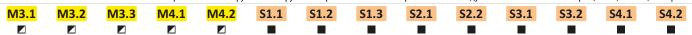
Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M3.1	M3.2	M3.3	M4.1	M4.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2

DCON MS с допуском h6.

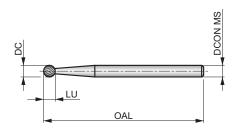

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(мм)	(MM)
P5013.0X3.0	3.00	3.00	12.00	38.0

Цилиндрическая борфреза из твердого сплава со сферической вершиной


Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

DCON MS с допуском h6.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(мм)	(мм)	(MM)
P5053.0X3.0	3.00	3.00	14.00	38.0

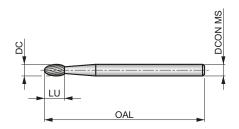
Сферическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

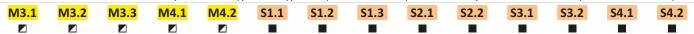
M3.1	M3.2	M3.3	M4.1	M4.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2

DCON MS с допуском h6.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(мм)	(MM)
P5073.0X3.0	3.00	3.00	2.50	38.0

Эллиптическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.



Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

DCON MS с допуском h6.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P5093.0X3.0	3.00	3.00	6.00	38.0

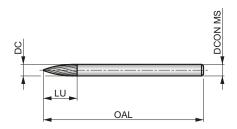
Параболическая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

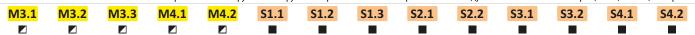
Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M3.1	M3.2	M3.3	M4.1	M4.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2

DCON MS с допуском h6.

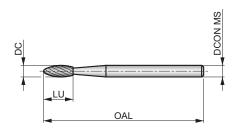

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P5113.0X3.0	3.00	3.00	14.00	38.0

Параболическая заостренная борфреза из твердого сплава


Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

DCON MS с допуском h6.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(мм)
P5133.0X3.0X8.0	3.00	3.00	8.00	38.0
P5133.0X3.0X14.0	3.00	3.00	14.00	38.0

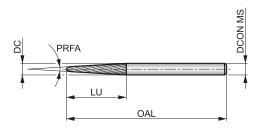
Факелоподобная борфреза из твердого сплава

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M3.1	M3.2	M3.3	M4.1	M4.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2

DCON MS с допуском h6.


Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P5153.0X3.0	3.00	3.00	6.00	38.0

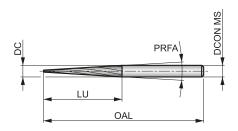
Коническая борфреза из твердого сплава со сферической вершиной

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M3.1	M3.2	M3.3	M4.1	M4.2	S1.1	S1.2	S1.3	S2.1	S2.2	S3.1	S3.2	S4.1	S4.2

DCON MS с допуском h6.

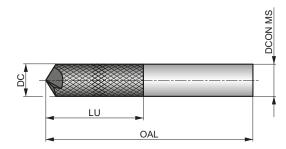

Обозначение	DC	DCON MS	LU	OAL	PRFA
	(мм)	(MM)	(мм)	(MM)	(°)
P5213.0X3.0	3.00	3.00	14.00	38.0	8

Коническая борфреза из твердого сплава

Конструкция борфрезы имеет геометрию АЅ для обработки жаропрочных и титановых сплавов. Цельная твердосплавная конструкция.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

M3.1 M3.2 M3.3 M4.1 M4.2 S1.1 S1.2 S1.3 S2.1 S2.2 S3.1 S3.2 S4.1 S4.2


DCON MS с допуском h6.

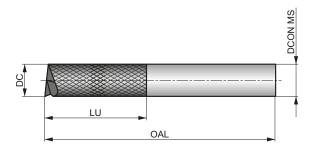
Обозначение	DC	DCON MS	LU	OAL	PRFA
	(MM)	(MM)	(мм)	(MM)	(°)
P5233.0X3.0	3.00	3.00	15.00	38.0	7

Цилиндрическая борфреза из твердого сплава с режущими кромками при вершине 135°

Конструкция борфрезы имеет алмазную насечку для надежной обработки композитных материалов и стеклопластика.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

N4.3


DCON MS с допуском h6.

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8433.0X3.0	3.00	3.00	13.00	45.0
P8436.0X6.0	6.00	6.00	19.00	63.0
P8438.0X8.0	8.00	8.00	25.00	63.0

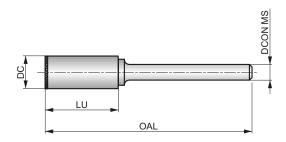
Цилиндрическая борфреза из твердого сплава с режущими кромками при вершине 180°

Конструкция борфрезы имеет алмазную насечку для надежной обработки композитных материалов и стеклопластика.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229.

N4.3

DCON MS с допуском h6.

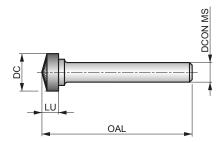

Обозначение	DC	DCON MS	LU	OAL
	(MM)	(MM)	(MM)	(MM)
P8443.0X3.0	3.00	3.00	13.00	45.0
P8446.0X6.0	6.00	6.00	19.00	63.0
P8448.0X8.0	8.00	8.00	25.00	63.0

Борфреза из твердого сплава с плоским торцом для удаления сломанных винтов

Конструкция борфрезы имеет плоскую торцевую насечку для выравнивания поверхности среза сломанных винтов или шпилек в резьбовом отверстии. Борфреза не повреждает резьбу и позволяет безопасно выполнять ремонтные работы. Первым этапом используется борфреза Р100, вторым этапом борфреза Р101.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты врашения (об/мин) на стр. 229. Использование инструмента на стр. 216.

M2.2	M2.3	M3.1	M3.2	M3.3									
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
примене	применение инструмента по группам обрабатываемых материалов, гекомендуемые значения частогы вращения (об/мин) на стр. 229. использование инструмента на стр. 210.												


Обозначение	DC	DCON MS	LU	OAL	
	(MM)	(MM)	(MM)	(мм)	
P1004.9	4.90	6.00	20.00	50.0	1/4-20; 24; 28; M6
P1006.4	6.40	6.00	5.00	50.0	5/16-18; 24; 32; M8
P1007.8	7.80	6.00	19.00	65.0	3/8-16; 24; M10
P1009.3	9.30	6.00	19.00	65.0	7/16-14; 20; M12
P10010.7	10.70	6.00	25.00	70.0	1/2-13; 20; M14

Борфреза из твердого сплава с коническим торцом для удаления сломанных винтов

Конструкция борфрезы имеет коническую торцевую насечку для создания направляющего углубления с целью последующего высверливания сломанных винтов и шпилек в резьбовом отверстии. Борфреза не повреждает резьбу и позволяет безопасно выполнять ремонтные работы. Первым этапом используется борфреза P100, вторым этапом борфреза P101.

Применение инструмента по группам обрабатываемых материалов. Рекомендуемые значения частоты вращения (об/мин) на стр. 229. Использование инструмента на стр. 216.

r	1.7					11/			, , ,			1.7	
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	M1.2	M2.1
M2.2	M2.3	M3.1	M3.2	M3.3									

Обозначение	DC	DCON MS	LU	OAL	
	(MM)	(MM)	(мм)	(MM)	
P1014.9	4.90	6.00	20.00	50.0	1/4-20; 24; 28; M6
P1016.4	6.40	6.00	5.00	50.0	5/16-18; 24; 32; M8
P1017.8	7.80	6.00	5.00	50.0	3/8-16; 24; M10
P1019.3	9.30	6.00	5.00	50.0	7/16-14; 20; M12
P10110.7	10.70	6.00	5.00	50.0	1/2-13; 20; M14

Набор борфрез

Набор борфрез из твердого сплава различных форм и размеров.

А – серия, В – количество, С – диаметр.

л серил, в количество	, с диамстр.			
Обозначение	Nr.	А	В	C
P88001	Nr01	P803 + P805 + P807 + P809 + P813	5	P803 9.6 × 6.0; P805 9.6 × 6.0; P807 9.6 × 6.0; P809 9.6 × 6.0; P813 9.6 × 6.0
P88002	Nr02	P803C + P805C + P807C + P811C + P813C	5	P803C 9.6 \times 6.0; P805C 9.6 \times 6.0; P807C 9.6 \times 6.0; P811C 9.6 \times 6.0; P813C 9.6 \times 6.0
P88003	Nr03	P601 + P605 + P607 + P611 + P621	5	P601 9.6 \times 6.0; P605 9.6 \times 6.0; P607 9.6 \times 6.0; P611 9.6 \times 6.0; P621 10.0 \times 6.0
P88004	Nr04	P703 + P705 + P707 + P711 + P721	5	P703 9.6 \times 6.0; P705 9.6 \times 6.0; P707 9.6 \times 6.0; P711 9.6 \times 6.0; P721 10.0 \times 6.0
P88006	Nr06	P501 + P505 + P507 + P509 + P511 + P513 + P515 + P521 + P523	10	P501 3.0 × 3.0; P505 3.0 × 3.0; P507 3.0 × 3.0; P509 3.0 × 3.0; P511 3.0 × 3.0; P513 3.0 × 3.0 × 8.0; P513 3.0 × 3.0 × 14.0; P515 3.0 × 3.0; P521 3.0 × 3.0; P523 3.0 × 3.0

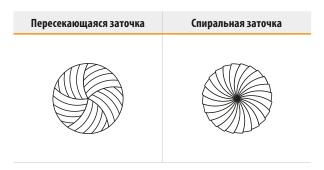
P890

Диспенсер с борфрезами Диспенсер содержит 40 борфрез P8xx из твердого сплава с геометрией DC для обработки большинства материалов заготовок.

А – серия, В – количество, С – диаметр.

Обозначение	Nr.	А	В	C
P89001	Nr01	P803 + P805 + P811 + P813 + P821	40	P803 $(6.0 \times 6.0; 8.0 \times 6.0; 9.6 \times 6.0; 12.7 \times 6.0) \times 2$ P805 $(6.0 \times 6.0; 8.0 \times 6.0; 9.6 \times 6.0; 12.7 \times 6.0) \times 2$ P811 $(6.0 \times 6.0; 8.0 \times 6.0; 9.6 \times 6.0; 12.7 \times 6.0) \times 2$ P813 $(6.0 \times 6.0; 8.0 \times 6.0; 9.6 \times 6.0; 12.7 \times 6.0) \times 2$ P821 $(6.0 \times 6.0; 8.0 \times 6.0; 9.6 \times 6.0; 12.7 \times 6.0) \times 2$

БОРФРЕЗЫ – ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ


Общие сведения о твердосплавных борфрезах

Твердосплавные борфрезы на основе карбида вольфрама широко используются для подготовки и отделки компонентов из широкого спектра материалов.

Обычно они используются в ручном режиме в пневматических бормашинах.

Особенности и преимущества

- 1. Упрочненные и закаленные стальные хвостовики увеличивают жесткость и уменьшают риск деформации и вибрации.
- 2. Точно выполненные хвостовики способствуют оптимальному закреплению и уменьшают вероятность вытягивания.
- 3. Специальное напайное соединение сохраняет работоспособность инструмента в условиях высоких температур, давления и удара.
- 4. Универсальная геометрия с двойной насечкой подходит для обработки большинства материалов.
- 5. Также возможно использование специальных геометрий для обработки конструкционных сталей (ST), нержавеющих сталей (VA), цветных сплавов (AL), жаропрочных сплавов (AS) и композитных материалов (GRP).
- 6. Возможно использования борфрез с покрытием TiAIN, которое позволяет увеличить стойкость инструмента при обработке абразивных материалов.
- 7. В борфрезах со сферической вершиной применяется пересекающаяся заточка, которая позволяет сохранить геометрию режущих зубьев и пространство для стружки на оси вращения борфрезы, что увеличивает область резания и уменьшает вероятность забивания канавок стружкой.

Безопасность прежде всего

- 1. Высокоскоростной вращающийся инструмент представляет большую опасность при использовании ненадлежащим образом.
- 2. При смене борфрезы всегда следует отключать бормашину от линии подачи воздуха.
- 3. Состояние бормашины следует регулярно проверять. Рекомендуется использовать устройства с низким уровнем вибрации.
- 4. Необходимо всегда использовать соответствующее защитное оборудование. Следует убедиться, что работающий поблизости персонал использует надлежащие средства защиты.

Средства индивидуальной защиты нужно использовать всегда!

БОРФРЕЗЫ – ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Рекомендации

- Всегда следует использовать подходящую бормашину с соответствующей частотой вращения.
- Важное значение имеет регулярное техническое обслуживание бормашин. Необходимо следить за уровнем износа и смазки.
- При замене борфрезы всегда следует очищать зажимную гайку, цангу и внутренний конус бормашины.
- Следует избегать механического воздействия на борфрезы и сильных ударов.
- Следует избегать резкой тепловой нагрузки на борфрезу, не допуская ее перегрева.
- Следует избегать ввода борфрезы слишком глубоко в материал заготовки, не допускается заклинивание борфрезы в углах и пазах.

Устранение неисправностей при использовании борфрез

Проблема	Причина
	Использование борфрезы с малой скоростью резания, что может привести к рывкам при работе борфрезы.
Скалывание зубьев борфрезы	Биение (износ шпинделя, патрона или подшипников).
	Погружение борфрезы в материал и заклинивание.
Забивание канавок борфрезы	Слишком большая длина канавки или общая длина.
заоивание канавок оорфрезы	Неверный выбор геометрии для материала заготовки.
Преждевременный износ	Использование борфрезы с большой скоростью резания без учета размера борфрезы и материала заготовки.
преждевременный износ	Биение (износ шпинделя, патрона или подшипников).
0	Использование борфрезы с большой скоростью резания, что вызывает перегрев.
Отрыв головки от хвостовика	Использование в течение длительного периода времени, что вызывает перегрев.

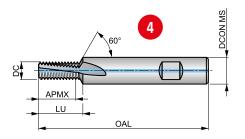
DORMER PRAMET

MATEPIAM

В нашем приложении Calculator можно рассчитать параметры для любого обрабатываемого материала: от мягких цветных сплавов до труднообрабатываемых жаропрочных сплавов или закаленных сталей. Simply Reliable.

РЕЗЬБОФРЕЗЫ

		ФРЕЗЕРОВАНИЕ – СОДЕРЖАНИЕ									
<u></u> 6		ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG ISO 13399									
12	blE	инструкция									
<u> </u>	НОЛИТН ФРЕЗЫ	ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА									
117	МОНОЛИТНЫЕ ФРЕЗЫ	ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ									
201	M	ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ									
212		БОРФРЕЗЫ									
<u></u> 292		РЕЗЬБОФРЕЗЫ									
314		ИНСТРУКЦИЯ									
□ 326	M	НАВИГАТОР									
□ 347	ІАСТИНАМИ				ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ						
407											
477	ПП	длиннокромочные фрезы									
□ 506	HbIM	дисковые фрезы									
<u></u> 519	MEHI	копировальные фрезы									
[] 611	10 C	высокоподачные фрезы									
☐ 643	351 (ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ									
<u></u> 665	ФРЕЗЫ	ДРУГИЕ ПЛАСТИНЫ									
<u></u> 689		ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ									


DORMER

Резьбофреза из твердого сплава для обработки резьбы М

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°, внутренний подвод СОЖ, зенковку 60° для обработки фаски. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 172 B	■ 193 B	■ 200 B	■ 148 B	■ 130 B	■115 B		107 B	■90 B	■79 B	■ 67 B	Z 55 B	■62 B	■ 52 B
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 55 B	■ 45 B	■ 38 B	■ 47 A	■ 40 A	■ 36 A	■30 A	Z 26 A	■ 130 B	■96 B	■72 B	■ 123 B	■ 100 B	■ 80 B
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 109 B	■ 83 B	■ 67 B	■ 101 A	■ 76 A	■ 56 A	■48 A	∠ 140 A	■114B	■ 86 B	■ 66 B	■ 400 C	■300 C	■ 200 C
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 262 C	■235 C	■ 170 C	■610 C	■360 C	■ 180 C	■ 290 C	■ 145 C	■ 65 C	■ 40 A	■ 40 A	∠ 30 A	■33 A	Z 25 A
S3.1	S3.2	S4.1	S4.2	H1.1									
■ 25 A	Z 21 A	■ 20 A	Z 16 A	∠ 60 A									

Для внутренней резьбы.

Обозначение	TDZ	TP	DC	APMX	OAL	DCON MS	NOF	LU
		(мм)	(MM)	(MM)	(MM)	(MM)		(MM)
J2056.5X1.25	M8	1.25	6.50	17.50	72.0	10.00	3	19.10
J20 7 1.50	M10	1.50	8.20	21.00	83.0	12.00	3	22.80
J20 1.75	M12	1.75	9.90	26.25	83.0	14.00	4	28.20
J20511.6X2.0	M14	2.00	11.60	30.00	92.0	16.00	4	32.20

Поз. Описание Поз. Описание Серия Особенности Описание Область применения, рекомендуемая скорость резания и индекс подачи Изображение Обозначение Схематический чертеж Размеры

РЕЗЬБОФРЕЗЫ – ПИКТОГРАММЫ Применение Основное применение Возможное применение Стандарт резьбы Трубная цилиндрическая резьба 55°, Дюймовая цилиндрическая резьба 60° UNC MF Метрическая резьба 60° с малым шагом Британский стандарт трубной резьбы (BSP) с крупным шагом Американская национальная трубная Дюймовая цилиндрическая резьба 60° UNF NPT Метрическая резьба 60° M коническая резьба 60° с малым шагом Стандарт инструмента Глубина обработки по отношению к диаметру 2×D Dormer Стандарт **1.5**×**D** 1.5×D по отношению к диаметру 2×D по отношению к диаметру Материал инструмента Геометрия канавки нм Твердый сплав Спиральные канавки Угол подъема стружечной канавки λ **27°** Спираль с углом 27° Спираль с углом 10° 10° Направление обработки (R По часовой стрелке Покрытие Хвостовик Покрытие Alcrona Pro (AlCrN), специальный DIN 6535 НА цилиндрический хвостовик DIN 6535 HB Weldon хвостовик оптимизированный процесс DIN 6535HA DIN 6535HB

Внутренний подвод СОЖ

С осевым отверстием

РЕЗЬБОФРЕЗЫ – МАТЕРИАЛ ИНСТРУМЕНТА И ПОКРЫТИЕ

Материал инструмента

Твердый сплав

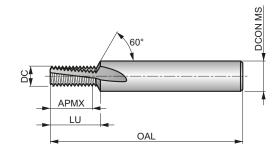
нм

Композитный материал, состоящий из твердых карбидов и металлической связки, полученный методом порошковой металлургии. Основу составляют карбиды вольфрама (WC), которые определяют твердость материала. Дополнительные кубические карбиды тантала (TaC), титана (TiC) и ниобия (NbC) дополняют карбиды вольфрама (WC) для получения нужных эксплуатационных свойств. Кобальт (Co) выступает в роли связки для создания прочности твердого сплава.

Твердый сплав характеризуется высокой прочностью на сжатие, твердостью и износостойкостью при ограниченной прочности на растяжение и изгиб. Твердый сплав используется в метчиках, развертках, фрезах и резьбофрезах.

Покрытие

Покрытие Alcrona (Alcrona Pro)


Покрытие Alcrona (AlCrN) обычно используется для фрез и имеет два уникальных свойства: высокая красностойкость и сопротивление окислению. При использовании режущего инструмента в условиях высоких термических и механических нагрузок такое покрытие позволяет получить исключительную износостойкость.

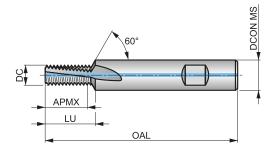
Стандарт резьбы Стандарт инструмента Глубина обработки Материал инструмента	DORMER 2×D	DORMER 2×D	M DORMER 2×D	M DORMER 2×D HM	MF DORMER 1.5×D HM	MF DORMER 1.5×D HM	UNC DORMER 2×D HM	UNF DORMER 2×D HM	G DORMER 1.5×D HM	NPT DORMER		
Геометрия канавки												
Угол подъема канавки	λ 10°	λ 10°	λ 27°	λ 27°	λ 10°	λ 10°	λ 10°	λ 10°	λ 10°	λ 10°		
Направление обработки	R	R	R	R	R	R	R	R	R	R		
Покрытие												
Хвостовик	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro	Alcrona Pro		
Внутренний подвод СОЖ	DIN 6535HA	DIN 6535HB	DIN 6535HA	DIN 6535HA	DIN 6535HA	DIN 6535HB	DIN 6535HB	DIN 6535HB	DIN 6535HA	DIN 6535HB		
Серия	J200	J205	J210	J215	J220	J225	J235	J245	J280	J260		
серии	J200	1203	J2 10	3213	7220	JEEJ		7243	7200	3200		
	M4 – M16	M8 – M16	M6 – M16	M6 – M16	M6 – M24	M10 – M18	1/4 – 3/4	1/4 – 3/4	1/8 – 3"	1/8 – 2′′		
D1	<u>298</u>	<u>299</u>	<u> 300</u>	<u> 301</u>	<u> 302</u>	303	304	305	306	<u></u> 307		
P1 P2 P3 P4	298											
P P2 P3 P4 M1 M2 M3 M4	298	299	300	301	302	303	304	305	306	307		
P P2 P3 P4 M1 M2 M3	298	299	300	301	302	303	304	305	306	307		
P P2 P3 P4 M1 M2 M3 M4 K1 K2 K K3 K4 K5 N1 N2 N N3 N4	298	299	300	301	□ 302 □ 302 □ 100 □ 100	303	304	305	306	307		
P P2 P3 P4 M1 M2 M3 M4 K1 K2 K K3 K4 K5 N1 N2 N N3 N4	298	299	300	301	1 302	303	304	305	306	307		

Резьбофреза из твердого сплава для обработки резьбы М

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°, зенковку 60° для обработки фаски. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

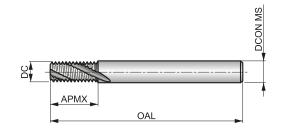
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 172 B	■ 193 B	■ 200 B	■ 148 B	■130 B	■115 B	■133 B	■ 107 B	■ 90 B	■79 B	■ 67 B	 55 B	■ 62 B	■52 B
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■55 B	■ 45 B	Z 38 B	■ 47 A	■ 40 A	Z 36 A	■30 A	Z 26 A	■ 130 B	■96 B	■72 B	■ 123 B	■ 100 B	■80 B
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■109 B	■ 83 B	■ 67 B	■ 101 A	■76 A	■56 A	■ 48 A	∠ 40 A	■ 114 B	■86 B	■ 66 B	■400 C	■300 C	■ 200 C
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 262 C	■ 235 C	■ 170 C	■610 C	■360 C	■ 180 C	■ 290 C	■ 145 C	■ 65 C	■ 40 A	∠ 40 A	Z 30 A	Z 33 A	Z 25 A
S3.1	S3.2	S4.1	S4.2	H1.1									
≥ 25 A	Z 21 A	Z 20 A	∠ 16 A	∠ 60 A									


Обозначение	TDZ	TP	DC	APMX	OAL	DCON MS	NOF	LU
		(MM)	(MM)	(MM)	(мм)	(MM)		(MM)
J2003.2X.7	M4	0.70	3.20	8.40	57.0	6.00	3	9.50
J2004.1X.8	M5	0.80	4.10	11.20	57.0	6.00	3	12.10
J2004.8X1.0	M6	1.00	4.80	13.00	63.0	8.00	3	14.40
J2006.5X1.25	M8	1.25	6.50	17.50	72.0	10.00	3	19.10
J2008.2X1.5	M10	1.50	8.20	21.00	83.0	12.00	3	22.80
J2009.9X1.75	M12	1.75	9.90	26.25	83.0	14.00	4	28.20
J20011.6X2.0	M14	2.00	11.60	30.00	92.0	16.00	4	32.20
J20013.6X2.0	M16	2.00	13.60	34.00	92.0	18.00	4	36.20

Резьбофреза из твердого сплава для обработки резьбы М

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°, внутренний подвод СОЖ, зенковку 60° для обработки фаски. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.


P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 172 B	■ 193 B	■200 B	■148 B	■ 130 B	■ 115 B	■ 133 B	■ 107 B	■ 90 B	■79 B	■67 B	 55 B	■ 62 B	■ 52 B
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 55 B	■ 45 B	■38 B	■47 A	■40 A	■36 A	■30 A	Z 26 A	■ 130 B	■96 B	■72 B	■123 B	■ 100 B	■ 80 B
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■109 B	■83 B	■ 67 B	■ 101 A	■76 A	■56 A	■ 48 A	∠ 40 A	■ 114 B	■86 B	■66 B	■ 400 C	■ 300 C	■ 200 C
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 262 C	■ 235 C	■ 170 C	■ 610 C	■360 C	■ 180 C	■ 290 C	■ 145 C	■ 65 C	■ 40 A	■ 40 A	Z 30 A	■33 A	≥ 25 A
S3.1	S3.2	S4.1	S4.2	H1.1									
■ 25 A	≥ 21 A	■ 20 A	∠ 16 A	∠ 60 A									

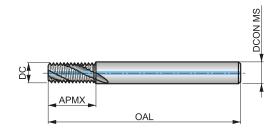
Обозначение	TDZ	TP	DC (MM)	APMX	OAL (mm)	DCON MS	NOF	LU (mm)
J2056.5X1.25	M8	1.25	6.50	17.50	72.0	10.00	3	19.10
J2058.2X1.50	M10	1.50	8.20	21.00	83.0	12.00	3	22.80
J2059.9X1.75	M12	1.75	9.90	26.25	83.0	14.00	4	28.20
J20511.6X2.0	M14	2.00	11.60	30.00	92.0	16.00	4	32.20
J20513.6X2.0	M16	2.00	13.60	34.00	92.0	18.00	4	36.20

Резьбофреза из твердого сплава для обработки резьбы М

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 27°. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

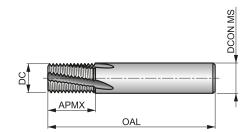
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 181 B	■ 203 B	■ 210 B	■ 156 B	■137 B	■121 B	■140 B	■ 112 B	■95 B	■83 B	■70 B	≥ 58 B	■65 B	■55 B
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■58 B	■ 47 B	∠ 40 B	■ 50 A	■ 42 A	≥ 38 A	■32 A	Z 27 A	■ 137 B	■ 101 B	■76 B	■ 129 B	■ 105 B	■84 B
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 115 B	■ 87 B	■71 B	■ 106 A	■80 A	■59 A	■51 A	∠ 42 A	■ 120 B	■ 90 B	■70 B	■420 C	■315 C	■ 210 C
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 275 C	■ 247 C	■ 179 C	■ 640 C	■ 378 C	■ 189 C	■ 305 C	■ 153 C	■ 69 C	■ 42 A	∠ 42 A	Z 32 A	Z 35 A	Z 26 A
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
Z 26 A	Z 22 A	Z 21 A	∠ 17 A	■ 63 A	∠ 45 A								


Обозначение	TDZ	TP	DC	APMX	OAL	DCON MS	NOF
		(MM)	(MM)	(MM)	(MM)	(MM)	
J2104.5X1.0	M6	1.00	4.50	13.00	57.0	6.00	3
J2106.0X1.25	M8	1.25	6.00	17.50	65.0	6.00	3
J2107.5X1.5	M10	1.50	7.50	21.00	72.0	8.00	3
J2109.5X1.75	M12	1.75	9.50	26.25	80.0	10.00	3
J21010.0X2.0	M14	2.00	10.00	30.00	83.0	10.00	4
J21012.0X2.0	M16	2.00	12.00	34.00	92.0	12.00	4

Резьбофреза из твердого сплава для обработки резьбы М

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 27°, внутренний подвод СОЖ. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.


	- 17				. ,								
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■181 B	■ 203 B	■210 B	■156 B	■ 137 B	■ 121 B	■ 140 B	■ 112 B	■ 95 B	■83 B	■70 B	■58 B	■ 65 B	■ 55 B
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 58 B	■ 47 B	■ 40 B	■50 A	■42 A	■38 A	■32 A	Z 27 A	■ 137 B	■ 101 B	■76 B	■129 B	■105 B	■ 84 B
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■115 B	■ 87 B	■71 B	■ 106 A	■80 A	■ 59 A	■51 A	■42 A	■ 120 B	■ 90 B	■70 B	■ 420 C	■ 315 C	■ 210 C
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 275 C	■ 247 C	■ 179 C	■ 640 C	■378 C	■189 C	■ 305 C	■ 153 C	■ 69 C	■ 42 A	■ 42 A	Z 32 A	■35 A	Z 26 A
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
■ 26 A	Z 22 A	■ 21 A	■ 17 A	■63 A	∠ 45 A								

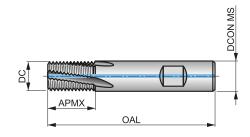
Обозначение	TDZ	TP	DC	APMX	OAL	DCON MS	NOF
		(MM)	(MM)	(MM)	(мм)	(MM)	
J2154.5X1.0	M6	1.00	4.50	13.00	57.0	6.00	3
J2156.0X1.25	M8	1.25	6.00	17.50	65.0	6.00	3
J2157.5X1.5	M10	1.50	7.50	21.00	72.0	8.00	3
J2159.5X1.75	M12	1.75	9.50	26.25	80.0	10.00	3
J21510.0X2.0	M14	2.00	10.00	30.00	83.0	10.00	4
J21512.0X2.0	M16	2.00	12.00	34.00	92.0	12.00	4

Резьбофреза из твердого сплава для обработки резьбы МF

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 190 E	■212 E	■242 E	■ 163 E	■ 143 E	■ 127 E	■ 146 E	■ 118 E	■ 99 E	■87 E	■74 E	■ 61 E	■ 69 E	■ 58 E
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■61 E	■ 50 E	∠ 42 E	■ 52 D	■ 44 D	■ 40 D	■33 D	Z 29 D	■ 143 E	■ 106 E	■80 E	■ 136 E	■ 110 E	■ 88 E
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 120 E	■91 E	■74 E	■ 111 D	■84 D	■62 D	■53 D	■ 44 D	■ 126 E	■95 E	■73 E	■ 440 F	■330 F	■ 220 F
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 288 F	■ 259 F	■187 F	■671 F	■396 F	■ 198 F	■ 319 F	■ 160 F	■72 F	■44 D	∠ 44 D	Z 33 D	Z 36 D	Z 28 D
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
Z 28 D	Z 23 D	Z 22 D	■ 18 D	■66 D	■ 48 D								

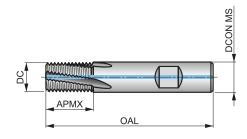

Обозначение	TDZ	TP	DC	APMX	OAL	DCON MS	NOF
		(MM)	(MM)	(MM)	(MM)	(MM)	
J2204.8X.5	M6	0.50	4.80	10.00	57.0	6.00	3
J2206.0X.75	M8	0.75	6.00	12.00	57.0	6.00	3
J2206.0X1.0	M8	1.00	6.00	12.00	57.0	6.00	3
J2208.0X1.0	M10	1.00	8.00	16.00	63.0	8.00	4
J22010.0X1.0	M12	1.00	10.00	20.00	72.0	10.00	4
J22010.0X1.5	M12	1.50	10.00	20.00	72.0	10.00	4
J22012.0X1.0	M14	1.00	12.00	22.00	83.0	12.00	4
J22012.0X1.5	M14	1.50	12.00	22.00	83.0	12.00	4
J22014.0X1.0	M16	1.00	14.00	26.00	83.0	14.00	5
J22014.0X1.5	M16	1.50	14.00	26.00	83.0	14.00	5
J22016.0X2.0	M20	2.00	16.00	30.00	92.0	16.00	5
J22016.0X2.5	M20	2.50	16.00	42.50	105.0	16.00	5
J22019.0X3.0	M24	3.00	19.00	50.00	125.0	20.00	5
J22020.0X2.0	M24	2.00	20.00	35.00	104.0	20.00	5

Резьбофреза из твердого сплава для обработки резьбы МF

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°, внутренний подвод СОЖ. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■190 E	■ 212 E	■ 242 E	■ 163 E	■ 143 E	■ 127 E	■ 146 E	■118 E	■99 E	■ 87 E	■ 74 E	■61 E	■ 69 E	■ 58 E
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■61 E	■ 50 E	■42 E	■ 52 D	■ 44 D	■40 D	■33 D	Z 29 D	■ 143 E	■ 106 E	■ 80 E	■136 E	■110 E	■88 E
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■120 E	■91 E	■74 E	■111 D	■84 D	■62 D	■53 D	■44 D	■ 126 E	■ 95 E	■ 73 E	■ 440 F	■ 330 F	■220 F
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■288 F	■259 F	■ 187 F	■ 671 F	■ 396 F	■ 198 F	■319 F	■ 160 F	■72 F	■ 44 D	■ 44 D	Z 33 D	■36 D	Z 28 D
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
■ 28 D	Z 23 D	■ 22 D	■ 18 D	■66 D	■ 48 D								

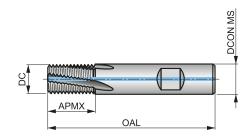

Обозначение	TDZ	TP	DC	APMX	OAL	DCON MS	NOF
		(MM)	(MM)	(мм)	(MM)	(мм)	
J2258.0X1.0	M10	1.00	8.00	16.00	63.0	8.00	4
J22510.0X1.0	M12	1.00	10.00	20.00	72.0	10.00	4
J22510.0X1.5	M12	1.50	10.00	20.00	72.0	10.00	4
J22512.0X1.0	M14	1.00	12.00	22.00	83.0	12.00	4
J22512.0X1.5	M14	1.50	12.00	22.00	83.0	12.00	4
J22514.0X1.0	M16	1.00	14.00	26.00	83.0	14.00	5
J22514.0X1.5	M16	1.50	14.00	26.00	83.0	14.00	5
J22516.0X1.5	M18	1.50	16.00	30.00	92.0	16.00	5

Резьбофреза из твердого сплава для обработки резьбы UNC

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°, внутренний подвод СОЖ. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

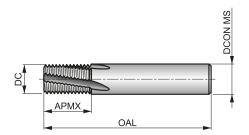
	- ''				. ,				- 11 -				
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 181 H	■ 203 H	■ 210 H	■ 156 H	■ 137 H	■ 121 H	■ 140 H	■112 H	■ 95 H	■ 83 H	■ 70 H	■ 58 H	■ 65 H	■ 55 H
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■ 58 H	■47 H	■40 H	■ 50 G	■ 42 G	■ 38 G	■32 G	Z 27 G	■137 H	■101 H	■76 H	■129 H	■ 105 H	■ 84 H
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 115 H	■87 H	■71 H	■ 106 G	■ 80 G	■ 59 G	■51 G	■ 42 G	■120 H	■ 90 H	■ 70 H	■ 420 I	■315 I	■ 210 I
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■275 I	■ 247 I	■ 179 I	■ 640 I	■ 378 I	■ 189 I	■305 I	■ 153 I	■ 691	■ 42 G	■ 42 G	Z 32 G	■ 35 G	Z 26 G
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
■ 26 G	Z 22 G	■21 G	∠ 17 G	■ 63 G	∠ 45 G								


Обозначение	TDZ	TPI	DC	APMX	OAL	DCON MS	NOF
			(MM)	(MM)	(мм)	(MM)	
J2354.8-20	1/4	20	4.80	14.00	57.0	6.00	3
J2355.5-18	5/16	18	5.50	14.00	57.0	6.00	3
J2357.5-16	3/8	16	7.50	19.00	63.0	8.00	4
J2358.0-14	7/16	14	8.00	19.00	63.0	8.00	4
J23510.0-13	1/2	13	10.00	22.00	72.0	10.00	4
J23510.0-12	9/16	12	10.00	22.00	72.0	10.00	4
J23512.0-11	5/8	11	12.00	26.00	83.0	12.00	4
J23514.0-10	3/4	10	14.00	32.00	83.0	14.00	5

Резьбофреза из твердого сплава для обработки резьбы UNF

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°, внутренний подвод СОЖ. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.


	- ''	•			, ,								· ·
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 181 K	■ 203 K	■ 210 K	■ 156 K	■137 K	■121 K	■ 140 K	■ 112 K	■95 K	■83 K	■ 70 K	■ 58 K	■65 K	■55 K
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■58 K	■ 47 K	■ 40 K	■50 J	■ 42 J	■38 J	■32 J	Z 27 J	■ 137 K	■ 101 K	■76 K	■ 129 K	■ 105 K	■84 K
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■ 115 K	■ 87 K	■ 71 K	■ 106 J	■80 J	■59 J	■51 J	■ 42 J	■ 120 K	■90 K	■ 70 K	■ 420 L	■315 L	■ 210 L
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 275 L	■ 247 L	■179 L	■ 640 L	■378 L	■189 L	■305 L	■ 153 L	■69 L	■42 J	■ 42 J	Z 32 J	■ 35 J	Z 26 J
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
■26 J	Z 22 J	■21 J	■ 17 J	■63 J	∠ 45 J								

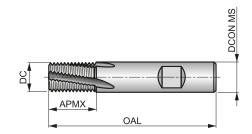
Обозначение	TDZ	TPI	DC	APMX	OAL	DCON MS	NOF
			(MM)	(MM)	(MM)	(MM)	
J2454.8-28	1/4	28	4.80	14.00	57.0	6.00	3
J2456.0-24	5/16, 3/8	24	6.00	14.00	57.0	6.00	3
J2458.0-20	7/16, 1/2	20	8.00	19.00	63.0	8.00	4
J24510.0-18	9/16, 5/8	18	10.00	22.00	72.0	10.00	4
J24514.0-16	3/4	16	14.00	32.00	83.0	14.00	5

Резьбофреза из твердого сплава для обработки резьбы G (BSP)

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях, а также наружной резьбы. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.

Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

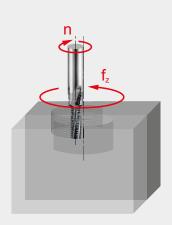
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 190 N	■ 212 N	■ 242 N	■ 163 N	■ 143 N	■ 127 N	■ 146 N	■118 N	■ 99 N	■87 N	■74 N	■ 61 N	■ 69 N	■ 58 N
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■61 N	■50 N	■ 42 N	■52 M	■ 44 M	■ 40 M	■33 M	≥ 29 M	■143 N	■ 106 N	■80 N	■136 N	■ 110 N	■ 88 N
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
120 N	■91 N	■74 N	111 M	■ 84 M	■ 62 M	■53 M	■ 44 M	■ 126 N	■ 95 N	■76 N	440 0	■3300	220 0
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■288 0	2590	187 0	■ 671 0	■3960	198 0	■ 319 0	1600	1 72 0	■ 44 M	■ 44 M	≥ 33 M	■36 M	Z 28 M
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
■ 28 M	■ 123 M	■ 22 M	■ 118 M	■66 M	■ 48 M								


Для внутренней и наружной резьбы.

Обозначение	TDZ	TPI	DC	APMX	OAL	DCON MS	NOF
			(MM)	(MM)	(MM)	(MM)	
J2806.0-28	1/8	28	6.00	15.00	57.0	6.00	3
J28010.0-19	1/4	19	10.00	20.00	72.0	10.00	4
J28014.0-19	3/8	19	14.00	26.00	83.0	14.00	5
J28016.0-14	1/2, 5/8	14	16.00	30.00	92.0	16.00	5
J28020.0-14	5/8, 3/4, 7/8	14	20.00	35.00	104.0	20.00	5
J28025.0-11	1", 3"	11	25.00	45.00	121.0	25.00	6

Резьбофреза из твердого сплава для обработки резьбы NPT

Универсальная высокопроизводительная резьбофреза имеет угол наклона спирали 10°. Подходит для фрезерования левой и правой резьбы в сквозных или глухих отверстиях. Покрытие Alcrona Pro повышает стойкость и производительность при обработке большинства материалов.



Применение инструмента, начальные значения скорости резания (м/мин) и индекс подачи. Подача и поправочные коэффициенты определяются по таблицам, начиная с стр. 308.

P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3	M1.1	M1.2
■ 190 R	■ 212 R	■ 242 R	■163 R	■143 R	■ 127 R	■ 146 R	■ 118 R	■ 99 R	■87 R	■74 R	■61 R	■69 R	■ 58 R
M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2	K1.1	K1.2	K1.3	K2.1	K2.2	K2.3
■61 R	■ 50 R	■ 42 R	■52 Q	■ 44 Q	■40 Q	■33 Q	Z 29 Q	■ 143 R	■ 106 R	■ 80 R	■ 136 R	■110 R	■ 88 R
K3.1	K3.2	K3.3	K4.1	K4.2	K4.3	K4.4	K4.5	K5.1	K5.2	K5.3	N1.1	N1.2	N1.3
■120 R	■ 91 R	■74 R	■111 Q	■84 Q	■62 Q	■53 Q	■44 Q	■ 126 R	■95 R	■73 R	■ 440 S	■330 S	220 S
N2.1	N2.2	N2.3	N3.1	N3.2	N3.3	N4.1	N4.2	N4.3	S1.1	S1.2	S1.3	S2.1	S2.2
■ 288 S	■ 259 S	■ 187 S	■ 671 S	■ 396 S	■ 198 S	■319 S	■ 160 S	■ 72 S	■ 44 Q	■ 44 Q	Z 33 Q	■36 Q	≥ 28 Q
S3.1	S3.2	S4.1	S4.2	H1.1	H3.1								
■ 28 ∩	Z123.0	22.0	118.0	66.0	1 480								

Обозначение	TDZ	TPI	DC (MM)	APMX	OAL (mm)	DCON MS	NOF
J2607.9-27	1/8	27	7.90	11.50	58.0	8.00	3
J2609.9-18	1/4, 3/8	18	9.90	15.92	66.0	10.00	3
J26015.9-14	1/2, 3/4	14	15.90	20.46	82.0	16.00	4
J26019.9-11.5	1", 2"	11.5	19.90	27.12	92.0	20.00	5

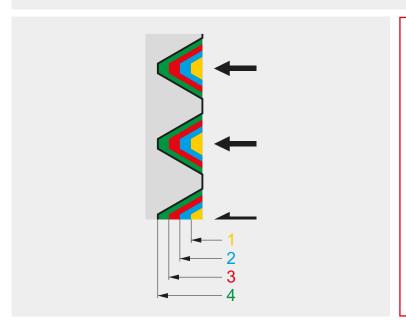
РЕЗЬБОФРЕЗЫ – ПОДАЧА НА ЗУБ

Подача на зуб фрезы f_z , мм/зуб.

Указанные значения рекомендуются в качестве начальных при обработке полного профиля резьбы за один проход.

Как использовать таблицу определения подачи на зуб f_z :

- 1. Определение индекса подачи (например, 181В, где "В" это индекс подачи).
- 2. Определение ближайшего диаметра фрезы по верхней строке таблицы и по шагу резьбы *P* или *TPI*.
- 3. Выбор строки с индексом подачи в первой колонке таблицы.
- 4. В ячейке на пересечении выбранных параметров будет значение подачи на зуб фрезы f_z .


Поправка подачи при обработке резьбы за несколько проходов:

- 5. Если резьба обрабатывается за **2 прохода**, указанные в таблице значения следует увеличивать на **30...40** %.
- 6. Если резьба обрабатывается за **3 прохода**, указанные в таблице значения следует увеличивать на **55...65** %.
- 7. Если резьба обрабатывается за **4 прохода**, указанные в таблице значения следует увеличивать на **80...90** %.

(Пример: J2003.2X.7 фрезерование WMG M4.1 с индексом подачи A за 4 прохода $f_z = 0.017 \times 1.80 = 0.031$ мм/зуб).

														ø DC	, мм													
	3.20	4.10	4.50	4.80	5.50	6.00	_	6.50	7.50	7.90	8.00	8.20	9.50	9.90	10.00	-	11.60	12.00	-	13.60	14.00	-	16.00	-	-	19.00	20.00	25.0
	0.70	0.80	1.00	1.00	-	1.25	-	1.25	1.50	-	-	1.50	1.75	1.75	2.00	-	2.00	2.00	-	2.00	-	-	-	-	-	-	-	-
A	0.017	0.022	0.023	0.024	-	0.024	-	0.029	0.036	_	-	0.040	0.044	0.047	0.053	-	0.056	0.068	_	0.071	_	_	-	-	_	-	_	-
В	0.022	0.029	0.031	0.032	-	0.032	-	0.038	0.048	-	-	0.053	0.059	0.063	0.070	-	0.075	0.090	-	0.095	-	-	-	-	-	-	-	-
C	0.028	0.036	0.039	0.040	_	0.040	_	0.048	0.060	_	_	0.066	0.074	0.079	0.088	_	0.094	0.113	_	0.119	-	_	_	_	_	_	_	_
	-	-	-	0.50	-	0.75	1.00	-	-	-	1.00	-	-	-	1.00	1.50		1.00	1.50	-	1.00	1.50	1.50	2.00	2.50	3.00	2.00	_
D	-	-	-	0.044	-	0.041	0.036	-	-	_	0.057	-	-	-	0.075	0.067		0.079	0.071	-	0.083	0.071	0.092	0.081	0.073	0.067	0.096	-
E	-	-	-	0.058	-	0.055	0.048	-	-	_	0.076	-	-	-	0.100	0.089	-	0.105	0.094	-	0.110	0.095	0.122	0.108	0.097	0.089	0.128	
F	-	-	-	0.073	-	0.069	0.060	-	-	-	0.095	-	-	-	0.125	0.111	-	0.131	0.118	-	0.138	0.119	0.153	0.135	0.121	0.111	0.160	
123/ 1"	-	-	-	20	18	-	-	-	16	-	14	-	-	-	13	12	-	11	-	-	10	-	-	-	-	-	-	-
G	-	_	-	0.019	0.023	_	_	-	0.030	_	0.034	-	-	_	0.053	0.051	_	0.055	-	-	0.066	-	-	_	_	-	_	
Н	-	-	_	0.025	0.030	_	-	_	0.040	_	0.045	-	-	-	0.071	0.068	-	0.073	_	-	0.088	_	-	-	_	-	_	
ı	-	-	-	0.031	0.038	-	-	-	0.050	-	0.056	-	-	-	0.089	0.085	-	0.091	-	-	0.110	-	-	-	-	-	-	
123/	-	-	-	28	-	24	-	-	-	-	20	-	-	-	18	-	-	-	-	_	16	-	-	-	-	-	-	-
J	-	_	_	0.023	_	0.026	_	_	-	_	0.041	-	-	_	0.062	-	_	-	_	-	0.083	-	-	_	_	-	_	
K	-	-	_	0.030	-	0.035	-	_	_	_	0.054	-	_	-	0.083	-	-	_	_	-	0.110	_	-	-	_	_	_	
L	-	-	-	0.038	-	0.044	-	-	-	_	0.068	-	-	_	0.104	-	-	-	_	-	0.138	_	-	_	_	-	_	
123/	_	_	_	_	_	28	_	_	-	-	_	_	_	_	19	_	_	_	-	_	19	-	14	_	-	_	14	1
М	-	-	-	-	-	0.029	-	-	-	_	-	-	-	-	0.064	-	-	-	_	-	0.080	_	0.083	-	_	-	0.116	0.1
N	-	-	-	-	-	0.038	-	_	-	_	-	_	-	-	0.085	_	_	_	_	_	0.106	_	0.111	-	_	_	0.155	0.
0	-	-	-	-	-	0.048	-	-	-	_	-	-	-	-	0.106	-	-	-	-	-	0.133	-	0.139	-	-	-	0.194	0
123/	-	-	_	-	-	_	-	_	-	27	-	_	-	18	_	_	_	-	-	-	14	11.5	_	_	-	-	_	
Q	-	_	-	_	_	-	_	-	-	0.039	-	-	-	0.044	-	-	-	-	-	-	0.079	0.115	-	-	-	-	-	
R	-	-	-	-	-	-	-	-	-	0.052	-	-	-	0.059	-	-	-	-	-	-	0.105	0.153	-	-	-	-	-	-
S	_	_	_	_	-	_	_	_	_	0.065	_	-	_	0.074	_	-	-	_	_	_	0.131	0.191	-	_	_	_	_	-

РЕЗЬБОФРЕЗЫ – КОЛИЧЕСТВО ПРОХОДОВ

Как использовать таблицы глубины обработки за проход:

- 1. Выбор таблицы по профилю резьбы ("М12" метрическая резьба).
- 2. Выбор столбца с шагом резьбы.
- 3. Значения в столбце являются рекомендуемым количеством проходов с глубиной резания (например, для шага 1.75 рекомендуется 5 проходов, а глубина резания за первый проход 0.277 мм, за второй проход 0.228 мм и т.д.).
- 4. Несколько проходов рекомендуется делать при фрезеровании труднообрабатываемых материалов .
- 5. Для повышения качества обработки рекомендуется повторить последний проход.

Рекомендуемое количество проходов и глубина резания при обработке внутренней метрической резьбы 60°.

Į,	Ш				Pa	диальная глу	бина резания	і за проход, м	м			
		0.50	0.70	0.75	0.80	1.00	1.25	1.50	1.75	2.00	2.50	3.00
	1	0.158	0.221	0.168	0.224	0.224	0.228	0.237	0.277	0.283	0.323	0.387
90H/C	2	0.131	0.183	0.138	0.185	0.185	0.188	0.196	0.228	0.234	0.267	0.320
òd	3	_	_	0.127	0.135	0.168	0.173	0.179	0.209	0.214	0.244	0.293
180	4	-	-	_	_	_	0.133	0.138	0.161	0.164	0.187	0.225
Количество проходов	5	-	-	_	_	_	-	0.116	0.135	0.138	0.158	0.189
K071	6	_	_	_	_	_	_	_	_	0.122	0.139	0.167
	7	_	_	_	_	_	_	_	_	_	0.125	0.151
Σгл	/бина	0.289	0.404	0.433	0.544	0.577	0.722	0.866	1.010	1.155	1.443	1.732

Рекомендуемое количество проходов и глубина резания при обработке внутренней резьбы UN 60°.

Щ	23/	Радиальная глубина резания за проход, мм									
	71"	28	24	20	18	16	14	13	12	11	10
	1	0.203	0.237	0.232	0.258	0.251	0.287	0.309	0.299	0.327	0.328
HOB HOB	2	0.167	0.195	0.191	0.213	0.207	0.237	0.255	0.247	0.270	0.271
Количество проходов	3	0.154	0.179	0.175	0.195	0.190	0.217	0.234	0.226	0.247	0.248
180	4	-	_	0.135	0.149	0.146	0.166	0.179	0.174	0.189	0.190
Hec	5	-	_	_	_	0.123	0.140	0.151	0.146	0.160	0.160
Коли	6	_	_	_	_	_	_	_	0.130	0.140	0.141
	7	_	_	_	_	_	_	_	-	_	0.128
Σгл	убина	0.524	0.611	0.733	0.815	0.917	1.047	1.128	1.222	1.333	1.466

РЕЗЬБОФРЕЗЫ – КОЛИЧЕСТВО ПРОХОДОВ

Рекомендуемое количество проходов и глубина резания при обработке внутренней резьбы G (BSP) 55°.

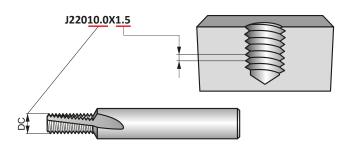
М			Радиальная глубина р	езания за проход, мм	
1	//////////////////////////////////////	28	19	14	11
	1	0.225	0.271	0.318	0.362
Количество проходов	2	0.186	0.224	0.263	0.299
bod	3	0.170	0.205	0.241	0.274
180	4	_	0.156	0.185	0.210
.Hec.	5	_	_	0.155	0.177
Колу	6	_	_	-	0.157
	7	_	_	-	_
Σгл	убина	0.581	0.856	1.162	1.479

Рекомендуемое количество проходов и глубина резания при обработке внутренней метрической резьбы NPT 60°.

W	23/		Радиальная глубина р	резания за проход, мм	
1	²³ /1"	27	18	14	11.5
	1	0.283	0.348	0.390	0.423
ЭДОВ	2	0.233	0.287	0.322	0.349
Количество проходов	3	0.214	0.263	0.295	0.320
1B0 II	4	_	0.202	0.226	0.246
Hec	5	_	_	0.190	0.207
Колу	6	_	_	_	0.183
	7	_	_	_	-
Σгл	убина	0.730	1.100	1.423	1.728

РЕЗЬБОФРЕЗЫ – ОБЩИЕ УКАЗАНИЯ

Общие указание по фрезерованию резьбы


- 1. Фрезерование резьбы это процесс обработки резьбы с помощью винтовой интерполяции фрезы с соответствующим профилем по периферийному контуру.
- 2. Фрезерование резьбы выполняется на станках с ЧПУ.
- 3. Большинство современных станков с ЧПУ оборудованы стандартными циклами для фрезерования резьбы.
- 4. Для получения информации о возможностях станка следует обратиться к поставщику оборудования.

Особенности и преимущества

- 1. Резьбофрезы являются инструментом с повышенной надежностью и стойкостью.
- 2. При фрезеровании резьбы образуется мелкосегментная стружка.
- 3. Возможно ввести поправку на допуск резьбы.
- 4. Формирование полного профиля резьбы на всю глубину отверстия.
- 5. Обработка большинства материалов заготовок.
- 6. Одна резьбофреза может обработать разные диаметры резьбы с одним шагом.
- 7. Одна резьбофреза может формировать правую или левую резьбу.
- 8. Некоторые резьбофрезы имеют зенковку для дополнительной обработки фаски (J200 и J205).

Выбор инструмента

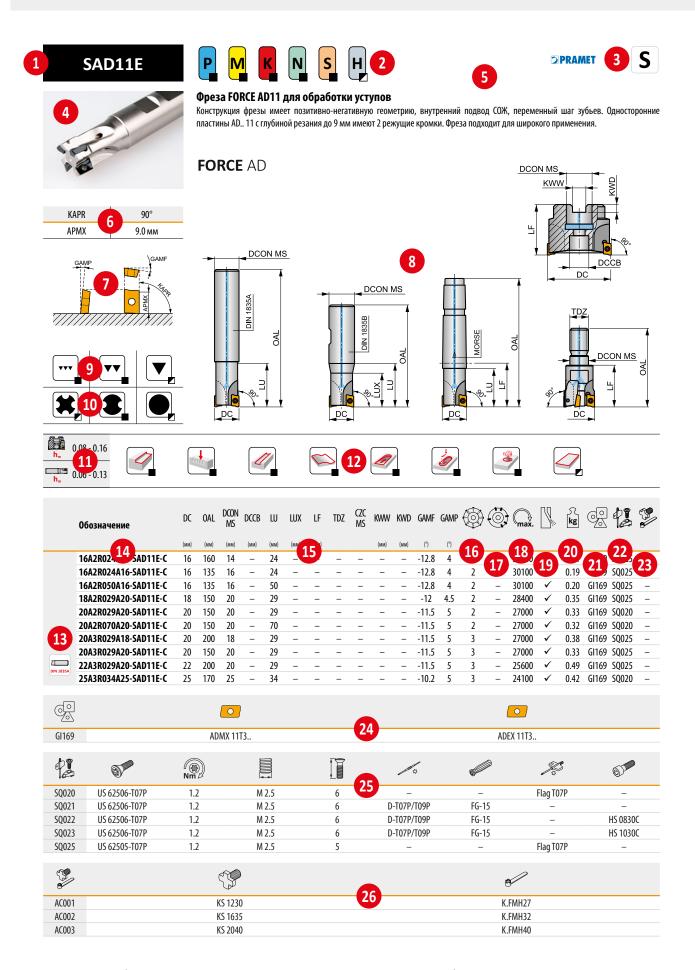
Резьбофрезы имеют обозначение на основе типа, диаметра инструмента *DC* и шага резьбы *TP*. При выборе инструмента всегда необходимо следовать рекомендациям каталога.

Эта резьбофреза может быть использована для обработки резьбы ≥ M12×1.5 (например, M14×1.5 или M18×1.5)

Программируемый радиус Rprg

- Используется для коррекции допуска резьбы.
- Начальное значение Rprg указано на хвостовике резьбофрезы и должно быть сохранено.
- Значение Rprg рассчитывается на основании теоретического среднего диаметра резьбы с учетом получения минимального значения поля допуска резьбы. Таким образом при использовании Rprg резьба никогда не будет слишком большой.
- Используя программную корректировку, можно получить резьбу требуемого размера.

Рекомендации

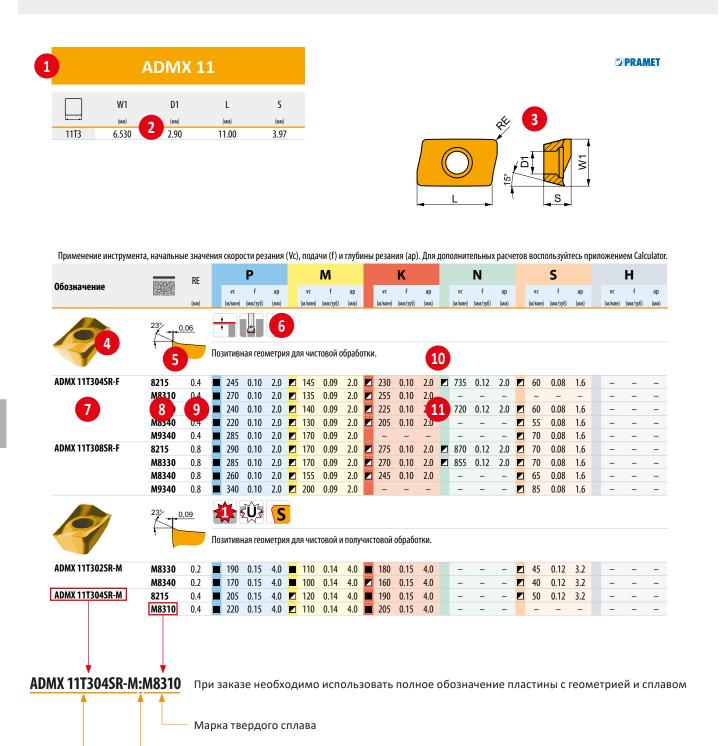

- Всегда следует использовать правильные режимы резания.
- Для обработки предварительного отверстия следует использовать тот же диаметр сверла, как в случае с обработкой резьбы метчиком.
- Для корректировки допуска резьбы следует использовать значение Rprg, указанное на хвостовике резьбофрезы.
- Для проверки размера полученной резьбы и введения необходимой корректировки следует использовать калибры. Радиус Rprg можно корректировать 2 или 3 раза до полного износа резьбофрезы.
- При фрезеровании резьбы без СОЖ рекомендуется использовать сжатый воздух для удаления стружки.
- Труднообрабатываемые материалы заготовок рекомендуется фрезеровать в несколько проходов.

ФРЕЗЫ СО СМЕННЫМИ МНОГОГРАННЫМИ ПЛАСТИНАМИ

		ФРЕЗЕРОВАНИЕ – СОДЕРЖАНИЕ													
₽ 6		ГРУППЫ ОБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ WMG ISO 13399													
<u> 12</u>	PIE	инструкция													
19	ИТН ЗЫ	ФРЕЗЫ ИЗ ТВЕРДОГО СПЛАВА													
117	МОНОЛИТНЫЕ ФРЕЗЫ	ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ													
<u> </u>	M	ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ													
<u> 212</u>		БОРФРЕЗЫ													
<u></u> 292		РЕЗЬБОФРЕЗЫ													
314		инструкция													
326	Σ	НАВИГАТОР													
□ 347	ГИНАМИ	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ													
407	ФРЕЗЫ СО СМЕННЫМИ ПЛАСТІ														ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ
477															ли пл,
□ 506													дисковые фрезы		
□ 519					КОПИРОВАЛЬНЫЕ ФРЕЗЫ										
□ 611					O CME	O CME	O CME	O CME	O CME	O CMI	O CMI	OCM	O CME	O CME	O CME
□ 643	3bl C	ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ													
□ 665	ФРЕ	ДРУГИЕ ПЛАСТИНЫ													
4 689		ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ													

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ – ОБЗОР

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ – ОБЗОР


Поз.	Описание	Поз.	Описание
1	Серия	14	Обозначение
2	Группы обрабатываемых материалов	15	Основные размеры (мм) и углы ¹⁾
3	Система закрепления пластины	16	Количество зубьев
4	Изображение	17	Указатель переменного шага зубьев
5	Описание	18	Максимальная частота вращения фрезы
6	Главный угол в плане и максимальная глубина резания, мм	19	Внутренний подвод СОЖ
7	Геометрия фрезы	20	Масса, кг
8	Схематический чертеж	21	Комплект совместимых сменных пластин ²⁾
9	Достигаемое качество обработанной поверхности	22	Комплект запасных частей ²⁾
10	Характеристика условий обработки	23	Комплект опциональных комплектующих ²⁾
11	Диапазон значений средней толщины стружки	24	Типоразмер совместимых пластин
12	Технологические возможности	25	Запасные части
13	Тип хвостовика	26	Опциональные комплектующие

 $^{^{1)}}$ $\gamma_{\rm f}$ — радиальный передний угол фрезы (*GAMF*) — см. техническую часть

 $[\]gamma_{_{\mathrm{D}}}-\,$ осевой передний угол фрезы (GAMP) — см. техническую часть

²⁾ Запасные части и опциональные комплектующие изображены схематично. В некоторых случаях добавлена информация о крутящем моменте затяжки, длине и размере резьбы винтов.

СМЕННЫЕ МНОГОГРАННЫЕ ПЛАСТИНЫ – ОБЗОР

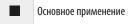
Пример страницы выбора инструмента. Для каждого типа инструмента параметры будут отличаться. В большинстве случаев пластины для фрез приведены сразу после таблицы с описанием корпусов. Отдельный раздел пластин для фрезерования содержит только пластины, корпуса к которым не входят в нашу производственную программу.

Разделительный знак - двоеточие

Обозначение пластины по ISO

СМЕННЫЕ МНОГОГРАННЫЕ ПЛАСТИНЫ – ОБЗОР

Поз.	Описание	Поз.	Описание
1	Тип пластины	7	Обозначение
2	Таблица размеров пластин, мм	8	Марка твердого сплава
3	Схематический чертеж	9	Радиус при вершине, мм
4	Изображение	10	Описание геометрии
5	Профиль главной режущей кромки	11	Область применения ¹⁾
6	Пиктограммы: специфические особенности и тип режущей кромки		


¹⁾ Рекомендуемые значения поправочных коэффициентов на скорость резания можно найти в техническом разделе данного каталога.

Для удобства выбора параметров и правильного использования фрез техническая информация указана после таблиц с выбором корпуса фрезы и подходящих пластин. Если этой информации недостаточно, следует обратиться к техническому разделу в конце каталога или связаться с местным региональным представителем компании Dormer Pramet.

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ – ПИКТОГРАММЫ

Применение

Возможное применение

Р Группа обрабатываемых материалов Р

Группа обрабатываемых материалов М

Группа обрабатываемых материалов N

Группа обрабатываемых материалов К

S Группа обрабатываемых материалов S

Н Группа обрабатываемых материалов Н

Чистовая обработка — очень хорошее качество поверхности

Получистовая обработка — хорошее качество поверхности

Черновая обработка — нет требований по шероховатости

Стабильные условия обработки

Нестабильные условия обработки

Крайне нестабильные условия обработки

Технологические возможности

Фрезерование плоскостей

Фрезерование неглубоких уступов

Фрезерование глубоких уступов

Фрезерование неглубоких пазов

Фрезерование глубоких пазов

Фрезерование Т-образных пазов

Копировальное фрезерование

Фрезерование фасок

Фрезерование с винтовой интерполяцией

Фрезерование с винтовой интерполяцией в предварительно обработанном отверстии

Плунжерное фрезерование

Фрезерование с засверливанием

Врезание под углом

Фрезерование обратных уступов

Хвостовик

DIN 8030 Насадная фреза

DIN 8030 Насадная длиннокромочная фреза

DIN 8030 Дисковая фреза

DIN 1835A Цилиндрический хвостовик

DIN 1835B

DIN 1835B Хвостовик Weldon

DIN 228-1 Хвостовик с конусом Морзе

ISO 26623-1 Хвостовик ПКФ (соединение полигональный конус — фланец)

DIN 2080-1 Конический хвостовик

ISO/DIS

ISO 7388-1 (DIN 69871-1) Конический хвостовик

MAS BT (JIS-B-6339) Конический хвостовик

Сменная головка с резьбовым хвостовиком

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ – ПИКТОГРАММЫ

Особенности

Первый выбор

Тяжелые условия обработки

Обработка с высокой подачей

Пластины с зачистной геометрией Wiper

Обработка с большим вылетом

Обработка тонкостенных заготовок

Универсальное применение

Острые режущие кромки

Скругленные режущие кромки

Режущие кромки с фаской

Скругленные режущие кромки с фаской

Скругленные режущие кромки с двойной фаской

Прочее

Момент затяжки крепежных винтов, Н-м

Эффективное количество зубьев

Количество пластин длиннокромочной фрезы

Техническая часть

Угол фаски, °

Глубина резания, мм

Максимальный уклон при врезании под углом, мм

Размер зачистной кромки, мм

Поправочный коэффициент на подачу при фрезерованием центром фрезы

Поправочный коэффициент на подачу при фрезерованием краем фрезы

Поправочный коэффициент на скорость резания

Номинальный диаметр фрезы, мм

Максимальный диаметр фрезы, мм

Эффективный диаметр фрезы, мм

Максимальная ширина фрезерования при плунжерной обработке, мм

Глубина паза, мм

Диаметр отверстия, мм

Подача, мм/зуб

Минимальная подача, мм/зуб

Максимальная подача, мм/зуб

Стружколомающая геометрия

Длина режущей части, мм

Максимальная ширина обработки, мм

Количество используемых режущих кромок

Количество фрезы

Ширина фрезерования по отношению к диаметру фрезы, %

Ширина фрезерования по отношению к максимальному диаметру фрезы, %

Радиус при вершине пластины, мм

Максимальный угол врезания, °

Максимальная глубина за один оборот для отверстия максимального диаметра, мм

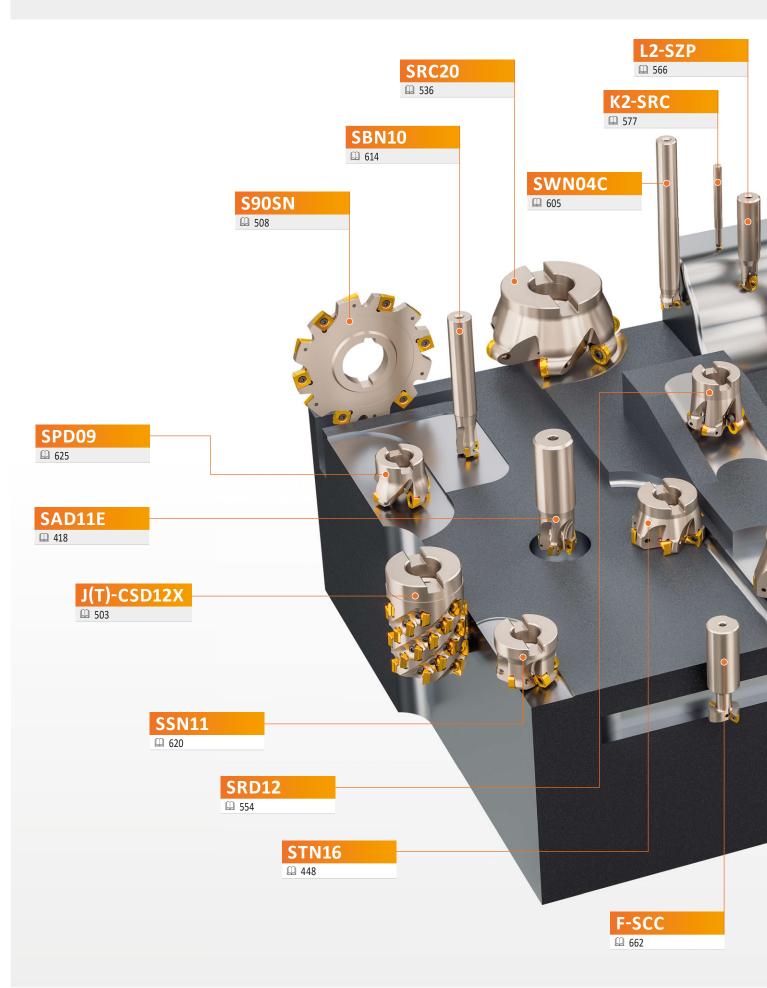
Максимальная глубина за один оборот для отверстия минимального диаметра, мм

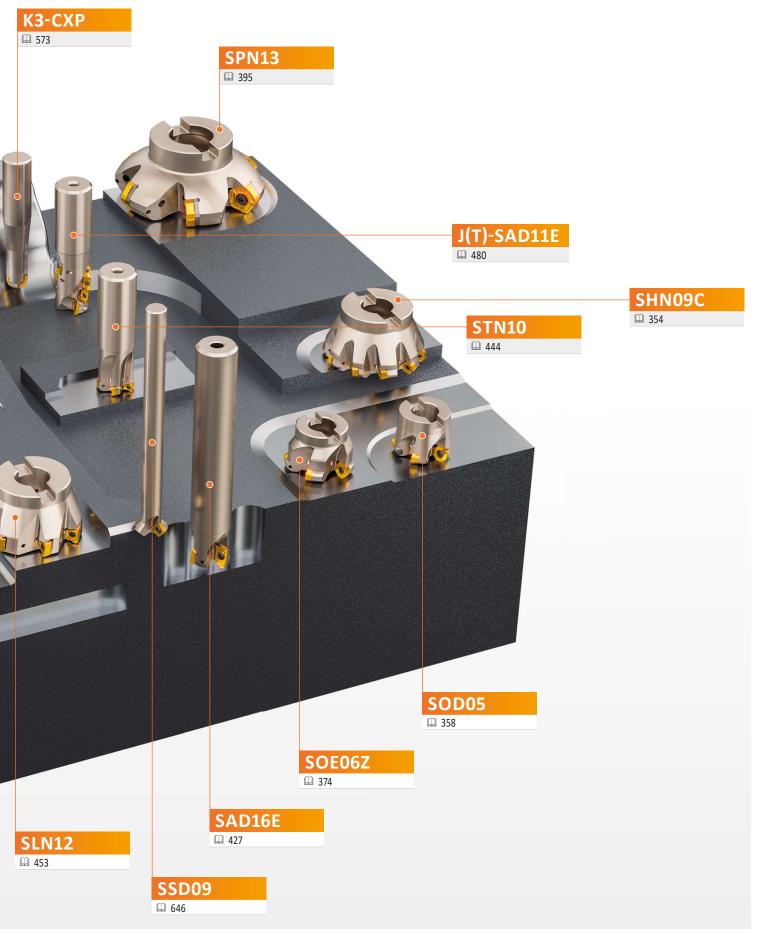
Начальное значение подачи, мм/зуб

Осевой шаг при послойном фрезеровании, мм

Тангенциальный шаг при плунжерном фрезеровании, мм

Высота микронеровностей, мкм


Стойкость, мин


Шаг резьбы

Количество витков на дюйм

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ – АССОРТИМЕНТ

МАРКИ ТВЕРДЫХ СПЛАВОВ – ОБЗОР

МАРКИ ТВЕРДЫХ СПЛАВОВ – ОБЗОР

Марка твердого сплава	Область применения	Применимость	Подача	Скорость резания	Устойчивость к неблагоприятным условиям	Покрытие	Цвет	Субстрат	Использование СОЖ	Описание сплава
M9315	P05 - P25 K10 - K30 H10 - H20					MT-CVD		Ŧ		Твердый сплав для фрезерования, который отличается высокой износостойкостью даже при больших термических нагрузках. Основная область применения — обработка на высоких скоростях с небольшой глубиной резания.
M9325	P10 - P30 K10 - K30 H15 - H20	■ ■	a 1 11	a4 11		MT-CVD		Ξ		Твердый сплав с идеальным балансом между износостойкостью и прочностью. Предназначен для высокопроизводительных операций фрезерования с удалением большого объема материала. Обладает хорошей износостойкостью при высоких температурах. При использовании следует отдавать предпочтение высокой скорости резания с ограниченной подачей на зуб.
M9340	P35 – P50 M30 – M40 S15 – S20	•			_41	MT-CVD		т		Очень прочный твердый сплав для фрезерования в особо неблагоприятных условиях при экстремальных нагрузках. Благодаря покрытию МТ-СVD, сплав имеет довольно высокую износостойкость и стабильно работает при использовании СОЖ.
M5315	P05 – P20 K05 – K25 H05 – H20				- 000	MT-CVD		Ξ		Один из самых износостойких сплавов для использования только в стабильных условиях. Основным преимуществом является устойчивость к термическим нагрузкам и абразивному износу, что делает сплав идеальным для обработки твердых материалов и чугуна.
M8310	P01 – P10 M01 – M10 K01 – K10 H05 – H15					PVD		ультра- субмикронный Н	-	Сплав специально разработан для копировального фрезерования, имеет очень высокую износостойкость. Рекомендуется применять на высоких скоростях резания в стабильных условиях при фрезеровании практически всех групп материалов, особенно прочных и твердых.
8215	P10 - P20 M10 - M20 K10 - K25 N10 - N25 S10 - S15 H10 - H15			-41 1		PVD		субмикронный Н	+/-	Один из самых универсальных твердых сплавов в отношении разнообразия обрабатываемых материалов, типов операций фрезерования и режимов резания. Имеет хорошую износостойкость, прочность режущих кромок и непревзойденную устойчивость к термотрещинам. Благодаря этим свойствам, сплав является одним из основных в ассортименте.
M8325	P20 – P40 M15 – M30	■	_411			PVD		S	-	Главной особенностью этого сплава является обработка всех типов стали (включая нержавеющие стали) в отпущенном состоянии. Можно также использовать для фрезерования чугуна с невысокой твердостью. Для работы с умеренными скоростями резания и невысокими нагрузками на режущие кромки.
M8330	P20 – P40 M20 – M35 K20 – K40 N15 – N30 S15 – S25 H15 – H25		-411		-41	PVD		субмикронный Н	+/-	Самый универсальный твердый сплав для фрезерования практически любых материалов. Обладает стабильностью в неблагоприятных условиях обработки, применяется на умеренных скоростях резания, требует особого внимания при использовании с СОЖ.
M8340	P25 – P50 M20 – M40 K20 – K40 S20 – S30		_411	-	-11	PVD		субмикронный Н	+/-	Сплав имеет высокую прочность и надежность. Рекомендуется применять на умеренных скоростях резания в нестабильных условиях при фрезеровании практически всех групп материалов, особенно прочных и твердых.

МАРКИ ТВЕРДЫХ СПЛАВОВ – ОБЗОР

Марка твердого сплава	Область применения	Применимость	Подача	Скорость резания	Устойчивость к неблагоприятным условиям	Покрытие	Цвет	Субстрат	Использование СОЖ	Описание сплава
M8345	P30 - P50 M30 - M40	•	.41		_441	PVD		Ξ	-	Сплав специально разработан для обеспечения надежной обработки со снятием припуска большого сечения в самых неблагоприятных условиях. Благодаря своей прочности, сплав подходит для фрезерования труднообрабатываемых и высокопрочных материалов.
M6330	P20 – P35 M20 – M35 S20 – S30	•	_411	_011	_411	PVD		Ξ	+/-	Сплав имеет очень высокую надежность особенно при фрезеровании труднообрабатываемых материалов. Подходит для операций с неблагоприятными условиями и высокими нагрузками.
M4303	P01 – P10 K01 – K10 N01 – N10 H01 – H10			-411		PVD		ультра- субмикронный Н	-	Самый износостойкий сплав для обработки штампов и пресс-форм. Имеет высокую производительность при высоких скоростях резания, низких подачах и стабильных условиях. Подходит для чистовой обработки твердых заготовок.
M4310	P05 – P15 M05 – M15 K05 – K15 S05 – S10 H05 – H15		.411	-41		PVD		ультра- субмикронный Н	-	Универсальный сплав для обработки штампов и пресс-форм. Подходит для чистовых и получистовых операций фрезерования. Сплав сочетает в себе высокую износостойкость и стабильность.
2003	P01 – P10 M01 – M10 K01 – K10 S05 – S10 H05 – H15			-41 1		PVD		ультра- субмикронный Н	<u>-</u>	Сплав с очень высокой износостойкостью, который подходит для фрезерования твердых и очень прочных материалов в стабильных условиях обработки на средних и высоких скоростях резания. Сплав подходит для обработки всех типов материалов, кроме цветных сплавов.
M0315	N05 – N25		_411			PVD		субмикронный Н	-	Субмикронный твердый сплав обладает сбалансированными свойствами твердости и прочности. Подходит для обработки цветных сплавов и имеет уникальное тонкое покрытие с низким коэффициентом трения, которое сохраняет остроту режущих кромок.
S26	P15 – P30	-	_441	- ad11	_41	-		S	++	Непокрытый твердый сплав с высокой стойкостью к эрозии на передней поверхности. Используется исключительно для фрезерования конструкционных сталей при низких скоростях резания.
S45	P30 – P45		_441	-		_		S	++	Непокрытый сплав для фрезерования на низких скоростях резания при неблагоприятных условиях.
HF7	M10 - M20 K10 - K25 N10 - N25		_41	- ad11		-		субмикронный Н	++	Непокрытый твердый сплав был разработан преимущественно для обработки цветных сплавов. Однако его можно использовать для обработки других материалов, кроме стали. Сплав применяется в точении, фрезеровании и растачивании.

МАРКИ ТВЕРДЫХ СПЛАВОВ – ОБЗОР

	Субстрат
Н	Твердый сплав на основе WC-Co
субмикронный Н	Мелкозернистый твердый сплав на основе WC-Co (< 1 мкм)
ультрасубмикронный Н	Особо мелкозернистый твердый сплав на основе WC-Co (< 0.5 мкм)
S	Твердый сплав с кубическими карбидами

	Покрытие							
MT-CVD	Покрытие CVD, нанесенное при помощи химического осаждения из газовой фазы при средней температуре							
PVD	Покрытие PVD, нанесенное при помощи физического осаждения из газовой фазы при низкой температуре							
×	Без покрытия							

	Использование СОЖ						
	Сильно негативное влияние на стойкость инструмента, применение СОЖ не рекомендуется						
-	Негативное влияние на стойкость инструмента						
+/-	Влияние СОЖ не определено, решающим фактором применения могут оказаться специфические условия обработки						
++	Позитивное влияние на стойкость инструмента, применение СОЖ рекомендуется						

	Уровень применения
Уровень от 1 до 5	

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ

		•
_	_	_

	SHN	06C	SHN	09C	SOE	005	SOD	06D	SC	E06Z
	45	°	45	0	45	5°	45	0		43°
	APMX (MM)	3.0	APMX(mm)	5.0	АРМХ (мм)	2.7 (10.0)	АРМХ (мм)	3.1 (8.6)	APMX (MM)	3.3 (9.9)
	DC (MM)	25 – 125	DC (MM)	50 – 315	DCX (MM)	32 – 125 <u>W</u>	DC (MM)	63 – 160	DC (мм)	50 – 200
Цилиндрический хвостовик					G _e	DCX = 32 – 40 (mm)				
Хвостовик Weldon	-	DC = 25 - 32 (MM)								
Сменная головка с резьбовым хвостовиком	1	DC = 25 - 40 (MM)								
Насадная фреза		DC = 40 - 125 (MM)				DCX = 40 – 125 (MM)			S.	
Страница	Д		Ω:	354	Ω	358	Ω:	368	Į.	374
ISO	P M K	Н	P M K	Н	P M K	N	P M K	S H	P M	N S
Форма пластины		0		0	(c) (c)		(c) (c)		0	00
Тип пластины	HNGX XNGX		HNGX (OD (RD ² SD ²	1205	OD 0 RPE. 1		RE	HT 0604 HT 1604 HT 0604
Количество режущих кромок	12 ,	/1	12 /	1	8/-	- / 4	8/1	/-	8	/-/1
Фрезерование плоскостей										
Фрезерование фасок										
Фрезерование с винтовой интерполяцией										
Фрезерование с засверливанием				1						
Врезание под углом										
Копировальное фрезерование										
Фрезерование неглубоких уступов										
Фрезерование неглубоких пазов										
Плунжерное фрезерование										

<<<

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ

SC	E09Z	SSE	:09	SSN	12Z	SPI	N13	CHI	N09	FSB	22X
	43°	45	5°	45	°	57	7 °	60	0°	60	0°
АРМХ (мм)	5.0 (14.1)	АРМХ (мм)	4.5	APMX (MM)	6.5	АРМХ (мм)	10.0	АРМХ (мм)	6.0	АРМХ (мм)	15.0
DC (MM)	80 – 315	DC (MM)	20 – 160	DC (MM)	50 – 250	DC (MM)	100 – 315	DC (MM)	80 – 125	DC (MM)	125 – 315
			DC = 20 - 32 (MM)								
			(wi								
			DC = 32 – 160 (MM)			(a)	1.		3	TION	I.c.
	381	Д		Ф		Ф		Д	399	Ф	403
P M	N S	P M K	S	P M K	S	P M K	S H	K		P M K	
RE	HT 0906 HT 2406 HT 0906	SE.T (D9T3	SN.T	1205	PNM. XN		HN	0905	SB	2207
 8	/-/1	4		4		10	/1	1	2	4,	/1
			1								
			1								
											327

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ

>>>

	SADO	7D	SAD	11E	SAD	16E	SAP1	0D	SAP16D		
	90)	90	٥	9	0°	90°	1	90)°	
	APMX(MM)	5.0	APMX(mm)	9.0	АРМХ (мм)	13.0	APMX (MM)	9.0	APMX(MM)	13.0	
	DC (MM)	10 – 32	DC (MM)	16 – 125	DC (MM)	25 – 175	DC (MM)	10 – 63	DC (MM)	25 – 160	
Цилиндрический хвостовик	V.4	DC = 10 - 25 (MM)	ā	DC = 16 - 35 (MM)		DC = 25 - 32 (MM)					
Хвостовик Weldon			J.	DC = 16 - 32 (MM)		DC = 25 - 40 (MM)		DC = 10 - 25 (MM)		0 = 35 - 40 (MM)	
Сменная головка с резьбовым хвостовиком		DC = 12 – 32 (мм)		DC = 16 - 40 (MM)		DC = 32 - 40 (MM)					
Насадная фреза				DC = 40 - 125 (MM)		DC = 40 - 175 (MM)		DC = 40 – 63 (MM)		DC = 40 - 160 (MM)	
Страница	4	11	Ω.	418	Ф	427	4 3	36	<u> </u>	439	
ISO	P M K	N S	P M K	N S H	P M K	N S H	P M K I	N S	P M K	N S	
Форма пластины	9	1	-				g		•		
Тип пластины	AD.X 0	702	AD.X 1	11T3	AD.X	1606	APKT 10	003	AP.T	1604	
Количество режущих кромок	2		2		:	2	2		2	!	
Фрезерование неглубоких уступов											
Фрезерование с винтовой интерполяцией				ı						ı	
Фрезерование неглубоких пазов	-			ı			-				
Плунжерное фрезерование											
Фрезерование с засверливанием											
Врезание под углом											
Фрезерование плоскостей]	Į				Z	1	
Копировальное фрезерование											

<<<

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ

STN1	0	STN16	NEW	SLN	12	SL	N16	SSOO	50	SSC	009
90°		90°)	90°)		90°	90°	0	90)°
APMX (mm)	5.0	АРМХ (мм)	10.0	АРМХ (мм)	9.0	APMX (MM)	13.0	АРМХ (мм)	4.5	APMX (MM)	8.0
DC (MM)	18 – 32	DC (MM)	25 – 175	DC (MM)	25 – 125	DC (MM)	63 – 175	DC (MM)	12 – 40	DC (MM)	20 – 125
ā	DC = 18 - 35 (MM)		DC = 25 - 35 (MM)		DC = 25 - 32 (MM)			ie.L	DC = 12 - 25 (mm)		
	DC = 20 - 32 (MM)		DC = 25 - 40 (MM)	1	DC = 25 - 40 (MM)			1.	DC = 20 - 32 (MM)		DC = 20 - 32 (MM)
	DC = 20 - 32 (MM)		DC = 25 - 40 (MM)		DC = 25 – 40 (MM)						
	DC = 40 - 80 (MM)		DC = 40 - 175 (MM)	(a)	DC = 40 - 125 (MM)	ie .			DC = 32 – 40 (MM)		DC = 40 - 125 (MM)
44	4	4	48	4	53	Q	459	4	64	a	467
P M K N	N .	P M K	N	P M K	N	PK	N H	P M K	S	P M K	S
Q		<u> </u>		Q						<u>[</u>	
TNGX 10	04	TNGX 1	606	LNG. 12	205	LN.U	J 1607	SOMT 0	502	SOMT	09Т3
6		6		4			4	4		4	ļ
						Ī					
						I					•
						I					
											1
						ļ					
											220

<<<

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ

	SSC	012	FTB2	27X		
	90)°	90	0		
	APMX (MM)	10.0	АРМХ (мм)	18.0		
	DC (MM)	50 – 160	DC (MM)	140 – 260		
илиндрический хвостов	вик					
остовик Weldon						
ленная головка с зъбовым хвостовиком						
асадная фреза						
граница	ш	470		473		
0	P M K	N S	P M K			
орма пластины		7	4			
ип пластины	SDMT	1205	TBMR	2707		
оличество режущих кро	омок 4		3			
еглуооких уступов						
резерование винтовой нтерполяцией						
резерование еглубоких пазов]		
лунжерное резерование						
резерование с асверливанием						
резание под углом	7					
Орезерование лоскостей		1]		
опировальное резерование						

длиннокромочные фрезы

		J(T)-SAD11E		J(T)-SAD16E		J(T)	-SLSN	J(T)-	SSAP	J(T)-2416			
		9	0°		9	0°		9	90°	9	0°	9	0°
		APMX (MM)	37.0 – 56	5.0	APMX (MM)	40.0 –	108.0	APMX(MM)	104.0 - 134.0	APMX (MM)	58.0-95.0	APMX (MM)	40.0 - 63.0
		DC (MM)	25 – 50)	DC (MM)	50 – 1	100	DC (MM)	63 - 80	DC (MM)	50 – 80	DC (MM)	20 – 40
Хвостовик Weldon				DC = 25 - 40 (MM)									
Хвостовик с конусом Мо	рзе			DC = 25 - 40 (MM)									
Конический хвостовик							DC = 50 - 80 (MM)						
Насадная фреза				DC = 50 (MM)			DC = 50 - 100 (MM)						
Страница			480		Q	486			492	9	496		501
ISO		P M K	N S	Н	P M K	N S	Н	P K		P M K	N S H	P M K	N
Форма пластины		\$	7			9		9		Q			_
Тип пластины		AD	11T3		AD	. 1606			T 1606 . 1305		150412 1204		-
Количество режущих кр	омок		2			2		2	2/8	2	/4	-	_
Фрезерование глубоких уступов	7												
Фрезерование глубоких пазов	/				ı								
Фрезерование плоскостей	7				Į					Į			
Плунжерное фрезерование													
										l			33

111

ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ

	J(T)-CS	D12X		
	90			
	APMX(MM)	44.1 – 87.3		
	DC (MM)	40 – 63		
Хвостовик ПКФ	Щ	DC = 40 - 50 (mm)		
(соединение полигональный		0 – 5		
конус – фланец)	10)C = 4		
		7		
		(F)		
Хвостовик с конусом Морзе		DC = 50 (MM)		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	404	<u>N</u>		
	/III	N Q		
		DC = 40 - 63 (MM)		
Конический хвостовик		40 -		
		DC =		
	1	DC = 50 - 80 (MM)		
Насадная фреза		8 – 0		
)(= 5		
_				
Страница	<u> </u>			
ISO	P M	S		
Форма пластины	6	V		
Topina iniacimisi		V		
Тип пластины	SD.X 1	205		
Konungano november knower	4			
Количество режущих кромок	4			
Фрезерование глубоких уступов		1		
THY CORNEX YET YILLO				
Фрезерование		1		
глубоких пазов				
Фрезерование		1		
плоскостей		1		
Плунжерное				
Плунжерное фрезерование				
			l .	

дисковые фрезы

	S90:	5N	S90CN	I(XN)				
	90	•	90					
	APMX (MM)	4.0 – 14.0	АРМХ (мм)	14.0 – 30.5				
	DC (MM)	80 – 200	DC (MM)	125 – 315				
Дисковая фреза		DC = 80 - 200 (MM)		DC = 125 – 315 (MM)				
Насадная дисковая фреза		DC = 63 - 160 (MM)		DC = 125 - 200 (MM)				
Страница ISO	P M K	08	P M K	514				
Форма пластины	Q	0	CNIIO	1005				
Тип пластины	SNHQ SNHQ		CNHQ 1 XNHQ 1 XNHQ 1	1205 1606				
Количество режущих кромок	4		2					
Фрезерование глубоких пазов				J				
Фрезерование глубоких уступов]				
Фрезерование плоскостей]				
Фрезерование обратных уступов]				
								33

КОПИРОВАЛЬНЫЕ ФРЕЗЫ

>>>

		SRC10		SR	C12	SRC	16	SF	C20	SRD05	
		_			-	_	•		-		-
		APMX(mm)	5.0	APMX(mm)	6.0	АРМХ (мм)	8.0	APMX (MM)	10.0	АРМХ (мм)	1.5
		DCX (MM)	25 – 66	DCX (MM)	40 – 100	DCX (MM)	63 – 160	DCX (MM)	80 – 160	DCX (MM)	10 – 15
Цилиндрический хво	стовик		DCX = 25 – 32 (mm)								
Хвостовик Weldon											
Сменная головка с резьбовым хвостови	ком		DCX = 25-42 (MM)								
Насадная фреза			DCX = 40 – 66 (MM)								
Страница		<u></u> 52	4	Q	528	Д	532	Q	3536	Q	540
ISO		P M K	S H	P M K	S H	P M K	S H	P M K	S H	P K	Н
Форма пластины		0				G			6)	6	0
Тип пластины		RC 10T	3	RC	1204	RC 1	606	RO	2006	RD	0501
Количество режущих	кромок	-			_	-	-		-		_
Копировальное фрезерование				I			•			I	
Фрезерование плоскостей											
Фрезерование с винтовой интерполяцией							ı				
Фрезерование с засверливанием							1				
Врезание под углом										I	
Фрезерование неглубоких пазов											
Фрезерование глубоких уступов											
Фрезерование скруглений											
Плунжерное фрезерование											
221											

КОПИРОВАЛЬНЫЕ ФРЕЗЫ <<< >>> SRD12 SRD16 L2-SZP К3-СХР SRD07 SRD10 APMX (MM) 2.0 APMX(mm)2.5 APMX(mm)4.0 APMX(MM)8.9 - 44.7APMX (MM) 8.0 – 16.0 3.0 APMX(mm)DCX (MM) 15 – 25 10 – 50 16 – 32 DCX (MM) 20 – 52 DCX (MM) 24 - 80DCX (MM) 32 – 100 DCX (MM) DCX (MM) (MM) Z (MM)

				DCX = 10 – 32 (DCX = 16 - 32 (
DCX = 15 (ww)	DCX = 20 (ww)			DCX = 12 – 50 (MM)	DCX = 16 – 25 (MM)
DCX = 15 – 25 (mm)	DCX = 20 – 42 (mm)	DCX = 24 – 42 (MM)	DCX = 32 (MM)	DCX = 10 – 32 (мм)	
	DCX = 42 – 52 (mm)	DCX = 50 - 80 (MM)	DCX = 52 – 100 (MM)		
P M K N S H	P M K N S H	P M K N S H	P M K N S H	□ 566 P M K S H	P M K S H
0	0	0	0	6	ð
RD 0702	RD 1003	RD 12T3	RD 1604	ZP	ХР
_	_	_	_	2	1
•	•				
					335

<<<

КОПИРОВАЛЬНЫЕ ФРЕЗЫ

	K2-5	SRC	K2-	SLC	K2-P	PH	SVC	22C	SWN	104C
	_		90)°	_		90	0	90° ((93°)
	APMX (MM)	0.6 – 3.2	APMX (MM)	1.0 – 3.0	APMX (MM)	0.3 – 4.0	APMX (MM)	3.0 (16.0)	APMX (MM)	0.5 (2.0)
	DCX (MM)	8 – 20	DCX (MM)	12 – 20	DCX (MM)	8 – 32	DC (MM)	32 – 80	DC (MM)	20 – 35
Цилиндрический хвостовик		DCX = 8 – 20 (MM)				DCX = 8 – 32 (MM)		DC = 32 - 40 (MM)	a	DC = 20 - 32 (MM)
Хвостовик Weldon										
Сменная головка с резьбовым хвостовиком		DCX = 8 – 20 (MM)			•	DCX = 16 - 20 (MM)		DC = 32 – 40 (MM)		DC = 20 – 35 (MM)
Насадная фреза								DC = 50 - 80 (MM)		
Страница	9	577	Ω.	586	□ 5	90	Q (502	Ш	605
ISO	P M K	Н	P M K	Н	P M K	S H		N	PK	Н
Форма пластины	Q	7	Q	7			6)	(
Тип пластины	ROLO		LO		PPH PPH PPH	F	VCGT 22	20530	WN	0403
Количество режущих кромок	2		2	!	2		2		(5
Копировальное фрезерование										
Фрезерование плоскостей										
Фрезерование с винтовой интерполяцией			Z							
Фрезерование с засверливанием			Z	1						
Врезание под углом			Z]		
Фрезерование неглубоких пазов]		
Фрезерование глубоких уступов]		
Фрезерование скруглений			Z	1						
Плунжерное фрезерование										

<<<

КОПИРОВАЛЬНЫЕ ФРЕЗЫ

SCN	05C			
90° (
APMX (MM)	0.5 (1.0)			
DC (MM)	12 – 20			
Į.	<i>bC</i> = 12 – 20 (мм)			
_				
İ	DC = 12 - 20 (MM)			
P K	608 H			
Ô				
CN (
4				
	•			
	•			
	•			
				337

ВЫСОКОПОДАЧНЫЕ ФРЕЗЫ

	SBN10		SSN11 NEW		SPD09		SZD	07	SZD09	
	20°	•	18°	1	19	0	_		_	-
	APMX (MM)	1.0	APMX(MM)	1.7	APMX (MM)	2.0	APMX (MM)	1.0	APMX (MM)	1.0
	DCX (MM)	16 – 42	DCX (MM)	32 – 125	DCX (MM)	32 – 140	DCX (MM)	16 – 32	DCX (MM)	25 – 66
Цилиндрический хвостовик		DCX = 16 - 35 (MM)		DCX = 32 – 35 (MM)	I.	DCX = 32 – 40 (MM)		DCX = 16 – 25 (MM)		
Хвостовик Weldon										DCX = 25 - 32 (MM)
Сменная головка с резьбовым хвостовиком		DCX = 16 – 40 (mm)		DCX = 32 - 40 (mm)				DCX = 16 - 32 (MM)		DCX = 25 - 42 (MM)
Насадная фреза		DCX = 40 – 42 (mm)		DCX = 40 – 125 (MM)		DCX = 42 – 140 (мм)				DCX = 40 – 66 (MM)
Страница	4 6	14	₽ 6	20	₽6	525	□ 6	31	Ф	635
ISO	P M K	S H	P M K	S	P M K	S H	P K	н	P K	н
Форма пластины		0	O		C		0			•
Тип пластины	BNGX 1		SNGX 1	104	PD 0	905	ZDCW 0	703	ZDCW	09Т3
Количество режущих кромок	4/2		8		5		4		4	1
Фрезерование плоскостей						l				
Фрезерование с винтовой интерполяцией										
Фрезерование неглубоких уступов						l			Z	
Плунжерное фрезерование										
Фрезерование с засверливанием									Z	
Врезание под углом						I				
Копировальное фрезерование]			7	
Фрезерование неглубоких пазов]				

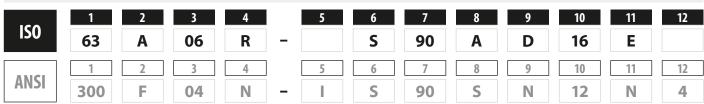
<<<

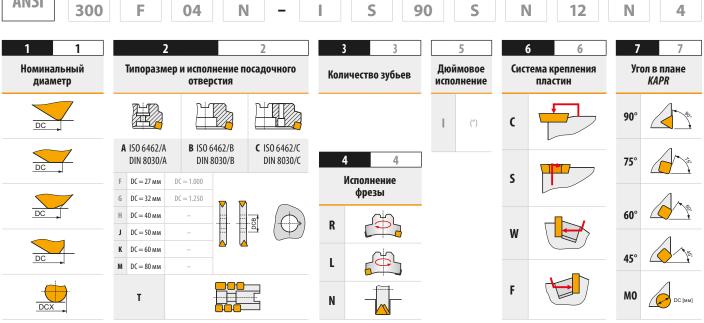
высокоподачные фрезы

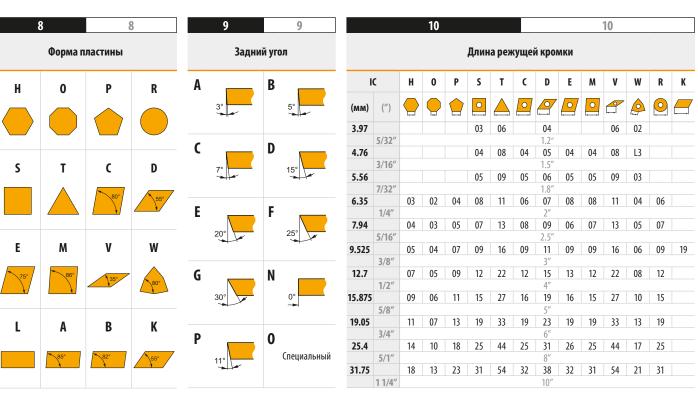
	SZD12			
	_			
	<i>АРМХ</i> (мм) 1.6			
	DCX (MM) 32 – 80			
	40 (MA			
	DCX = 40 (mm)			
	(WW) 0:			
	7-7-			
	DCX = 50 – 80 (MM)			
	08-			
	X = 50			
	□ 639 P K H			
	ZDEW 1204			
	4			
	-			
9				
THE				
B				
				339

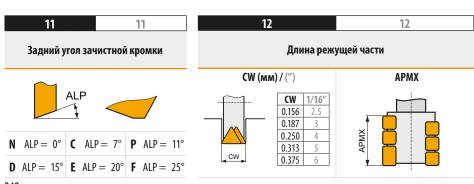
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ

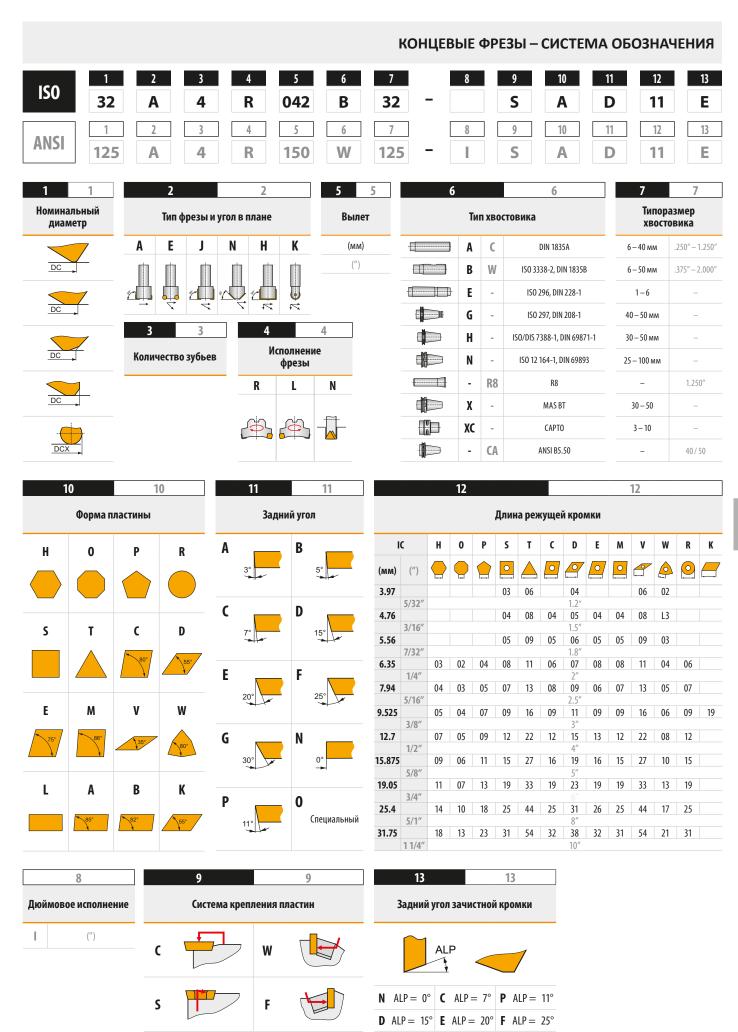

>>>

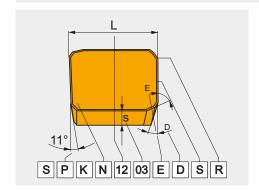

	SSDC	9	N-SS	009	25	16	26	36	J(T)-S	XP16
	45°		45	0	45	o°	10°-	- 80°	15°-	- 75°
	АРМХ (мм)	4.5	APMX(mm)	4.5	APMX (MM)	8.5	АРМХ (мм)	8.5	APMX (MM)	7.0 – 28.0
	DC (MM)	10 – 25	DC (MM)	8 – 25	DC (MM)	11 – 19	DC (MM)	5 – 23	DC (MM)	35 – 45
Цилиндрический хвостовик		DC = 16 - 25 (MM)								
Хвостовик Weldon		DC = 10 - 25 (MM) D								
Хвостовик с конусом Морзе		DC = 10 - 25 (MM) D						P		
Насадная фреза										
Страница	<u></u> 64	6		549	ш	652	<u></u> 655		Д	658
ISO	P M K	S H	P M K	S	P M K	S	P M K	S	P M K	N
Форма пластины	Q		<u>[</u>		4	1	4	1		7
Тип пластины	SDE. 09	03	SOMT	09Т3	TCMT	16T3	TCMT	16T3	ХРНТ	1604
Количество режущих кромок	4		4		3		3	3		2
Фрезерование фасок				1						
Фрезерование обратных уступов										
Фрезерование Т-образных пазов										
Фрезерование неглубоких уступов										
Фрезерование неглубоких пазов										

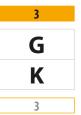

<<<


ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ


F-SCC			
90°			
	0 – 18.0		
	5 – 40		
DC (WWW) Z	J 10		
662			
P M K			
6			
ССМХ			
2			
			3.







СМЕННЫЕ ПЛАСТИНЫ ДЛЯ ФРЕЗЕРОВАНИЯ – СИСТЕМА ОБОЗНАЧЕНИЯ

ANS	

S	
S	

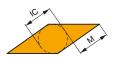
P
P

G
K

Ν	

1	l	1	l								
Форма пластины											
Н	0	P	R								
S	T	C	D								
		80°	55°								
E	М	V	W								
75°	86°	35°	80°								
L	A	В	K								
	85°	82°	55°								

	2		2								
	Задний угол										
A	3°	В	5°								
C	7°	D	15°								
E	20°	F	25°								
G	30°	N	0°								
P	11°	0	Специальный угол								


	4	4							
Исполнение пластины									
N									
R									
F									
A									
M									
G									
W	40 – 60°								
T									
Q									
U	(27A; 172A)								
В	70 – 90°								
Н									
C									
J									
X	Специа	льное исполнение							

	3			3							
Допуск											
		(MM)			(")						
	M (±)	S (±)	IC (±)	M (±)	S (±)	IC (±)					
Α	0.005	0.025	0.025	0.0002"	0.001"	0.0010"					
F	0.005	0.025	0.013	0.0002"	0.001"	0.0005"					
C	0.013	0.025	0.025	0.0005"	0.001"	0.0010"					
Н	0.013	0.025	0.013	0.0005"	0.001"	0.0005"					
E	0.025	0.025	0.025	0.0010"	0.001"	0.0010"					
G	0.025	0.130	0.025	0.0010"	0.005"	0.0010"					
J	0.005	0.025	0.05 - 0.13	0.0002"	0.001"	0.002" - 0.005"					
K	0.013	0.025	0.05 - 0.13	0.0005"	0.001"	0.002" - 0.005"					
L	0.025	0.025	0.05 - 0.13	0.0010"	0.001"	0.002" - 0.005"					
М	0.08 - 0.18	0.130	0.05 - 0.13	0.003" - 0.007"	0.005"	0.002" - 0.005"					
N	0.08 - 0.18	0.025	0.05 - 0.13	0.003" - 0.007"	0.001"	0.002" - 0.005"					
U	0.05 - 0.38	0.130	0.05 - 0.13	0.005" - 0.015"	0.005"	0.003" - 0.010"					

СМЕННЫЕ ПЛАСТИНЫ ДЛЯ ФРЕЗЕРОВАНИЯ – СИСТЕМА ОБОЗНАЧЕНИЯ

4

ED
7 a
2
ED

08

8	9
S	R
8	9
S	R

Толщина пластины

10

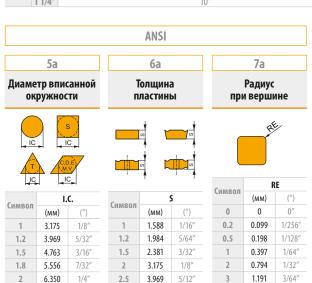
Зад. угол зачистной

кромки

ALP

			5								5			
	Длина режущей кромки													
1.	c.	Н	0	P	S	T	C	D	E	М	V	W	R	K
(MM)	(")				0		<u>•</u>	9	<u></u>	0			0	
3.97					03	06		04			06	02		
	5/32"							1.2"						
4.76					04	08	04	05	04	04	08	L3		
	3/16"							1.5"						
5.56	- /0.0 //				05	09	05	06	05	05	09	03		
4.35	7/32"	00	02	0.4	00	44	0.6	1.8"	00	00	- 11	0.4	0.0	
6.35	1/4"	03	02	04	80	11	06	2"	08	08	11	04	06	
7.94	1/4	04	03	05	07	13	08	09	06	07	13	05	07	
7.54	5/16"	04	UJ	UJ	07	13	00	2.5"	00	07	13	UJ	07	
9.525	3/10	05	04	07	09	16	09	11	09	09	16	06	09	19
7.020	3/8"	- 03	•	0.	0,			3"						.,
12.7		07	05	09	12	22	12	15	13	12	22	08	12	
	1/2"							4"						
15.875		09	06	11	15	27	16	19	16	15	27	10	15	
	5/8"							5"						
19.05		11	07	13	19	33	19	23	19	19	33	13	19	
	3/4"							6"						
25.4	= /e//	14	10	18	25	44	25	31	26	25	44	17	25	
24.75	5/1"	10	12	22	21	F 4	22	8"	22	21	F 4	21	21	
31.75	1 1/4"	18	13	23	31	54	32	38 10"	32	31	54	21	31	

ω		Ø
Символ	(MM)	S (")
01	1.59	1/16"
T1	1.98	5/64"
02	2.38	3/32"
03	3.18	1/8"
T3	3.97	5.32"
04	4.76	3/16"
05	5.56	7/32"
06	6.35	1/4"
07	7.94	5/16"
09	9.52	3/8"


8

	<u> </u>	
KAPR		ALP
45°	Α	3°
60°	В	5°
75°	C	7°
85°	D	15°
90°	E	20°
	F	25°
	G	30°
	N	0°
Специальный	P	11°
	Z	Специальный
ZZ — Спец	иальный	
	45° 60° 75° 85° 90°	45° A 60° B 75° C 85° D 90° E F G N Специальный Р

8

Угол наклона

режущей кромки

4.763

5.556

6.350

7.938

9.525

11.113

12.700

14.288

15.875

5/32

3/16"

7/32"

1/4"

5/16"

3/8"

7/16"

1/2"

9/16"

5/8"

1.588

1.984

2.381

2.778

3.175

3.969

4.763

5.556

6.350

10

12

14

16

1/16"

5/64"

3/32"

7/64

1/8"

5/32"

3/16"

7/32"

1/4"

6.350

7.938

9.525 12.700

15.875

19.050

22.225

25.400

31.750

38.100

2.5

3

5

8

10

12

1/4"

5/16"

3/8"

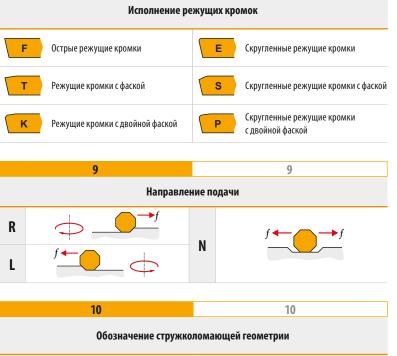
1/2"

5/8

7/8"

5/4"

6/4"


2.5

3.5

8

9

10

DORMER PRAMET

BCE BOAHOM

Все наши публикации с последними обновлениями доступны в одном приложении для мобильных устройств. Загрузить наше приложение Library можно в любом магазине приложений. Simply Reliable. Country: United Kingdom Language: en Catalogues Safety data sheets **Promotional Documents** FORCE AD Promotion Download on the App Store Google Play AppGallery

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ – НАВИГАТОР

ФРЕЗЕРОВАНИЕ ПЛОСКОСТЕЙ

>>>

		SHN	106C		SHNO)9C	SOE	005	SOD	06D	SO	E06Z
			5°		45	0	4.5		45			43°
		APMX (mm)	3.0		АРМХ (мм)	5.0	APMX (mm)	2.7 (10.0)	АРМХ (мм)	3.1 (8.6)	АРМХ (мм)	3.3 (9.9)
		DC (мм)	25 – 12	5	DC (MM)	50 – 315	DCX (MM)	32 – 125	DC (мм)	63 – 160	DC (MM)	50 – 200
Цилиндрический хво	стовик						Sec.	DCX = 32 – 40 (MM)				
Хвостовик Weldon			-6	DC = 25 - 32 (MM)								
Сменная головка с резьбовым хвостови	ком	1		DC = 25 - 40 (MM)								
Насадная фреза				DC = 40 - 125 (MM)				DCX = 40 – 125 (MM)			O. C.	
Страница		ш	350		P 3	54	Ш	358	Ш	368	£	374
ISO		P M K		н	P M K	Н	P M K	N	P M K	S H	P M	N S
Форма пластины		0			0	0	© (0		0	00
Тип пластины			(0604 (0604		HNGX (OD (RD : SD :	1205	OD (RPE.		RE	HT 0604 HT 1604 HT 0604
Количество режущих	кромок	12	!/1		12 /	1	8/-	- / 4	8/1	/-	8	/-/1
Фрезерование плоскостей												
Фрезерование фасок										1		
Фрезерование с винтовой интерполяцией												
Фрезерование с засверливанием		ı										
Врезание под углом												
Копировальное фрезерование												
Фрезерование неглубоких уступов												
Фрезерование неглубоких пазов												
Плунжерное фрезерование												
2/10												

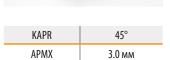
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПЛОСКОСТЕЙ – НАВИГАТОР

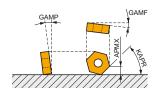
<<<

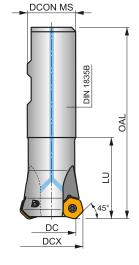
ФРЕЗЕРОВАНИЕ ПЛОСКОСТЕЙ

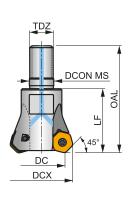
so	E09Z	SSE	:09	SSN	12Z	SPN	N13	CHI	N09	FSB	22X
	43°	45	5°	45		57		60		60	
АРМХ (мм)	5.0 (14.1)	АРМХ (мм)	4.5	АРМХ (мм)	6.5	АРМХ (мм)	10.0	АРМХ (мм)	6.0	АРМХ (мм)	15.0
DC (мм)	80 – 315	DC (MM)	20 – 160	DC (MM)	50 – 250	DC (MM)	100 – 315	DC (MM)	80 – 125	DC (MM)	125 – 315
			DC = 20 – 32 (MM)								
			ww)								
		12/11	DC = 32 – 160 (mm)			(a)	3.5		13		
	381							Д	399		403
P M	N S	P M K	S	P M K	S	P M K	S H	K)	P M K	
REI	HT 0906 HT 2406 HT 0906	SE.T (D9T3	SN.T	1205	PNM. XN		HN	0905	SB2	2207
8	/-/1	4		4		10.	/1	1	2	4/	1
											340

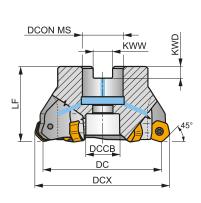
SHN06C





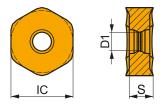

Фреза ECON HN06 с углом в плане 45° для обработки плоскостей


Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины HN.. 06 с глубиной резания до 3 мм имеют 12 режущих кромок. Фреза подходит для черновой обработки плоскостей и уступов.



	Обозначение	DC	DCX	OAL	DCON MS	DCCB	LU	LF	TDZ	KWW	KWD	GAMF	GAMP		(())	max.		S kg	<u></u>		
		(мм)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)	(°)	(°)								
	25N2R042B25-SHN06C-C	25	32.2	99	25	-	42	-	-	_	-	-7	-7	2	-	17400	✓	0.36	GI204	FA010	-
DIN 1835B	32N3R042B32-SHN06C-C	32	39.3	103	32	_	42	-	_	_	_	-7	-7	3	_	15400	\checkmark	0.59	GI204	FA010	_
	25N2R033M12-SHN06C-C	25	32.2	56	12.5	_	_	33	M12	_	-	-7	-7	2	-	-	✓	0.11	GI204	FA010	_
MODULAR	32N3R043M16-SHN06C-C	32	39.3	66	17	_	-	43	M16	_	-	-7	-7	3	-	-	✓	0.26	GI204	FA010	_
MODOLAR	40N4R043M16-SHN06C-C	40	47.3	66	17	_	_	43	M16	_	_	-7	-7	4	✓	_	✓	0.28	GI204	FA010	_
	40A05R-S45HN06C-C	40	47.3	_	16	14	_	40	_	8.4	5.6	-7	-7	5	✓	13800	✓	0.37	GI204	FA012	_
	50A04R-S45HN06C-C	50	57.3	-	22	18	_	40	-	10.4	6.3	-7	-7	4	✓	12300	✓	0.62	GI204	FA013	_
	50A06R-S45HN06C-C	50	57.3	_	22	18	-	40	-	10.4	6.3	-7	-7	6	✓	12300	✓	0.41	GI204	FA013	_
	63A06R-S45HN06C-C	63	70.3	_	22	18	_	40	_	10.4	6.3	-7	-7	6	✓	11000	✓	0.56	GI204	FA013	_
	63A08R-S45HN06C-C	63	70.3	_	22	18	-	40	_	10.4	6.3	-7	-7	8	✓	11000	\checkmark	0.69	GI204	FA013	_
ISO 6462	80A07R-S45HN06C-C	80	86.8	_	27	38	-	50	-	12.4	7	-7	-7	7	✓	9700	\checkmark	1.10	GI204	FA011	AC001
DIN 8030	80A10R-S45HN06C-C	80	86.8	_	27	38	-	50	_	12.4	7	-7	-7	10	\checkmark	9700	\checkmark	0.19	GI204	FA011	AC001
	100A08R-S45HN06C-C	100	107.1	_	32	45	_	50	_	14.4	8	-7	-7	8	✓	8700	\checkmark	2.07	GI204	FA011	AC002
	100A12R-S45HN06C-C	100	107.1	_	32	45	_	50	_	14.4	8	-7	-7	12	✓	8700	✓	1.82	GI204	FA011	AC002
	125A10R-S45HN06C-C	125	132.2	_	40	56	_	63	_	16.4	9	-7	-7	10	✓	7800	✓	3.62	GI204	FA011	AC003
	125A16R-S45HN06C-C	125	132.2	-	40	56	-	63	-	16.4	9	-7	-7	16	✓	7800	✓	3.93	GI204	FA011	AC003

		Nm			10			
FA010	US 3007-T09P	2.0	M 3	7.3	_	_	Flag T09P	-
FA011	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	_	_
FA012	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	_	HS 0830C


		Nm			10			
FA013	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	-	HS 1030C

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
ACOO3	KS 2040	K.FMH40

	HN	GX 06	
	IC	D1	S
	(MM)	(MM)	(MM)
0604	10.500	3.70	4.76

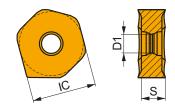
M9340

PRAMET

Применение инструме	нта, начальнь	ые знач	ения скор	ости ре	зания (Vc), под	ачи (f)	и глуби	НЫ	резан	ия (ар)). Для д	цоп	олнит	ельны	с расчет	0B B00	пользу	итесь г	ірил	ожени	ıем Cald	ulator
	PROMPH	RE		Р			M				K				N			S				Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин	f) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MI		ар ю (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)
	25°),05	+		S		((·····y		(44,444)	(<i>()</i>		(,	(()	(,		-, (,		((()
	1		Позитив	ная гео	метрия	I ДЛЯ ЧИ	стовой	обрабо	ТКИ	1.													
HNGX 0604ANSN-F	8215	_	315	0.11		1 85		1.7		_	-	-		-	_	-		_	_		_	-	-
	M6330	-	265	0.11		185		1.7		_	-	-		-	-	-	-	-	-		-	-	-
	M8310	-	3 45	0.11		∠ 175		1.7		_	-	-		-	-	-	_	-	_		_	-	-
	M8330	-	305	0.11	1.7	180	0.10	1.7		-	-	-		-	-	-	_	-	_		_	-	_
	M8340	-	285	0.11	1.7	1 70	0.10	1.7		_	-	-		-	-	-	_	_	_		-	-	-
	M9340	-	3 65	0.11	1.7	2 15	0.10	1.7		_	-	-		-	-	-	_	-	-		-	-	-
	23°	0,09		(Ú)	S																		
	1		Позитив	ная гео	метрия	I ДЛЯ ПО.	пучисто	вой об	раб	отки.													
HNGX 0604ANSN-M	8215		300	N 13	2.0	120	N 13	2.0		285	N 13	2.0		_				_			_		_

HNGX 0604ANSN-M 8215 ■ 300 0.13 2.0 **□** 180 0.13 2.0 **■** 285 0.13 2.0 M5315 **425** 0.13 2.0 400 0.13 2.0 M6330 **255** 0.13 2.0 🗷 180 0.13 2.0 M8310 325 0.13 2.0 🖊 165 0.13 2.0 🗖 305 0.13 2.0 M8330 2.0 🗷 175 0.13 2.0 🔳 280 0.13 295 0.13 M8340 265 0.13 2.0 🗷 155 0.13 2.0 🗷 250 0.13 2.0 M9315 410 0.13 2.0 **385** 0.13 2.0 M9325 375 0.13 2.0 355 0.13 2.0

■ 345 0.13 2.0 **□** 205 0.13 2.0


Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

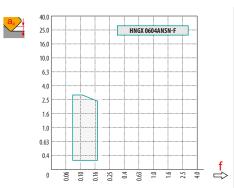
	PERMINA	RE			Р				M				K			N			S				Н	
Обозначение		(мм)	(vс м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M)		уб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)
6	17°	0,13	1		S																			
	+		Пози	итивн	ная гео	метри	ІЯ Д	ля пол	учисто	вой и	чер	оновой	обраб	отки.										
HNGX 0604ANSN-R	8215	_		280	0.18	1.8		165	0.18	1.8		265	0.18	1.8	_	_	_	-	-		_	55	0.15	1.0
	M5315	-		370	0.18	1.8		-	_	_		350	0.18	1.8	_	_	_	_	_		_	70	0.15	1.0
	M8310	-		300	0.18	1.8		150	0.18	1.8		285	0.18	1.8	-	-	-	_	-		_	60	0.15	1.0
	M8330	_		275	0.18	1.8		165	0.18	1.8		260	0.18	1.8	_	_	_	_	_		_	55	0.15	1.0
	M8340	_		250	0.18	1.8		150	0.18	1.8	Z	235	0.18	1.8	_	_	_	-	_		_	_	_	_
	M9325	-		345	0.18	1.8		_	-	-		325	0.18	1.8	-	_	-	_	_		-	65	0.15	1.0

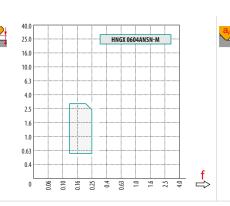
XNGX 06

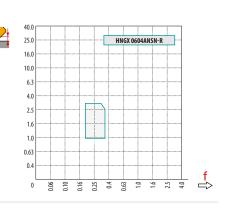
IC D1 S
(MM) (MM) (MM)
(0604 10.500 3.70 4.76

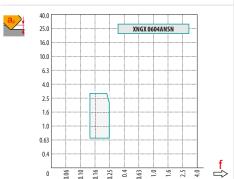
PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

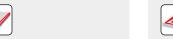

0.0	RAKSAPA)	RE		Р			M			K			N				S			Н		
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vc f мин) (мм/:	ар уб) (мм)	(vc м/мин)	f (мм/зуб)	ар (мм)		с лин) (мл		ар (мм)
	0,1	2	W	S																		
	22°		Геометрі	ия с под	цчищаю	щей кро	омкой д	І ЛЯ ПОЕ	вышения	качест	ва обра	ботк	И.									
XNGX 0604ANSN	8215	-	290	0.13	1.8 I	1 70	0.12	1.8	275	0.13	1.8			-		_	-	-	-		-	-






a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	HNGX 06-F	HNGX 06-M	HNGX 06-R	XNGX 06
RE	-	-	-	-
BS	1.12	0.80	0.80	4.15

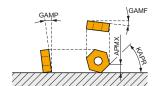


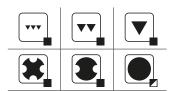
DC	(X.V	$\overset{f_{\text{max}}}{\Longrightarrow}$
25	1.31	0.24
32	1.36	0.28
40	1.40	0.31
50	1.45	0.35
63	1.49	0.39
80	1.54	0.44
100	1.59	0.49
125	1.64	0.55

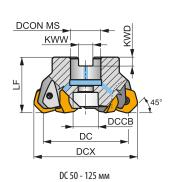
DC	RPMX	APMX/I
25	2.7	3.0/65
32	1.9	3.0/89
40	1.5	2.5/100
50	1.1	1.9/100
63	0.9	1.4/100
80	0.6	1.0/100
100	0.5	0.8/100
125	0.4	0.6/100

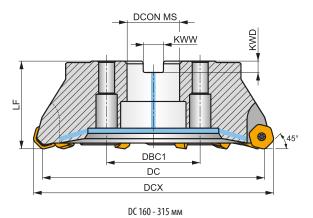
a _p	
0.9	

SHN09C



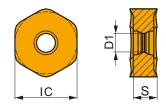



Фреза ECON HN09 с углом в плане 45° для обработки плоскостей


Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины НN.. 09 с глубиной резания до 5 мм имеют 12 режущих кромок. Фреза подходит для черновой и чистовой обработки плоскостей, фрезерования фасок.

KAPR	45°
APMX	5.0 мм

	Обозначение	DC	DCX (MM)	LF (MM)	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		∫ kg			
	50A04R-S45HN09C-CF	50	61.7	40	22	18	_	10.4	6.3	-7	-7	4	✓	7900	✓	0.38	GI252	FA023	_
	63A06R-S45HN09C-CF	63	74.7	40	22	18	_	10.4	6.3	-7	-7	6	✓	7000	✓	0.54	GI252	FA023	_
	80A06R-S45HN09C-CF	80	91.7	50	27	38	_	12.4	7	-7	-7	6	✓	6200	✓	1.06	GI252	FA021	AC001
	80A08R-S45HN09C-CF	80	91.7	50	27	38	_	12.4	7	-7	-7	8	✓	6200	✓	1.06	GI252	FA021	AC001
	100A06R-S45HN09C-CF	100	111.7	50	32	45	-	14.4	8	-7	-7	6	✓	5600	✓	1.76	GI252	FA021	AC002
	100A08R-S45HN09C-CF	100	111.7	50	32	45	-	14.4	8	-7	-7	8	✓	5600	✓	1.76	GI252	FA021	AC002
	100A10R-S45HN09C-CF	100	111.7	50	32	45	-	14.4	8	-8	-7	10	_	5600	✓	1.76	GI252	FA021	AC002
71-170	125A06R-S45HN09C-CF	125	136.7	63	40	56	-	16.4	9	-7	-7	6	✓	5000	✓	3.36	GI252	FA021	AC003
ISO 6462 DIN 8030	125A08R-S45HN09C-CF	125	136.7	63	40	56	-	16.4	9	-7	-7	8	✓	4900	✓	3.72	GI252	FA021	AC003
DIN 8030	125A10R-S45HN09C-CF	125	136.7	63	40	56	-	16.4	9	-7	-7	10	✓	5000	✓	3.36	GI252	FA021	AC003
	125A12R-S45HN09C-CF	125	136.7	63	40	56	_	16.4	9	-8	-7	12	_	5000	✓	3.36	GI252	FA021	AC003
	160C08R-S45HN09C-CF	160	171.7	63	40	_	66.7	16.4	9	-7	-7	8	✓	4400	✓	6.30	GI252	FA026	
	160C12R-S45HN09C-CF	160	171.7	63	40	-	66.7	16.4	9	-7	-7	12	✓	4400	✓	6.46	GI252	FA026	_
	160C14R-S45HN09C-CF	160	171.7	63	40	-	66.7	16.4	9	-7	-7	14	✓	4400	✓	6.45	GI252	FA026	
	200C10R-S45HN09C-CF	200	211.7	63	60	_	101.6	25.7	14	-7	-7	10	✓	3900	✓	11.37	GI252	FA027	
	250C14R-S45HN09C-CF	250	261.7	63	60	_	101.6	25.7	14	-7	-7	14	✓	3500	✓	18.50	GI252	FA028	
	315C16R-S45HN09C-CF	315	326.7	80	60	_	101.6	25.7	14	-7	-7	16	\checkmark	3100	\checkmark	37.00	GI252	FA029	_

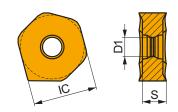


		Nm Nm					(1) I		6	(0		
FA021	US 54511-T15P	5.0	M 4.5	11	D-T08P/T15P	FG-15	_	-	_	-	-	-
FA023	US 54511-T15P	5.0	M 4.5	11	D-T08P/T15P	FG-15	HS 1030C	-	_	_	-	-
FA026	US 54511-T15P	5.0	M 4.5	11	D-T08P/T15P	FG-15	HS 1240C	CAC 160C	HSD 0825C	HXK 5	-	-
FA027	US 54511-T15P	5.0	M 4.5	11	D-T08P/T15P	FG-15	HS 1655C	CAC 200C	HSD 1025C	HXK 7	-	-
FA028	US 54511-T15P	5.0	M 4.5	11	D-T08P/T15P	FG-15	HS 1655C	CAC 250C	HSD 1025C	HXK 7	_	-
FA029	US 54511-T15P	5.0	M 4.5	11	D-T08P/T15P	FG-15	HS 1655C	CAC 315C	HSD 1035C	HXK 7	CACP 3150C	RRH 34

AC001	KS 1230	K,FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

	HN	GX 09	
	IC	D1	S
	(MM)	(мм)	(MM)
0906	16.500	4.90	6.35

PRAMET


Применение инструмен	нта, начальны	е знач	ения скор	ости ре:	вания	(Vc),	пода	чи (f) и	і глубиі	НЫ	і резан	ия (ар)	. Для д	ЮΠ	олните	ельны)	с расче	етов в	ОСПО	ользуйт	есь пр	иложени	ıем Cal	culato
0.5	PARACASA	RE	Р					M				K				N		S					Н	
Обозначение		(мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc /мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)
100	22°		+		E																			
	1		Позитив	ная гео	метри	я для	я чис	товой о	бработ	ГКИ	1.													
HNGX 0906ANEN-FF	8215	_	3 45	0.10	1.0		205	0.09	1.0		-	-	-		_	_	_		_	_	-	_	_	-
	M8330	_	335	0.10	1.0		200	0.09	1.0		-	-	-		_	_	_		-	_	-	-	_	-
	M9340	-	405	0.10	1.0		240	0.09	1.0		-	-	-		-	-	-		-	-	-	-	-	-
6	22° 0	,07	+		S																			
	+		Позитив	ная гео	метри	я для	я чис	товой и	і получ	ИC	товой (обрабо	тки.											
HNGX 0906ANSN-F	8215	_	3 00	0.12	2.1		180	0.11	2.1		_	_	-		_	-	-		_	_	-	-	_	-
	M6330	-	255	0.12	2.1		180	0.11	2.1		-	_	-		-	-	-		-	-	-	-	-	-
	M8310	_	330	0.12	2.1		165	0.11	2.1		-	-	-		-	-	-		-	_	-	-	-	-
	M8330	-	300	0.12	2.1		180	0.11	2.1		-	_	-		-	-	-		-	-	-	-	-	-
	M8340	-	270	0.12	2.1		160	0.11	2.1		-	_	-		-	-	-		-	-	-	-	-	-

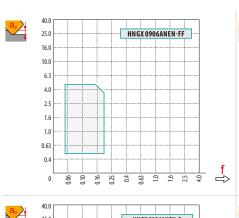
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

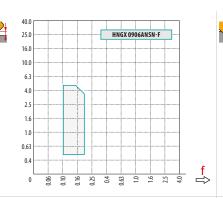
Применение инструме	нта, начальнь	ые знач	ени	я скорс	ости ре	зания	(VC	:), пода	эчи (†) і	и глубі	1НЬ	і резан	іия (ар)). ДЛЯ Д	цополн	ите	ЛЬНЫХ	расче	TOB	восп	ользуит	есь п	рило	ожени	ем Саю	uiato
25	PSCAPA	RE			Р				M				K				N				S				Н	
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		с иин)	f (мм/зуб)	ар (мм)	(vс м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)
	22°	0,12	По	ОЗИТИВІ	₹Û } ная гео			ля пол	іучисто	вой об	ipa(ботки.														
HNGX 0906ANSN-M	8215	_		255	0.20	2.7		150	0.18	2.7		240	0.20	2.7	-	-	_	_		_	_	_		_	_	_
	M5315	_	Z	340	0.20	2.7		_	_	_		320	0.20	2.7	-	-	_	_		_	_	_		_	_	_
	M6330	_		205	0.20	2.7		-	_	_		-	_	_	-	-	_	_		_	_	_		_	_	_
	M8310	_		280	0.20	2.7		140	0.18	2.7		265	0.20	2.7	-	-	_	_		_	_	_		_	_	_
	M8330	_		255	0.20	2.7		150	0.18	2.7		240	0.20	2.7	-	-	_	_		_	_	_		_	_	_
	M8340	_		235	0.20	2.7		140	0.18	2.7		220	0.20	2.7	-	-	_	_		_	-	_		_	_	_
	M9315	_		340	0.20	2.7		-	-	-		320	0.20	2.7	-	-	-	-		-	-	-		_	-	_
	M9325	_		315	0.20	2.7		-	_	_		295	0.20	2.7	-	-	_	_		_	_	-		_	-	_
	M9340	-		290	0.20	2.7		170	0.18	2.7		-	-	-	-	-	-	-		-	-	-		-	-	-
	17°	0,20	По	эзитиві	S	метрі	ия д	ля пол	іучисто	вой и	чер	новой	обраб	отки.												
HNGX 0906ANSN-R	8215			240	0.25	3.0		140	0.25	3.0		225	0.25	3.0		_	_	_		_		_		45	0.15	1.0
	M5315	_			0.25	3.0		_	_	_		285	0.25	3.0		_	_	_		_	_	_		60	0.15	1.0
	M8310	_		260	0.25	3.0		130	0.25	3.0		245	0.25	3.0		_	_	_		_	_	_		50	0.15	1.0
	M8330	_		240	0.25	3.0			0.25	3.0		225	0.25	3.0		_	_	_		_	_	_			0.15	1.0
	M8340	_		220	0.25				0.25	3.0			0.25	3.0		-	_	_		_	_	_		_	_	_
	M9315	_		310	0.25	3.0	T	_	_	_		290	0.25	3.0	_	_	_	_		_	_	_		60	0.15	1.0
	MOZZE				0.25	2.0							0.25	2.0										гг	0.15	

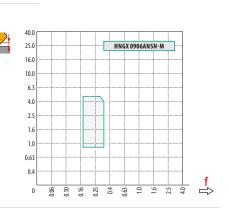
	XNO	GX 09	
	IC	D1	S
\square	(MM)	(MM)	(MM)
0906	16.500	4.90	6.35

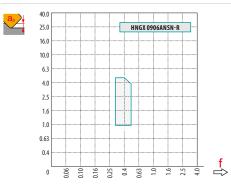
PRAMET

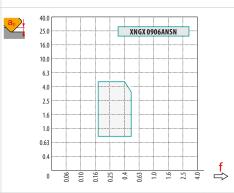
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.


0.5	PKPKPFI	RE		P				M				K				N				S			Н	
Обозначение		(MM)		с f лин) (мм/з	а) уб) (м		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(VC M/MUH)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	22°		W Геоме	трия с г		цаюц	цей крс	омкой д	іля поі	ВЫ	шения	качест	ва обра	або	отки.									
XNGX 0906ANSN	8215	_	2	15 0.2	0 2.	.7	145	0.18	2.7		230	0.20	2.7		_	_	-		_	_	-	-	_	_
	M8330	-	2	15 0.2	0 2.	.7	145	0.18	2.7		230	0.20	2.7		_	-	-		-	-	-	-	-	_






a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒×.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

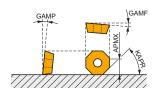

00000000	HNGX 09-FF	HNGX 09-F	HNGX 09-M	HNGX 09-R	XNGX 09
RE	-	-	-	-	-
BS	1.50	1.17	1.17	1.17	7.53

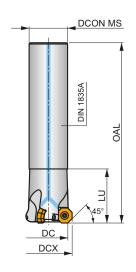
DC	(X.V	$\overset{f_{\text{max}}}{\Longrightarrow}$
50	1.35	0.36
63	1.39	0.40
80	1.44	0.45
100	1.48	0.51
125	1.53	0.57
160	1.58	0.64
200	1.63	0.72
250	1.68	0.80
315	1.74	0.90

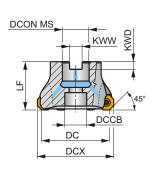
DC	RPMX	APMX/I
50	2.1	3.5/100
63	1.5	2.5/100
80	1.1	1.8/100
100	0.9	1.4/100
125	0.7	1.1/100
160	0.5	0.7/100

a _p
1.9

SOD05



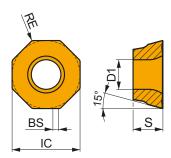

KAPR	45°
APMX	2.7 (10.0) мм



Универсальная фреза

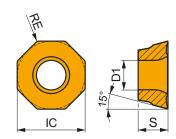
Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Универсальная конструкция позволяет устанавливать разные типы односторонних пластин: ОД. 05, RD. 12 и SD. 12. Фреза подходит для обработки плоскостей, уступов, фасок, а также для копировального фрезерования.

	Обозначение	DCX	DC	OAL	DCON MS	DCCB	LU	LF	KAPR	KWW	KWD	GAMF	GAMP		((),	max.		∫ kg	<u></u>		
		(MM)	(MM)	(MM)	(MM)	(MM)	(мм)	(MM)	(°)	(мм)	(MM)	(°)	(°)								
	32N3R045A25-S0D05-C	32	24.7	130	25	_	45	_	45	_	-	-10	8	3	_	17700	✓	0.41	GI326	FA049	-
DIN 1835A	40N3R045A32-S0D05-C	40	32.6	150	32	-	45	-	45	_	-	-7	8	3	_	15800	✓	0.86	GI326	FA040	-
	40A03R-S450D05-C	40	32.7	-	16	14	-	40	45	8.4	5.6	-10	8	3	_	15800	✓	0.19	GI326	FA042	-
	50A04R-S450D05-C	50	42.6	-	22	18	-	40	45	10.4	6.3	-7	8	4	_	14100	✓	0.28	GI326	FA043	-
	50A05R-S450D05-C	50	42.6	-	22	18	-	40	45	10.4	6.3	-7	8	5	_	14100	\checkmark	0.28	GI326	FA043	_
B-400	63A05R-S450D05-C	63	55.6	-	22	18	-	40	45	10.4	6.3	-7	8	5	✓	12600	\checkmark	0.39	GI326	FA043	-
ISO 6462 DIN 8030	63A06R-S450D05-C	63	55.6	-	22	18	_	40	45	10.4	6.3	-7	8	6	✓	12600	\checkmark	0.40	GI326	FA043	-
DIN 8030	80A06R-S450D05-C	80	72.6	-	27	38	-	50	45	12.4	7	-7	8	6	✓	11100	\checkmark	0.73	GI326	FA041	AC001
	80A08R-S450D05-C	80	72.6	-	27	38	_	50	45	12.4	7	-7	8	8	✓	11100	\checkmark	0.66	GI326	FA041	AC001
	100A07R-S450D05-C	100	92.6	-	32	45	_	50	45	14.4	8	-7	8	7	✓	10000	\checkmark	1.09	GI326	FA041	AC002
	125A08R-S450D05-C	125	117.6	-	40	56	-	63	45	16.4	9	-7	8	8	✓	8900	✓	2.20	GI326	FA041	AC003

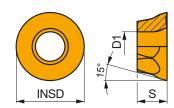

	0	0	•	•
GI326	OD 0505	RD 1205	SDKT 1205	SDMT 1205SN

		Nm					
FA040	US 45014-T20P	5.0	M 5	13	Flag T20P	-	_
FA041	US 45014-T20P	5.0	M 5	13	_	SDR T20P-T	_
FA042	US 45014-T20P	5.0	M 5	13	_	SDR T20P-T	HS 90835
FA043	US 45014-T20P	5.0	M 5	13	_	SDR T20P-T	HS 1030C
FA049	US 45011-T20P	5.0	M 5	11	Flag T20P		_

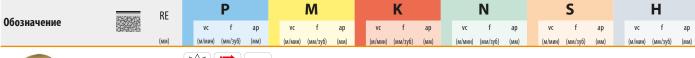
AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40


	OE	OKT 05	IM	
	IC	D1	S	BS
	(MM)	(мм)	(мм)	(MM)
0505	12.700	5.50	5.56	1.00

Применение инструмен	нта, начальнь	не знач	ени	я скорс	сти ре	зания (Vc), п	одач	чи (†) и	глуби	ΗЫ	і резан	іия (ар). Для до	ОΠ	олните	2льны	х расче	eT0B	ВОСП	ользуй	гесь пр	копис	кение	em Calc	ulato
	PSC PACKET	RE			Р				M				K				N				S				Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc [/] мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc л/мин)	f (мм/зуб)	ар (мм)
	(15°	(mm)	Пс	<u>+</u>	o)	Г					TKI		(MM/SyU)	(mm)		(м/мин)	(mm/syu)	(MM)		(м/мип)	(mm/syu)	(mm)	(m	л/мин)	(mm/syu)	(mm)
ODKT 0505ADFR-F	M8310	0.8		275	0.15		дли Z 1		0.14	2.5	110	-	-	-		-	_	_		-	-	-		_	_	_
	0,1	<u>2</u> ∖17°	2	1	S																					
THE REAL PROPERTY.	15°	7	По	ЗИТИВ	ная гео	метрия	для	чист	овой и	получ	ΙИС	товой	обрабо	тки.												
ODKT 0505ADSR-FM	M6330	0.8		190	0.25	2.5	1	35	0.23	2.5		_	-	-		_	_	-		_	-	_		-	-	_
	M8310	0.8		240	0.25	2.5	Z 1	20	0.23	2.5		225	0.25	2.5		-	-	-		-	-	_		-	-	-
	M8330	0.8		225	0.25	2.5	1	35	0.23	2.5		210	0.25	2.5		-	-	-		-	-	_		-	-	-
	M8345	0.8		160	0.25	2.5	9	95	0.23	2.5		-	_	-		-	-	-		-	-	_		-	-	-
	M9340	0.8		245	0.25	2.5	1	45	0.23	2.5		-	_	-		_	_	_		_	_	_		_	_	-



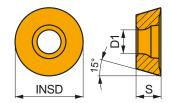
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.


1 17						,, ,,	٠,				, , ,					•			•				
06	CHARGES	RE		Р			M			K	(N				S		ı	1	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)		ин) (м <i>г</i>	f ıм/зуб)	ар (мм)		vc /мин)	f (мм/зуб)	ар (мм)	(1	vс м/мин)	f (мм/зуб)	ар (мм)	vc /мин) (і	f мм/зуб)	ар (мм)
	0,1	<u>2</u> ∖17°		S																			
TIMO MAN	15°	7	Позитив	ная гео	метрия	для чис	товой и	і получ	истов	ой обр	работ	тки.											
ODMT 0505ADSR-FM	M8340	0.8	200	0.25	2.5	120	0.23	2.5	1 9	90 0).25	2.5		_	_	_		_	_	_	_	_	_
	M9340	0.8	2 45	0.25	2.5	1 45	0.23	2.5	-	-	_	-		_	_	_		_	_	_	_	_	_
	0,1	1 <u>7</u> \10°	*	S																			
	20°	7	Позитив	ная гео	метрия	для нес	табилы	ных усл	10ВИЙ	обраб	ботки	1.											
ODMT 050508SN-R	M8330	0.8	190	0.25	2.5	_	_	-	18	30 0).25	2.5		_	_	_		_	_	-	_	_	_
	M9340	0.8	210	0.25	2.5	_	_	_		_	_	_	Ι.	_	_	_		_	_	_	_	_	_

| INSD | D1 | S | (MM) | (MM) | (MM) | 1205 | 12.7 | 5.50 | 5.56

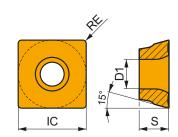
PRAMET

0.5	PRAKRE	RE			Р				M				K			N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)									
*	(15°		H	FC	F																		
	,		Поз	витивн	ная геог	метри	ІЯ Д	ля чис	товой (брабо	OTK	И.											
RDGT 120500FN-F	M8310	-		210	0.20	1.5		105	0.18	1.5		-	-	-	-	-	-	-	-	-	-	-	-



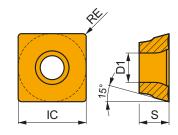
Позитивная геометрия для чистовой и получистовой обработки.

RDGT 120500SN-FM	M8330	_	190	0.20	1.5	110	0.18	1.5	180	0.20	1.5	_	_	-	-	_	_	_	_	_
	M8345	-	140	0.20	1.5	80	0.18	1.5	_	-	_	-	_	-	-	_	_	_	-	-


	RDM	IT 12IM	
	INSD	D1	S
	(MM)	(MM)	(MM)
1205	12.7	5.50	5.56

	PUNDAN	RE		P	1			М				K				N			S			Н	
Обозначение		(мм)		с (ми	f ı/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		vc wnh)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)	VC (M/MI		ар б) (мм)
(мм) (м/мин) (мм/зуб) (мм) (м/мин)																							
RDMT 120500SN-R	M8330	_	1	⁷ 5 0.	30	1.5	_	_	_		165	0.30	1.5		-	-	-	_	-	-	_	_	_
RDMT 120500SN-R	M8330 M8340	_ _			30 30	1.5 1.5	-	-	-		165 150	0.30	1.5 1.5		-	-	- -	- -	-	-	-	-	-

SDKT 12IM IC D1 S (MM) (MM) (MM) (MM) 1205 12.700 5.50 5.56



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

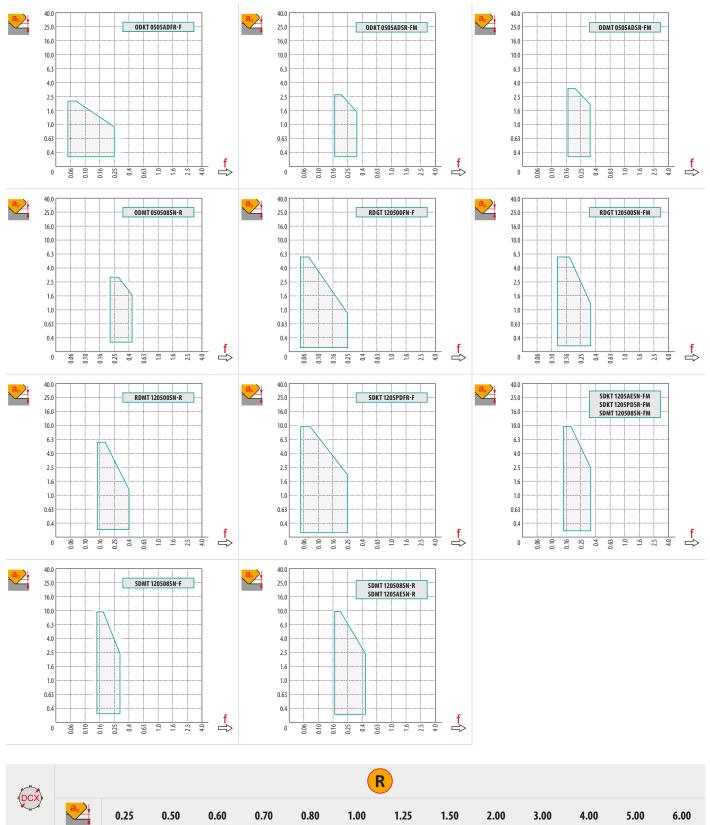
ripimeneniae interpyme	,	5		opo.	p		(/	,		,		- р	(/		,				 					
0.5	PHARACHE	RE			Р				M				K				N			S			Н	
Обозначение		(MM)		vc мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(M/N	: f ин) (мм/зу	ар i) (мм)
	(15°		F				ія дл		товой с		ТКИ		·											
SDKT 1205PDFR-F	8215	0.8	2	85	0.10	4.0		170	0.09	4.0		-	-	-		855	0.12	4.0	_	-	-	-	-	-
nun	0,	1 <u>5</u> \17°	1	2		S																		
- Junean S	15°	1	Позит	ивн	ая геоі	метри	ІЯ ДЈ	пя чис	товой и	1 получ	чис	товой	обрабо	тки.										
SDKT 1205AESN-FM	M6330	_	2	40	0.15	4.0		170	0.15	4.0		-	_	_		_	_	_	-	-	_	-	_	-
	M8330	-	2	80	0.15	4.0		165	0.15	4.0		265	0.15	4.0		_	_	_	_	-	-	-	_	_
	M8345	-	2	05	0.15	4.0		120	0.15	4.0		-	_	_		_	_	_	_	-	_	-	_	_
SDKT 1205PDSR-FM	M8330	0.8	2	55	0.15	4.0		150	0.15	4.0		240	0.15	4.0		_	_	_	-	_	_	-	_	-
	M8345	0.8	1	85	0.15	4.0		110	0.15	4.0		_	_	_		_	_	_	_	_	_	_	_	_

SDMT 12IM IC D1 S (MM) (MM) (MM) 1205 12.700 5.50 5.56

PRAMET

0.5	PRESCRI	RE		P				M				K				N			S				Н	
Обозначение		(MM)	vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)
orno S	0,00		S			я д				чис		обрабо		туп					(_			(cons)
SDMT 120508SN-F	M8310	8.0	265	0.15	4.0		135	0.15	4.0		_	_	_		_	_	-	_	_	-		_	_	_
	M8330	8.0	245	0.15	4.0		145	0.15	4.0		-	_	_		735	0.18	4.0	_	-	-		-	-	_

	PEAN SPA	RE		Р			M				K			N				S			Н	
Обозначение		(MM)	(M/N		ар) (мм)	VC (M/M)		ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f ı) (мм/зуб	ар) (мм)	(vc м/мин)	f (мм/зуб)	ар (мм)	VC (M/MM		ар (мм)
Linute 1	0,	15 \17°	Позити				олучистс															
SDMT 120508SN-FM	M8345	0.8	1 7	5 0.15	4.0	1 0	5 0.15	4.0		-	-	-	_	-	-		-	-	-	-	-	-
	0,	17 \10°	Позити	S	ометрия	я для не	естабиль	ных усл	лові	ий обр	аботк	И.										
SDMT 120508SN-R	M8330	0.8	2 2	5 0.20	4.0	_	_	-		210	0.20	4.0	_	_	-		_	_	_	_	-	-
	M8345	8.0	1 6	5 0.20	4.0	_	_	-		_	_	-	-	-	-		-	_	-	_	-	-
	M9340	0.8	2 5	0.20	4.0	_	_	-		-	_	-	_	-	-		-	_	-	_	-	-
SDMT 1205AESN-R	M8330	-	2 6	5 0.20	4.0	_	-	-		250	0.20	4.0	_	-	-		-	-	-	_	-	-
	M8340	_	1 24	.0 0.20	4.0	_	_	_		225	0.20	4.0	_	_	_		_	_	_	_	_	_



a _e /DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	ODKT 05-F	ODKT 05-FM	ODMT 05-FM	ODMT 05-R
RE	0.4	0.8	0.8	0.8
BS	1.00	1.00	-	_

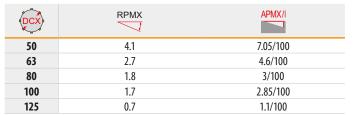
00000000	RDGT 12-F	RDGT 12-FM	RDGT 12-R			
RE	6.35	6.35	6.35			
BS	_	_	_			

00000000	SDKT 12-F	SDKT 12-FM	SDMT 12-F	SDMT 12-R
RE	0.8	0.8	0.8	0.8
BS	2.30	2.30	_	_

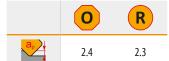
DCX		R												
	a _p	0.25	0.50	0.60	0.70	0.80	1.00	1.25	1.50	2.00	3.00	4.00	5.00	6.00
32		23.43	24.80	25.23	25.62	25.99	26.63	27.33	27.94	28.94	30.39	31.31	31.83	32.00
40		31.43	32.80	33.23	33.62	33.99	34.63	35.33	35.94	36.94	38.39	39.31	39.83	40.00
50		41.43	42.80	43.23	43.62	43.99	44.63	45.33	45.94	46.94	48.39	49.31	49.83	50.00
63	DEF	54.43	55.80	56.23	56.62	56.99	57.63	58.33	58.94	59.94	61.39	62.31	62.83	63.00
80		71.43	72.80	73.23	73.62	73.99	74.63	75.33	75.94	76.94	78.39	79.31	79.83	80.00
100		91.43	92.80	93.23	93.62	93.99	94.63	95.33	95.94	96.94	98.39	99.31	99.83	100.00
125		116.43	117.80	118.23	118.62	118.99	119.63	120.33	120.94	121.94	123.39	124.31	124.83	125.00

DCX	X.V	f_{max}
32	1.36	0.28
40	1.40	0.31
50	1.43	0.33
63	1.47	0.37
80	1.52	0.42
100	1.57	0.47
125	1.62	0.52

10.0



a _p	1.0	5.0	10.0
∯	0.35	0.21	0.15


DCX	RPMX	APMX/I
50	3.8	6.2/95
63	2.5	4.25/100
80	1.7	2.85/100
100	1.6	2.65/100
125	0.3	0.4/100

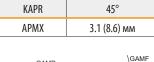
DCX	DMIN	DMAX	SMAX DMIN	SMAX DMAX
50	78.0	100.0	4.5	4.5
63	105.0	126.0	4.5	4.5
80	138.0	160.0	4.5	4.5
100	178.0	200.0	4.5	4.5
125	230.0	250.0	4.0	4.5

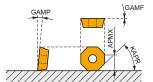
						R						
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
40		0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
50	IV/S FE	0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
63	F	0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
100		1.095	1.414	2.000	2.449	2.828	3.464	4.000	4.472	4.899	5.657	6.325
125		1.225	1.581	2.236	2.739	3.162	3.873	4.472	5.000	5.477	6.325	7.071
DE/	um											
RE	μm	3	5	10	15	20	30	40	50	60	80	100
6.0	OFF	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191

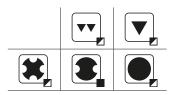
i

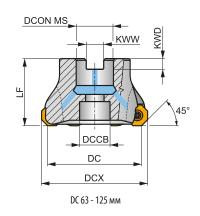
ODKT 05		ODMT 05	
5 6 8 9½ 9½ 9½ 9½ 9½	-> 2.7 8 -> 3.4 7 -> 7.6 4 -> 8.5 2	5 6 7 3 8 S S S S S S S S S S S S S S S S S S	-> 3.0 8 -> 8.5 4

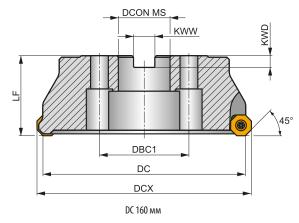
SOD06D

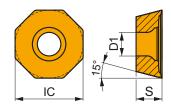

PRAMET





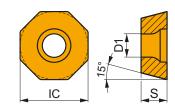

Универсальная фреза


Конструкция фрезы имеет нейтрально-позитивную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Универсальная конструкция позволяет устанавливать разные типы односторонних пластин: ОD.. Об и RP.. 15. Фреза подходит для обработки плоскостей, фасок, а также для копировального фрезерования.


	Обозначение	DC	DCX	LF	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(мм)	(MM)	(°)	(°)							
	63A05R-S450D06D	63	72.5	40	22	18	_	10.4	6.3	0	5	5	✓	8800	✓	0.60	G1059	FA071
D-420	80A06R-S450D06D	80	89.5	50	27	20	-	12.4	7	0	5	6	\checkmark	7800	\checkmark	1.25	G1059	FA071
ISO 6462 DIN 8030	100A07R-S450D06D	100	109.5	50	32	27	-	14.4	8	0	5	7	\checkmark	7000	✓	2.09	GI059	FA071
DIN 8030	125A08R-S450D06D	125	134.5	63	40	33	-	16.4	9	0	5	8	\checkmark	6300	✓	4.18	GI059	FA071
	160C09R-S450D06D	160	169.5	63	40	56	66.7	16.4	9	0	5	9	✓	5500	_	6.49	GI059	FA071

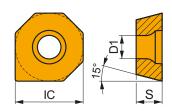
GI059	OD 0605ZZ	RP 1505MO

	9	Nm			Po
FA071	US 4511-T20	5.0	M 4.5	11	SDR T20-T

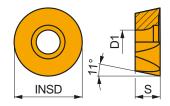


•	24/24/34/3	RE		P			M				K			N			S			Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/ми		ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,12)°	Позитивн	S	иетрия	для пол	учистоі	вой об	ipa	іботки.											

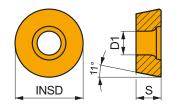
							,													
ODMT 0605ZZN	M5315	_	255 (0.24 3.0	0	_	_	_	240	0.24	3.0	_	-	-	_	_	_	_	-	_
	M8330	_	200 (0.24 3.0	0	-	_	_	190	0.24	3.0	_	_	-	_	_	_	_	-	_
	M8340	-	185 (0.24 3.0	0	-	-	-	175	0.24	3.0	_	_	-	_	_	-	-	-	_
	M9315	_	260 (0.24 3.0	0	_	-	-	245	0.24	3.0	_	_	-	_	_	-	_	-	_
	M9325	_	245 (0.24 3.1	0	_	_	_	230	0.24	3.0	_	_	_	_	_	_	_	_	_


	ODE	W 06	
	IC	D1	S
	(мм)	(MM)	(MM)
0605	15.875	5.50	5.56

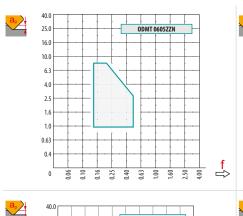
•	escenses RE	Р	M	K	N	S	Н
Обозначение	KE (MM)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)			
	, → → → 0,15	S S					
	20°	Геометрия с нейтраль	ным передним углом ,	для получистовой обра	аботки.		
ODEW 0605ZZN	M8330 –	2 10 0.26 2.5		1 95 0.26 2.5			4 0 0.15 1.0

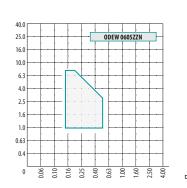


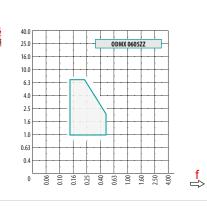
	RP	ET 15	
	INSD	D1	S
	(MM)	(MM)	(MM)
1505	15.8	5.50	5.56

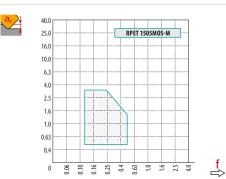

PRAMET

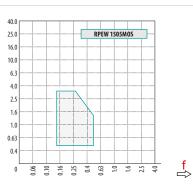
	PAPAGE	RE			Р				M				K				N			S			н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,08	\12°	Ī	н FC	S	метри	ія д	ля чис	товой и	ı черн	0B(ой копи	іровалі	ьной об	ipa	ботки.								
RPET 1505MOS-M	M8330	_		230	0.40	1.0		135	0.36	1.0	Z	215	0.40	1.0		-	_	_	55	0.28	0.8	_	_	_
	M8340	_		210	0.40	1.0		125	0.36	1.0		195	0.40	1.0		-	-	-	50	0.28	8.0	-	_	-

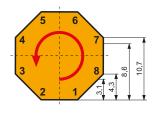

	P42813P4	RE		Р			M				K				N			S				Н	
Обозначение		(MM)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	(1	vc м/мин)	f (мм/зуб)	ар (мм)
	/ - - 0,	14	HFC	S																			
	15°		Геометри	ия с ней	ітральн	ым пер	едним у	/глом ,	ДЛЯ	я получ	истово	ой копі	иро	вальн	ой обра	аботки.							
RPEW 1505MOS	M8330	_	3 00	0.20	1.0	_	_	-		285	0.20	1.0		_	-	-	_	-	-		60	0.15	1.0






a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒ x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00


00000000	ODMT 06	ODEW 06	ODMX 06	RPET 15-M	RPEW 15
RE	-	_	-	7.89	7.89
BS	1.73	5.92	9.91	-	_

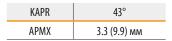


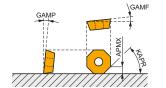
DC					(R				
(DC)	a _p	0.00	0.50	0.75	1.25	1.50	2.00	2.50	3.00	4.00
63		56.63	62.17	63.36	65.18	65.91	67.16	68.19	69.05	70.41
80	_	73.63	79.17	80.36	82.18	82.91	84.16	85.19	86.05	87.41
100	(DEF)	93.63	99.17	100.36	102.18	102.91	104.16	105.19	106.05	107.41
125		118.63	124.17	125.36	127.18	127.91	129.16	130.19	131.05	132.41
160		153.63	159.17	160.36	162.18	162.91	164.16	165.19	166.05	167.41

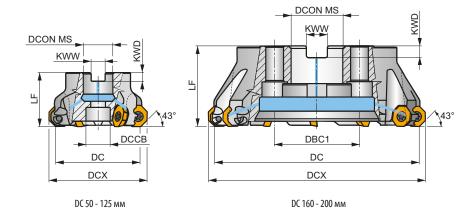
DC	(X.V	$\overset{f_{\text{max}}}{\Longrightarrow}$
63	1.49	0.78
80	1.54	0.88
100	1.59	0.98
125	1.64	1.10
160	1.70	1.24

a _p	
->3.1	8
-> 4.3	7
-> 8.6	4
-> 10.7	2

SOE06Z


PRAMET




Универсальная фреза

Конструкция фрезы имеет двойную позитивную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Универсальная конструкция позволяет устанавливать разные типы односторонних пластин: ОЕ.. Об, RE.. 16 и XE.. Об. Фреза подходит для обработки плоскостей, фасок, а также для копировального фрезерования.

	Обозначение	DC	DCX	LF	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		∫ kg	<u></u>		
	50A04R-S450E06Z-C	50	60.2	40	22	18	_	10.4	6.3	6	10	4	✓	10700	✓	0.48	GI283	FA053	_
	50A05R-S450E06Z-C	50	60	40	22	18	-	10.4	6.3	1	10	5	✓	10700	✓	0.48	GI283	FA053	-
	56A05R-S450E06Z-C	56	66	40	22	18	-	10.4	6.3	6	10	5	✓	10100	✓	0.54	GI283	FA053	-
	63A04R-S450E06Z-C	63	73.2	40	22	18	_	10.4	6.3	6	10	4	✓	9600	✓	0.59	GI283	FA053	_
	63A06R-S450E06Z-C	63	73	40	22	18	-	10.4	6.3	1	10	6	✓	9600	✓	0.61	GI283	FA053	_
	70A06R-S450E06Z-C	70	80	40	22	18	-	10.4	6.3	6	10	6	✓	9100	✓	0.69	GI283	FA053	_
	80A05R-S450E06Z-C	80	90.2	50	27	38	_	12.4	7	6	10	5	✓	8500	✓	1.03	GI283	FA051	AC001
B-100.	80A06R-S450E06Z-C	80	90.2	50	27	38	-	12.4	7	6	10	6	✓	8500	✓	1.07	GI283	FA051	AC001
ISO 6462 DIN 8030	90A07R-S450E06Z-C	90	100	50	32	45	-	14.4	8	6	10	7	✓	8000	✓	1.63	GI283	FA051	AC002
DIN 8030	100A06R-S450E06Z-C	100	110.2	50	32	45	-	14.4	8	6	10	6	✓	7600	✓	1.90	GI283	FA051	AC002
	100A08R-S450E06Z-C	100	109.9	50	32	45	-	14.4	8	1	10	8	✓	7600	✓	1.92	GI283	FA051	AC002
	125A07R-S450E06Z-C	125	135.2	63	40	56	-	16.4	9	6	10	7	✓	6800	✓	3.35	GI283	FA051	AC003
	125A09R-S450E06Z-C	125	134.9	63	40	56	-	16.4	9	1	10	9	✓	6800	✓	3.35	GI283	FA051	AC003
	160C09R-S450E06Z-C	160	170.2	63	40	-	66.7	16.4	9	6	10	9	✓	6000	✓	7.11	GI283	FA056	
	160C12R-S450E06Z-C	160	169.9	63	40	_	66.7	16.4	9	1	10	12	✓	6000	✓	7.06	GI283	FA056	
	200C11R-S450E06Z-C	200	210.2	63	60	_	101.6	25.7	14	6	10	11	✓	5300	✓	10.80	GI283	FA057	
	200C14R-S450E06Z-C	200	209.9	63	60	-	101.6	25.7	14	1	10	14	✓	5300	✓	11.17	GI283	FA057	_


	•		
GI283	0EHT 0604AE	REHT 1604M0	XEHT 0604AE

		Nm			Po				(
FA051	US 5011-T20P	5.0	M 5	11	SDR T20P-T	-	-	_	-
FA053	US 5011-T20P	5.0	M 5	11	SDR T20P-T	HS 1030C	_	_	_

		Nm			Po	(a) The same of th			
FA056	US 5011-T20P	5.0	M 5	11	SDR T20P-T	HS 1240C	CAC 160C	HSD 0825C	HXK 5
FA057	US 5011-T20P	5.0	M 5	11	SDR T20P-T	HS 1655C	CAC 200C	HSD 1025C	HXK 7

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

	OE	HT 06	
	IC	D1	S
0604	(MM) 16.050	(MM) 5.50	(MM) 4.76

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

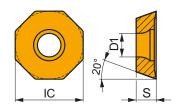
	PH DECK	RE		Р			М			K		N			S			Н	
Обозначение		(MM)	(M/M	f ин) (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc 1 /мин) (мм.	ар зуб) (мм	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
6)12°	†	E															

Позитивная геометрия для чистовой обработки нержавеющих сталей и жаропрочных сплавов.

OEHT 0604AEER-MF	M6330	_	255	0.12	2.2	180	0.11	2.2	_	_	-	_	-	_	75	0.10	1.8	_	_	_
	M8330	_	295	0.12	2.2	175	0.11	2.2	-	_	-	885	0.14	2.2	70	0.10	1.8	_	_	_
	M8340	-	275	0.12	2.2	165	0.11	2.2	-	_	-	-	-	-	65	0.10	1.8	-	-	-

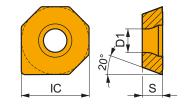
Позитивная геометрия для получистовой обработки нержавеющих сталей и жаропрочных сплавов.

OEHT 0604AEER-MM	M6330	_	245	0.16	2.2	170	0.14	2.2	-	_	-	-	_	-	70	0.11	1.8	-	_	_
	M8330	-	280	0.16	2.2	165	0.14	2.2	-	_	_	840	0.19	2.2	70	0.11	1.8	-	-	_
	M8340	-	255	0.16	2.2	150	0.14	2.2	-	-	-	-	-	-	60	0.11	1.8	-	-	_
	M8345	_	205	0.16	2.2	120	0.14	2.2	_	_	_	_	_	_	50	0.11	1.8	_	_	_
	M9325	_	355	0.16	2.2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	M9340	_	320	0.16	2.2	190	0.14	2.2	_	_	_	_	_	_	80	0.11	1.8	_	_	_



Позитивная геометрия для чистовой и получистовой обработки сталей.

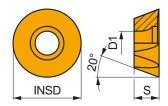
OEHT 0604AESR-M	M6330	_	210	0.24	3.2	150	0.22	3.2	_	_	-	-	-	-	60	0.17	2.6	-	-	_
	M8310	_	265	0.24	3.2	135	0.22	3.2	-	_	-	_	_	_	_	_	_	_	-	_
	M8330	-	245	0.24	3.2	145	0.22	3.2	_	_	-	_	-	-	60	0.17	2.6	-	-	-
	M8340	_	220	0.24	3.2	130	0.22	3.2	_	_	-	_	_	_	55	0.17	2.6	_	_	_
	M9325	_	295	0.24	3.2	-	_	_	-	_	-	_	_	-	-	_	-	-	-	_
	M9340	_	270	0.24	3.2	160	0.22	3.2	_	_	_	_	_	_	65	0.17	2.6	_	_	_



	F4CM443	RE		Р			M				K				N			S			Н	
Обозначение			VC	f	ар	VC	f	ар		VC	f	ар		VC	f	ар	VC	f	ар	VC	f	ар
		(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	((м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
(3)	1	12°	*	†	F																	
	1		Позитивн	ая геоі	метрия	для чис	товой і	и получ	чис	товой	обрабо	тки цв	етнь	ых спл	авов.							

OEHT 0604AEFR-FA	HF7	_	_	-	-	_	-	_	_	_	_	3 3	30 0.18	2.0	_	_	-	_	_	_
	M0315	-	_	-	-	_	-	-	-	_	-	1 76	55 0.18	2.0	_	-	-	-	-	-

	XEI	HT 06	
	IC	D1	S
	(MM)	(мм)	(мм)
0604	16.050	5.50	4.76


PRAMET

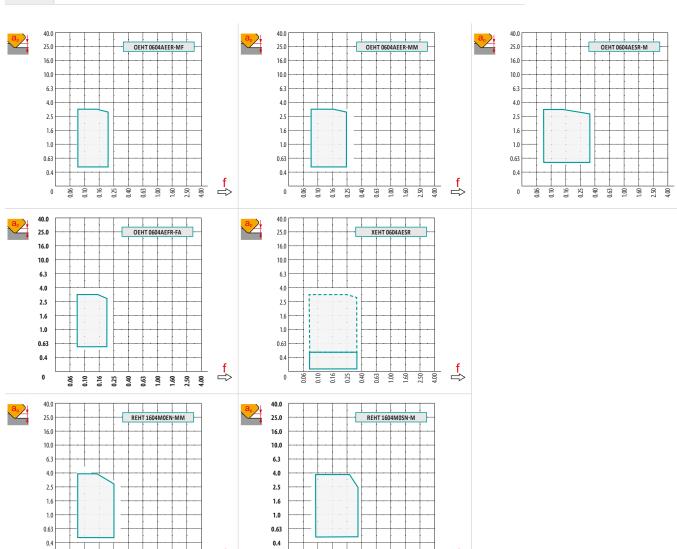
0.0	CHARASKS	RE		P			M				K			ا	N			S			Н	
Обозначение		(MM)	VC (M/MUH	f) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc и/мин)	f (мм/зуб)	ар (мм)	(M/M		ар) (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,03	3	W	S																		
	5°		Позитив	ная гео	метрия	с подчи	іщающе	ей крол	ИΚ	ой для	повыш	ения ка	эчес	тва о	брабо	тки.						
XEHT 0604AESR	M8310	_	2 65	0.24	3.2	1 35	0.22	3.2		-	-	-		_	-	-	_	_	_	-	-	_
	M8330	-	2 45	0.24	3.2	1 45	0.22	3.2		_	_	-		-	-	-	-	-	-	-	-	_

06	RE	ı	P			M			K			N			S			Н	
Обозначение		VC	f	ар	VC	f	ар	VC	f	ар	VC	f	ap	V	f	ap	VC	f	ap
	(MM)	(м/мин) ((мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(M/M	ин) (мм/зу) (MM)	(м/мин)	(мм/зуб)	(MM)

Позитивная геометрия для чистовой и получистовой копировальной обработки нержавеющих сталей и жаропрочных сплавов.

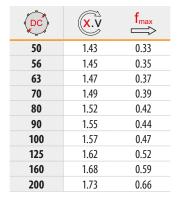
REHT 1604M0EN-MM	M6330	_	240	0.25	2.0	170	0.23	2.0	_	-	_	_	_	_	70	0.18	1.6	_	_	_
	M8330	_	280	0.25	2.0	165	0.23	2.0	_	-	_	840	0.30	2.0	70	0.18	1.6	_	_	_
	M8340	-	255	0.25	2.0	150	0.23	2.0	_	_	-	-	-	_	60	0.18	1.6	_	_	_
	M8345	_	205	0.25	2.0	120	0.23	2.0	_	_	-	_	-	_	50	0.18	1.6	_	_	_
	M9325	_	340	0.25	2.0	-	_	_	_	-	_	_	_	_	_	_	- 1	_	_	_
	M9340	_	305	0.25	2.0	180	0.23	2.0	_	_	_	_	_	_	75	0.18	1.6	_	_	_

Позитивная геометрия для чистовой и получистовой копировальной обработки сталей.


REHT 1604M0SN-M	M8310	-	275	0.35	2.0	140	0.32	2.0	_	-	-	_	-	-	_	-	-	-	_	_
	M8330	-	260	0.35	2.0	155	0.32	2.0	-	-	-	-	-	-	65	0.25	1.6	-	-	_
	M8340	_	240	0.35	2.0	140	0.32	2.0	_	_	-	_	_	-	60	0.25	1.6	_	_	_
	M9325	_	310	0.35	2.0	_	_	_	_	-	-	_	_	_	_	_	-	_	_	_

a。 DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	OEHT 06-MF	OEHT 06-MM	0EHT 06-M	OEHT 06-FA	XEHT 06	REHT 16-MM	REHT 16-M
RE	-	-	-	-	-	8.00	8.00
BS	1.36	1.36	1.36	1.36	9.91	_	_



0.06 0.10 0.15 0.25 0.40 1.00 1.60 2.50

0.06 0.10 0.16 0.25 0.40 1.00 1.00 4.00

DC					(R				
	a _p	0.00	0.50	0.75	1.25	1.50	2.00	2.50	3.00	4.00
50		43.90	49.47	50.66	52.49	53.23	54.48	55.52	56.39	57.76
56		49.80	55.37	56.56	58.39	59.13	60.38	61.42	62.29	63.66
63		56.90	62.47	63.66	65.49	66.23	67.48	68.52	69.39	70.76
70		63.80	69.37	70.56	72.39	73.13	74.38	75.42	76.29	77.66
80	DEF	73.90	79.47	80.66	82.49	83.23	84.48	85.52	86.39	87.76
90	DLI	83.80	89.37	90.56	92.39	93.13	94.38	95.42	96.29	97.66
100		93.90	99.47	100.66	102.49	103.23	104.48	105.52	106.39	107.76
125		118.90	124.47	125.66	127.49	128.23	129.48	130.52	131.39	132.76
160		153.90	159.47	160.66	162.49	163.23	164.48	165.52	166.39	167.76
200		193.90	199.47	200.66	202.49	203.23	204.48	205.52	206.39	207.76

DC	DCX		
0	R	RPMX	APMX/I
50	59.9	4.9	8.4/100
56	65.8	4.2	7.2/100
63	72.9	3.6	6.1/100
70	79.8	3.1	5.3/100
80	89.9	2.6	4.4/100
90	99.8	2.3	3.9/100
100	109.9	2	3.3/100
125	134.9	1.5	2.5/100

DC	DCX
0	R
50	59.9
56	65.8
63	72.9
70	79.8
80	89.9
90	99.8
100	109.9
125	134.9

DMIN	DMAX	SMAX DMIN	SMAX DMAX
91.5	120.0	5.9	5.9
103.2	131.5	5.9	5.9
117.4	146.0	5.9	5.9
131.2	159.5	5.9	5.9
151.4	180.0	5.9	5.9
171.2	199.5	5.9	5.9
191.4	220.0	5.9	5.9

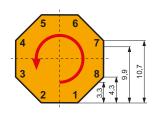
5.9

5.9

270.0

241.3

	R										
DMIN	DMAX	DMIN 🕢	DMAX O								
91.5	119.5	5.9	5.9								
103.5	131.0	5.9	5.9								
118.0	145.5	5.9	5.9								
131.5	159.0	5.9	5.9								
151.5	179.5	5.9	5.9								
171.5	199.0	5.9	5.9								
191.5	219.5	5.9	5.9								
241.5	269.5	5.9	5.9								

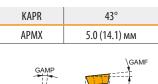


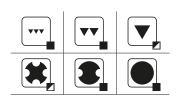
	0	R
a _p	3.1	3.0

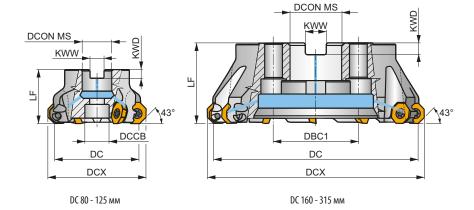
						R						
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
59.9		0.848	1.095	1.548	1.896	2.189	2.681	3.096	3.461	3.792	4.378	4.895
65.8		0.889	1.147	1.622	1.987	2.294	2.810	3.245	3.628	3.974	4.589	5.130
72.9	FE	0.935	1.207	1.708	2.091	2.415	2.958	3.415	3.818	4.183	4.830	5.400
79.8		0.979	1.263	1.787	2.188	2.527	3.095	3.573	3.995	4.376	5.053	5.650
89.9		1.039	1.341	1.896	2.322	2.682	3.285	3.793	4.240	4.645	5.364	5.997
99.8		1.094	1.413	1.998	2.447	2.826	3.461	3.996	4.468	4.894	5.651	6.318
RE	μm	3	5	10	15	20	30	40	50	60	80	100
8.0	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530

a _p	()
-> 3.3	8
-> 4.3	7
-> 9.9	4
-> 10.7	2

SOE09Z






Универсальная фреза

Конструкция фрезы имеет двойную позитивную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Универсальная конструкция позволяет устанавливать разные типы односторонних пластин: ОЕ.. 09, RE.. 24 и XE.. 09. Фреза подходит для обработки плоскостей, фасок, а также для копировального фрезерования.

	Обозначение	DC	DCX	LF	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		S kg	<u></u>		
		(MM)	(мм)	(MM)	(мм)	(MM)	(MM)	(MM)	(MM)	(°)	(°)								
	80A05R-S450E09Z-C	80	95	50	27	22	_	12.4	7	6	10	5	✓	6100	✓	1.32	GI293	FA064	_
	100A06R-S450E09Z-C	100	115	50	32	45	_	14.4	8	6	10	6	\checkmark	5400	\checkmark	1.90	GI293	FA061	AC002
71-172	125A07R-S450E09Z-C	125	140	63	40	56	-	16.4	9	6	10	7	✓	4800	✓	3.38	GI293	FA061	AC003
ISO 6462 DIN 8030	160C08R-S450E09Z-C	160	175	63	40	_	66.7	16.4	9	6	10	8	\checkmark	4300	\checkmark	6.12	GI293	FA066	_
DIN 8030	200C10R-S450E09Z-C	200	215	63	60	_	101.6	25.7	14	1	10	10	\checkmark	3800	\checkmark	11.50	GI293	FA067	_
	250C12R-S450E09Z-C	250	265	63	60	-	101.6	25.7	14	1	10	12	✓	3400	\checkmark	18.50	GI293	FA068	-
	315C14R-S450E09Z-C	315	330	80	60	-	101.6	25.7	14	1	10	14	✓	3000	✓	36.00	GI293	FA069	-

	•		
GI293	OEHT 0906AE	REHT 2406M0	XEHT 0906AE

		Nm				O			(0		
FA061	US 68020-T30P	15.0	M 8	20	SDR T30P-T	-	_	_	-	_	-
FA064	US 68020-T30P	15.0	M 8	20	SDR T30P-T	HS 1230C	-	_	_	_	-
FA066	US 68020-T30P	15.0	M 8	20	SDR T30P-T	HS 1240C	CAC 160C	HSD 0825C	HXK 5	_	-
FA067	US 68020-T30P	15.0	M 8	20	SDR T30P-T	HS 1655C	CAC 200C	HSD 1025C	HXK 7	_	-
FA068	US 68020-T30P	15.0	M 8	20	SDR T30P-T	HS 1655C	CAC 250C	HSD 1025C	HXK 7	_	_
FA069	US 68020-T30P	15.0	M 8	20	SDR T30P-T	HS 1655C	CAC 315C	HSD 1035C	HXK 7	CACP 3150C	RRH 34

ACO02	KS 1635	K.FMH32

Z 765 0.30 3.5 **Z** 60

0.18 2.8

0.18 2.8

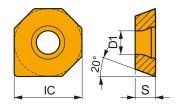
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

0.0	PRINCIPA	RE		P			I	M				K			N				S				Н	
Обозначение			VC	f	ap		VC	f	ар		VC	f	ap	VC	f	ap		VC	f	ар		VC	f	ap
		(MM)	(м/ми	н) (мм/зуб)	(MM)	()	ı/мин) ((мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)	(м/ми	н) (мм/зу	i) (мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)
0		7°	Позити	вная гео	метрия	я для	чистов	вой, по	олучис	то	вой и п	отенци	ально ч	ерново	ой обра	ботки і	нерж	кавеюц	цих ста.	лей и х	жарс	опроч	ных спл	авов.

OEHT 0906AEER-MM

M8330

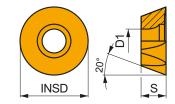
M8340


 Z
 255
 0.25
 3.5
 ■
 150
 0.23
 3.5

 Z
 230
 0.25
 3.5
 ■
 135
 0.23
 3.5

Позитивная геометрия для чистовой, получистовой и потенциально черновой обработки сталей.

OEHT 0906AESR-M	M8310	_	250	0.35	3.5	125	0.32	3.5	-	_	-	_	_	-	_	_	_	_	_	-
	M8330	_	235	0.35	3.5	140	0.32	3.5	_	_	-	_	_	_	55	0.25	2.8	_	_	_
	M8340	_	215	0.35	3.5	125	0.32	3.5	_	_	-	_	_	-	50	0.25	2.8	_	_	_
	M9325	-	275	0.35	3.5	_	-	_	-	-	-	-	-	-	-	_	_	-	-	_



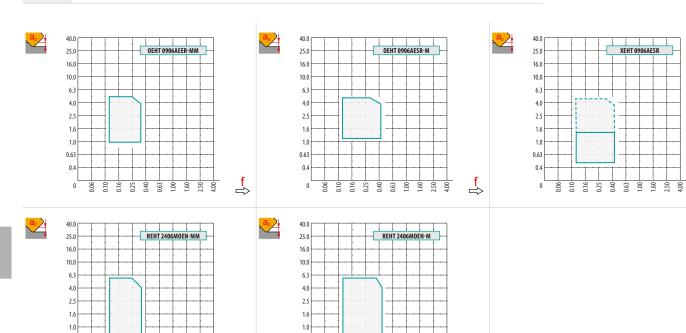
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

•	RE	Р	М	K	N	S	н			
Обозначение	(MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)			
	0,03 5% \9°	ws								
		Позитивная геометрия	я с подчищающей кром	икой для повышения	качества обработки.					
XEHT 0906AESR	M8310 –	235 0.35 3.5	✓ 115 0.32 3.5							

	RE	HT 24	
	INSD	D1	S
II	(MM)	(MM)	(MM)
2406	24.0	8.60	7.15

PRAMET

применение инструмен	рименение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.																							
0.6	PSEASON	RE		Р			M				K				N				S				Н	
Обозначение		(мм)	VC (M/MN	f н) (мм/зуб)	ар (мм)	VC	f 	ap		VC	f	ap		VC	f	ap		VC	f (/m/)	ap		VC	f	ap
		\7°	E	зная гео	метри	_{(м/ми} я для чи з.		_(мм)	ист		(мм/зуб) ПОТЕНЬ	_(мм) циально			(мм/зуб) ОЙ КОПІ	ирова	ЛЬН	(м/мин)		и нерж			(мм/зуб)	И
REHT 2406M0EN-MM	M8330	-	280	0.25	2.0	1 65	0.23	2.0		-	-	- Į		840	0.30	2.0		70	0.18	1.6		_	_	_
	M8340	_	2 55	0.25	2.0	1 50	0.23	2.0		-	_	-		-	_	-		60	0.18	1.6		-	_	_
	5°	03 \12°	Позити	зная гео	метри	я для чи	стовой,	получі	ист	говой и	потень	циально) 46	ерново	ой копі	ирова	ЛЬН	юй об	работкі	и стале	ιй.			
REHT 2406M0SN-M	M8330	-	2 60	0.35	2.0	1 55	0.32	2.0		-	_	-		-	_	-		65	0.25	1.6		-	_	-
	M8340	-	2 40	0.35	2.0	1 40	0.32	2.0		-	_	-		-	-	-		60	0.25	1.6		-	-	-



a。 DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒×.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

XEHT 0906AESR

0000000	OEHT 09-MM	OEHT 09-M	XEHT 09	REHT 24-MM	REHT 24-M
RE	-	-	-	12.00	12.00
BS	2.00	2.00	14.80	-	_

0.63

0.4

 $\stackrel{\mathsf{f}}{\Rightarrow}$

DC		R											
	a _p	0.00	0.50	0.75	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00	
80		70.90	77.76	79.25	81.57	82.52	84.17	85.56	86.77	88.79	90.39	91.68	
100		90.90	97.76	99.25	101.57	102.52	104.17	105.56	106.77	108.79	110.39	111.68	
125		115.90	122.76	124.25	126.57	127.52	129.17	130.56	131.77	133.79	135.39	136.68	
160	(DEF)	150.90	157.76	159.25	161.57	162.52	164.17	165.56	166.77	168.79	170.39	171.68	
200		190.90	197.76	199.25	201.57	202.52	204.17	205.56	206.77	208.79	210.39	211.68	
250		240.60	247.46	248.95	251.27	252.22	253.87	255.26	256.47	258.49	260.09	261.38	
315		305.60	312.46	313.95	316.27	317.22	318.87	320.26	321.47	323.49	325.09	326.38	

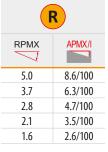
0.06 0.10 0.25 0.63 1.00 1.00 4.00

 $\stackrel{\mathsf{f}}{\leftrightharpoons}$

0.63

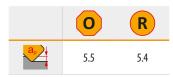
0.4

0.006



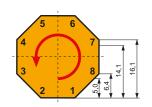
DC	(X.V	$\overset{f_{\text{max}}}{\Longrightarrow}$
80	1.44	0.51
100	1.48	0.57
125	1.53	0.64
160	1.58	0.72
200	1.63	0.80
250	1.68	0.90
315	1.74	1.01

DC	DCX
0	R
80	94.9
100	114.9
125	139.9
160	174.9
200	214.9

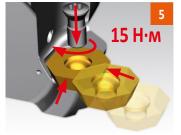


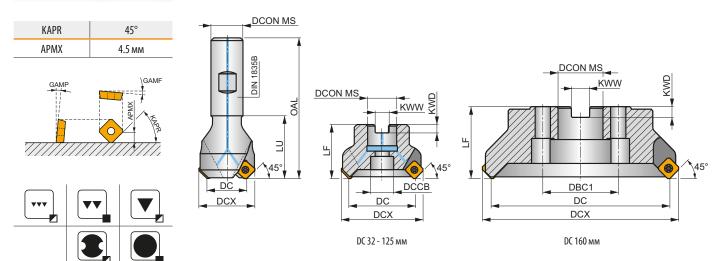
	DMIN	DMAX	DMIN 🕢	SMAX OMAX
ĺ	146.0	190.0	8.8	8.8
	186.0	230.0	8.8	8.8
	236.0	280.0	8.8	8.8
	306.0	350.0	8.8	8.8
	386.0	430.0	8.8	8.8

R									
DMIN	DMAX	SMAX DMIN	SMAX OMAX						
146.0	189.0	11.5	11.5						
186.0	229.0	11.5	11.5						
236.0	279.0	11.5	11.5						
306.0	349.0	11.5	11.5						
386.0	429.0	11.5	11.5						



						R						
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
94.9	F	1.067	1.378	1.948	2.386	2.755	3.375	3.897	4.357	4.772	5.511	6.161
RE	μm	3	5	10	15	20	30	40	50	60	80	100
12.0	FE	0.537	0.693	0.980	1.200	1.386	1.697	1.960	2.191	2.400	2.771	3.098

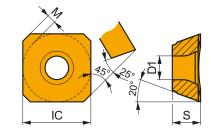

a _p	0
-> 5.0	8
-> 6.4	7
-> 14.1	4
-> 16.1	2



Фреза с углом в плане 45° для обработки плоскостей

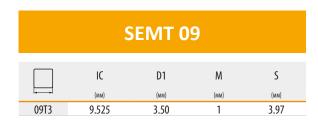
Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины SE.. 09 с глубиной резания до 4.5 мм имеют 4 режущие кромки. Фреза подходит для обработки плоскостей и фасок.

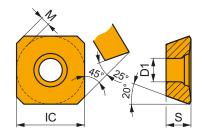
	Обозначение	DC	DCX	OAL	DCON MS	DCCB	DBC1	LU	LF	KWW	KWD	GAMF	GAMP		(0)	max.		S kg			
		(мм)	(мм)	(MM)	(MM)	(MM)	(MM)	(MM)	(мм)	(мм)	(MM)	(°)	(°)								
	20N2R032B20-SSE09-C	20	29.8	82	20	_	_	32	-	-	_	-5	20	2	_	24600	✓	0.26	GI147	FA010	_
DIN 1835B	25N3R042B25-SSE09-C	25	34.8	98	25	-	-	42	-	-	-	-5	20	3	_	22000	✓	0.44	GI147	FA010	_
UNI 10330	32N4R042B32-SSE09-C	32	42	102	32	-	_	42	_	_	-	-5	20	4	_	19400	✓	0.68	GI147	FA010	-
	32A04R-S45SE09F-C	32	42	_	16	14	_	_	40	8.4	6.4	-5	20	4	\checkmark	19400	\checkmark	0.24	GI147	FA012	_
	40A04R-S45SE09F-C	40	53.2	_	16	14	_	_	40	8.4	6.4	-5	20	4	\checkmark	17400	\checkmark	0.30	GI147	FA012	_
	50A05R-S45SE09F-C	50	59.6	_	22	18	-	_	40	10.4	6.4	-5	20	5	\checkmark	15600	✓	0.56	GI147	FA013	_
	63A05R-S45SE09F-C	63	75.8	_	22	18	_	_	40	10.4	6.4	-5	20	5	\checkmark	13900	✓	0.57	GI147	FA013	_
	63A06R-S45SE09F-C	63	75.8	_	22	18	_	-	40	10.4	6.4	-5	20	6	✓	13900	✓	0.58	GI147	FA013	_
70-1720	80A06R-S45SE09F-C	80	89.6	_	27	38	-	-	50	12.4	7	-5	20	6	✓	12300	✓	1.14	GI147	FA011	AC001
ISO 6462	80A08R-S45SE09F-C	80	89.6	-	27	38	_	_	50	12.4	7	-5	20	8	\checkmark	12300	✓	1.13	GI147	FA011	AC001
DIN 8030	100A08R-S45SE09F-C	100	110	_	32	45	_	_	50	14.4	8	-5	20	8	\checkmark	11000	✓	1.83	GI147	FA011	AC002
	100A10R-S45SE09F-C	100	110	_	32	45	_	-	50	14.4	8	-5	20	10	✓	10900	✓	1.82	GI147	FA011	AC002
	125A09R-S45SE09F-C	125	134.5	_	40	60	-	-	63	16.4	9	-5	20	9	✓	9800	✓	3.87	GI147	FA011	AC003
	125A12R-S45SE09F-C	125	134.5	-	40	60	-	-	63	16.4	9	-5	20	12	✓	9800	✓	3.87	GI147	FA011	AC003
	160C10R-S45SE09F	160	169.6	_	40	_	66.7	_	63	16.4	9	-5	20	10	✓	8700	_	6.21	GI147	FA014	_
	160C14R-S45SE09F	160	169.6	_	40	_	66.7	_	63	16.4	9	-5	20	14	✓	8700	_	6.29	GI147	FA014	_


GI147	SEET O9T3AF	SEMT 09T3AF

		Nm			10			
FA010	US 3007-T09P	2.0	M 3	7.3	_	_	Flag T09P	_
FA011	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	_	_
FA012	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	_	HS 0830C

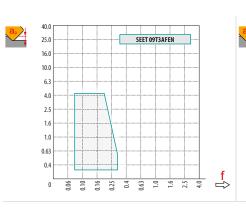
		Nm			10			
FA013	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	_	HS 1030C
FA014	US 3007-T09P	2.0	M 3	7.3	D-T07P/T09P	FG-15	_	HS 1240C

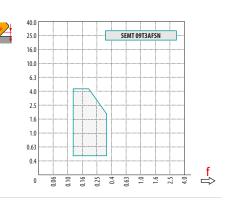

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40


		SEET 09)	
	IC	D1	М	S
	(MM)	(MM)	(MM)	(MM)
09T3	9.525	3.50	1	3.97

	PRECEDE	RE		Р			M			K			N			S			Н	
Обозначение		(мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MUH	f) (мм/зуб)	ар (мм)	VC (M/MUI	f) (мм/зуб)	ар (мм)									
	\	,	†		E	ппа иис														

SEET 09T3AFEN	8215	_	300	0.14	2.5	180	0.13	2.5	_	_	-	_	-	-	75	0.10	2.0	_	-	_
	M6330	_	255	0.14	2.5	180	0.13	2.5	_	_	-	_	-	-	75	0.10	2.0	_	-	-
	M8330	_	295	0.14	2.5	175	0.13	2.5	_	_	-	_	_	-	70	0.10	2.0	_	_	_
	M8340	-	270	0.14	2.5	160	0.13	2.5	_	_	-	_	_	-	65	0.10	2.0	_	_	_
	M9325	-	380	0.14	2.5	_	_	-	_	_	-	-	_	-	_	_	-	_	-	_
	M9340	-	345	0.14	2.5	205	0.13	2.5	_	_	-	-	_	-	85	0.10	2.0	_	-	_


	NE DANKE	RE		Р			M				K			N			S			Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)		vc f /мин) (мм/зуб	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M		ар) (мм)
THE PARTY OF THE P	0,0	9	**	S																	
San Tities	15°	8°	Позитив	ная геог	метри	я для	получист	вой об	pa6	ботки.											
SEMT O9T3AFSN			Позитив 295 290	ная геог 0.18 0.18	1.8	1		1.8		280		1.8			-	-	-	_ 	-		

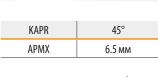


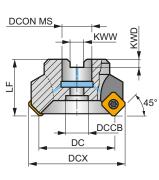
a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	SEET 09	SEMT 09
RE	-	-
BS	1.28	1.25

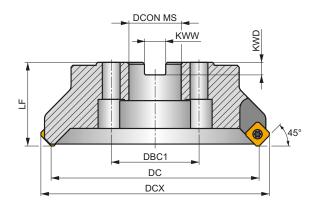
DC	X.V	f _{max} ⇒
20	1.20	0.18
25	1.24	0.20
32	1.29	0.23
40	1.33	0.25
50	1.37	0.28
63	1.41	0.32
80	1.46	0.36
100	1.50	0.40
125	1.55	0.45
160	1.60	0.51

SSN12Z

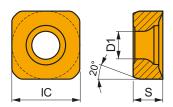



Фреза с углом в плане 45° для обработки плоскостей

Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины SN.. 12 с глубиной резания до 6.5 мм имеют 4 режущие кромки. Фреза подходит для обработки плоскостей и фасок.

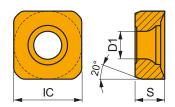


DC 160 - 250 MM


	Обозначение	DC (мм)	DCX (MM)	LF (MM)	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		∫ kg			
	50A04R-S45SN12Z-C	50	65	40	22	18	_	10.4	6.3	-5.5	7.5	4	_	9700	✓	0.48	GI156	FA071	_
	63A05R-S45SN12Z-C	63	78	40	22	18	_	10.4	6.3	-5.5	7.5	5	_	8600	\checkmark	0.68	GI156	FA071	_
	80A06R-S45SN12Z-C	80	95	50	27	38	-	12.4	7	-5.5	7.5	6	-	7700	\checkmark	1.42	GI156	FA071	AC001
ISO 6462 DIN 8030	100A07R-S45SN12Z-C	100	115	50	32	45	-	14.4	8	-5.5	7.5	7	-	6900	\checkmark	1.70	GI156	FA071	AC002
ISO 6462 DIN 8030	125A08R-S45SN12Z-C	125	140	63	40	56	_	16.4	9	-5.5	7.5	8	_	6100	\checkmark	3.59	GI156	FA071	AC003
	160C10R-S45SN12Z	160	173	-	40	-	66.7	16.4	9	-5.5	7.5	10	-	5400	-	6.30	GI156	FA071	-
	200C12R-S45SN12Z	200	210	_	60	_	101.6	25.7	14	-5.5	7.5	12	_	4900	_	9.10	GI156	FA071	_
	250C16R-S45SN12Z	250	260	_	60	_	101.6	25.7	14	-5.5	7.5	16	_	4300	_	11.87	GI156	FA071	_

GI156	SNKT 1205AZ	SNMT 1205AZ

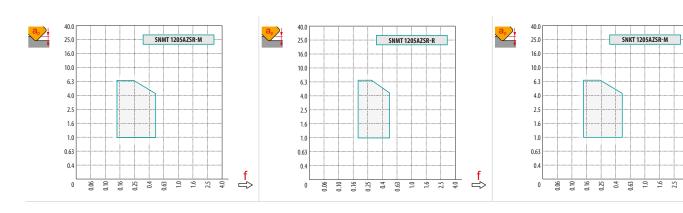
		Nm			
FA071	US 4511-T20	5.0	M 4.5	11	SDR T20-T


AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

SNMT 12 IC D1 S 1205 12.700 5.20 5.56

Применение инструмен	та, начальны	е значе	ения	скоро	сти рез	вания	(Vc)), пода	чи (f) и	глуби	1НЫ	резан	ия (ар)	. Для д	ОП	олните	ельных	расче	eTOB	воспо	льзуйт	есь пр	иложен	ием Cal	culator.
	PSCACAG	RE	P					M				K				N			S				Н		
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,1	0 25°		*	S																				
			Поз	ВИТИВН	ая гео	метри	я ді	ля пол	учистоі	30й об	ipat	ботки.													
SNMT 1205AZSR-M	8215	-		300	0.25	3.2		180	0.23	3.2		285	0.25	3.2		-	_	-		75	0.18	2.6	_	-	_
	M8330	_		300	0.25	3.2		180	0.23	3.2		285	0.25	3.2		-	-	-		75	0.18	2.6	_	_	-
	M8340	_		275	0.25	3.2		165	0.23	3.2		260	0.25	3.2		_	-	-		65	0.18	2.6	_	-	-
	M9315	_		385	0.25	3.2		_	_	-		365	0.25	3.2		_	-	-		-	-	-	_	-	_
	M9325	_		365	0.25	3.2		_	-	_		345	0.25	3.2		-	-	-		-	-	-	_	-	-
	0,1	<u>6</u> √15°	1	*	S																				
			Поз	ЗИТИВН	ая гео	метри	я ді	ля пол	учисто	30й и	чер	новой	обрабо	отки.											
SNMT 1205AZSR-R	8215	-		290	0.27	3.5		170	0.24	3.5		275	0.27	3.5		-	-	-		70	0.22	2.8	-	-	-
	M5315	_		365	0.27	3.5		_	_	_		345	0.27	3.5		_	_	-		-	_	-	-	_	_
	M8330	-		290	0.27	3.5		170	0.24	3.5		275	0.27	3.5		_	-	_		70	0.22	2.8	_	_	_
	M8340	-		270	0.27	3.5		160	0.24	3.5		255	0.27	3.5		_	-	-		65	0.22	2.8	-	-	_
	M9315	-		375	0.27	3.5		_	-	_		355	0.27	3.5		_	-	-		-	_	_	-	-	_
	M9325	_		355	0.27	3.5		_	-	-		335	0.27	3.5		-	-	-		-	-	-	_	-	-

	SN	KT 12	
	IC	D1	S
	(MM)	(MM)	(MM)
1205	12.700	5.20	5.56

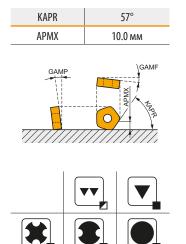

Применение инструмен	та, начальны	е значе	ния скор	ости ре	зания (\	Vc), под	ачи (f) і	и глуби	НЫ	резан	ия (ар)	. Для д	ДОП	олните	ельных	расч	етов	ВОСПО	льзуйт	гесь пр	КОИ	кение	∙м Calc	ulator.
06	EACHE SA	RE	Р			M			K			N						S		н				
Обозначение			VC	f	ap	vc	f	ар		VC	f	ap		VC	f	ар		VC	f	ap		VC	f	ap
		(MM)	(м/мин) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(N	м/мин)	(мм/зуб)	(MM)
	0,1	25°	Порития	*	S			. Doğ o6	n > 6	507111														
SNKT 1205AZSR-M	M8330	-	Позитив		метрия 3.2 <mark>I</mark>			·			0.24	3.2		_	_	-		75	0.17	2.6		_	-	-
	M8340	-	275	0.24	3.2	1 65	0.22	3.2		260	0.24	3.2		-	-	-		65	0.17	2.6		-	-	-

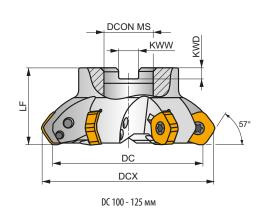
a _e / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒×.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

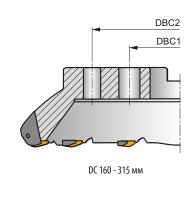
0000000	SNMT 12-M	SNMT 12-R	SNKT 12-M
RE	-	-	-
BS	0.95	1.03	1.59

DC	X.V	f_{max}
50	1.30	0.47
63	1.34	0.53
80	1.39	0.60
100	1.43	0.67
125	1.47	0.74
160	1.53	0.84
200	1.57	0.94
250	1.62	1.05

SPN13

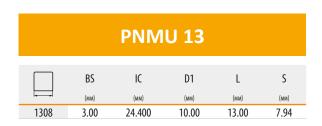





Фреза PENTA HD с углом в плане 57° для обработки плоскостей

Конструкция фрезы имеет двойную негативную геометрию. Двухсторонние пластины PN.. 13 с глубиной резания до 10 мм имеют 10 режущих кромок. Двухсторонние пластины XN.. 13 имеют широкую подчищающую кромку для формирования поверхности высокого качества. Фреза подходит для обработки плоскостей особенно в тяжелых черновых условиях.

PENTA HD

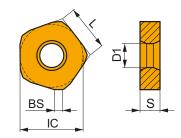


	Обозначение	DC (MM)	DCX (MM)	LF (MM)	DCON MS	DBC1	DBC2	KWW	KWD	GAMF	GAMP			max.		∫ kg			
	100A05R-S57PN13	100	115.8	50	32	(mm)	(mm)	14.4	8	-8.2	-4	5		3400		1.22	GI261	FA081	AC002
	125A06R-S57PN13	125	140.8	63	40	_	_	16.4	9	-7	-4	6	_	3100	_	2.34	GI261	FA081	AC003
ISO 6462 DIN 8030	160C08R-S57PN13	160	175.8	63	40	66.7	_	16.4	9	-6	-4	8	_	2700	-	3.58	GI261	FA081	_
ISO 6462 DIN 8030	200C10R-S57PN13	200	215.8	63	60	101.6	-	25.7	14	-5	-4	10	-	2400	_	9.17	GI261	FA081	-
	250C12R-S57PN13	250	265.8	63	60	101.6	_	25.7	14	-5	-4	12	-	2200	_	15.39	GI261	FA081	_
	315C14R-S57PN13	315	330.8	80	60	101.6	177.8	25.7	14	-5	-4	14	-	1900	_	29.17	GI261	FA081	_

GI261	PNMU 1308DN	XNGX 1308DNSN	PNMQ 1308DN

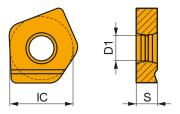
						Nm			
ı	FA081	SPN 13T3DN	US 64010-T15P	SDR T15P	US 68026-T30P	15.0	M 8	26	SDR T30P-T

AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

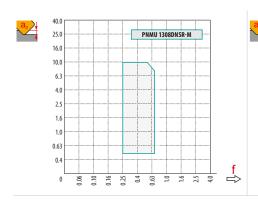


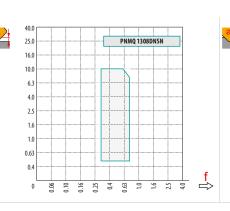
	PECAN SAN	RE		- 1	Р				M				K			N			S			Н	
Обозначение		(MM)		/C мин) (I	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	9° 0,	25 16°	Позит		О З	S метри	яд	ля чер	НОВОЙ	обраб	ОТК	ίИ.											
PNMU 1308DNSR-M	8215		1	65	0.35	6.5		95	0.32	6.5		155	0.35	6.5	_	_	_	40	0.28	5.2	30	0.15	1.0
	M8330	_	1	90	0.35	6.5		110	0.32	6.5		180	0.35	6.5	_	_	_	45	0.28	5.2	35	0.15	1.0
	M8345	_	1	35	0.35	6.5		80	0.32	6.5		_	_	-	_	_	-	30	0.28	5.2	-	-	_
	M9315	_	2	10	0.35	6.5		_	-	-		195	0.35	6.5	_	-	-	_	-	-	40	0.15	1.0
	M9340	_	1	70	0.35	6.5		100	0.32	6.5		-	_	-	_	-	-	40	0.28	5.2	-	_	_

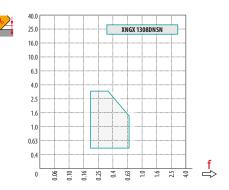
		PNM	Q 13		
	BS	IC	D1	L	S
	(мм)	(MM)	(MM)	(MM)	(MM)
1308	3.00	24.400	10.00	13.00	7.94


PRAMET

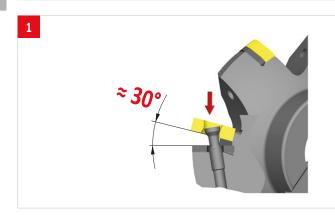
25	PFERENCE	RE		P				M				K				N			S			Н	
Обозначение		(MM)		с f иин) (мм/	ар		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)
	0,5	<u>7</u>	*																				
	15°		Геоме	грия с і	іейтра.	ЛЬНЬ	ым пере	едним у	/глом	ДЛЯ	я черно	вой об	работк	И.									
PNMQ 1308DNSN	M8330	_	1	55 0.6	0 6.	5	_	_	_		155	0.60	6.5		_	-	_	-	_	-	30	0.15	1.0
	M8345	-	1 .	20 0.6	0 6.	5	_	-	_		-	_	-		-	-	-	-	-	-	-	-	_


	17				•		. ,	,										,					
0.5	CANACAS.	RE		P			M				K				N			S			ı	Н	
Обозначение			vc	f	ap	VC	f	ар		VC	f	ар		VC	f	ар	VC	f	ар	,	/C	f	ар
		(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/ми	н) (мм/зуб)	(мм)	(M/	мин) ((мм/зуб)	(MM)
			W	S																			
	\10°		Геометри	ія с под	цчищаю	щей кро	омкой д	І ЛЯ ПОЕ	ЗЫІ	шения	качест	ва обр	або	отки.									
XNGX 1308DNSN	M8330	_	2 45	0.45	2.5	_	_	_		230	0.45	2.5		_	-	-	_	-	-		_	_	_

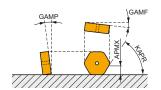


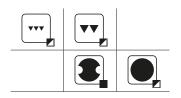


a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒ x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00


0000000	PNMU 13-M	PNMQ 13	XNGX 13
RE	-	-	-
BS	3.00	3.00	12.71

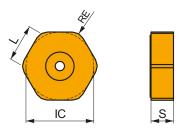
CHN09





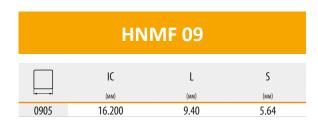

Фреза ECON HN с углом в плане 60° для обработки плоскостей

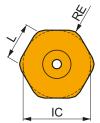
Конструкция фрезы имеет двойную негативную геометрию. Двухсторонние пластины HN.. 09 с глубиной резания до 6 мм имеют 12 режущих кромок. Фреза подходит для обработки плоскостей на заготовках из чугуна.

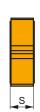


	Обозначение	DC	DCX	LF	DCON MS	KWW	KWD	GAMF	GAMP			max.		kg		
		(MM)	(мм)	(MM)	(MM)	(мм)	(MM)	(°)	(°)							
	80A08R-C60HN09	80	89.4	50	27	12.4	7	-5	-7.2	8	_	6200	_	1.45	GI262	FA094
	80A12R-C60HN09	80	89.4	50	27	12.4	7	-5	-7.2	12	_	6200	_	1.39	GI262	FA094
	100A10R-C60HN09	100	109.4	50	32	14.4	8	-5	-7.2	10	_	5600	_	2.44	GI262	FA095
ISO 6462 DIN 8030	100A16R-C60HN09	100	109.4	50	32	14.4	8	-5	-7.2	16	_	5600	_	2.32	GI262	FA095
ISO 6462 DIN 8030	125A12R-C60HN09	125	134.4	63	40	16.4	9	-5	-7.2	12	_	5000	_	4.23	GI262	FA096
	125A20R-C60HN09	125	134.4	63	40	16.4	9	-5	-7.2	20	_	5000	_	4.09	GI262	FA096
	160C16R-C60HN09	160	169.4	63	40	_	_	-5	-7.2	16	_	4400	_	6.20	GI262	FA091
	200C20R-C60HN09	200	209.4	63	60	_	_	-5	-7.2	20	_	3900	_	11.08	GI262	FA091

GI262	HNEF 0905	HNMF 0905

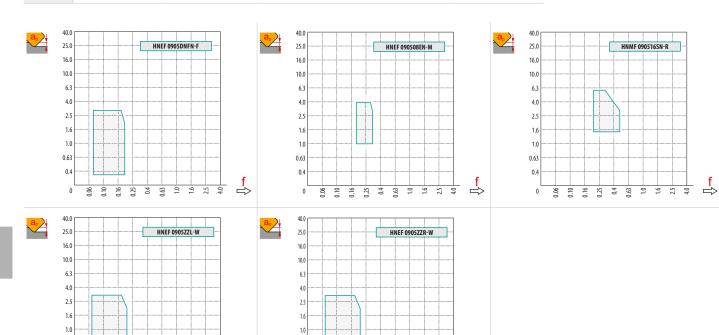

		Nm			<i>/</i> o		
FA091	US 74016-T15P	3.5	M 4	16	D-T08P/T15P	FG-15	_
FA094	US 74016-T15P	3.5	M 4	16	D-T08P/T15P	FG-15	HS 1230C
FA095	US 74016-T15P	3.5	M 4	16	D-T08P/T15P	FG-15	HS 1635C
FA096	US 74016-T15P	3.5	M 4	16	D-T08P/T15P	FG-15	HS 2040C


HNEF 09 IC L S (MM) (MM) (MM) 0905 16.200 9.40 5.64



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator. P M S Н RE Обозначение ap 0° Позитивная геометрия для чистовой обработки. HNEF 0905DNFN-F M5315 0.4 **- ■** 380 0.15 1.5 0,19 Позитивная геометрия для чистовой и получистовой обработки. HNEF 090508EN-M M5315 0.8 290 0.18 3.0 M9325 0.8 275 0.18 Позитивная геометрия для чистовой обработки. HNEF 0905ZZR-W 8215 275 0.18 1.0 8.0 M5315 8.0 370 0.18 1.0

PRAMET


Применение инструмен	нта, начальнь	іе значе	ния скор	ости ре	зания (Vс), п	одачи	и (f) и	глубі	1НЬ	ы резан	ия (ар)	. Для д	доп	олните	2льных	к расче	гов вос	пользу	і́тесь п	рил	ожени	ем Сак	culator.
	PKRCPS	RE		P			Λ	N				K				N			S				Н	
Обозначение		(MM)	VC (м/мин	f (мм/зуб)	ар (мм)		лин) (м	f мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VС (м/м)	f н) (мм/зуб	ар) (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)
# C W	18° - 0,	21 \6°	*	S																				
			Негатив	ная гео	метрия	для ч	истов	вой и	черно)B0	ой обра	ботки.												
HNMF 090516SN-R	8215	1.6	_	_	-		-	_	-		210	0.30	3.0		_	_	_	_	_	_		_	-	_
	M5315	1.6	-	-	-	-	-	_	-		265	0.30	3.0		-	-	-	_	-	-		_	-	-
	M9325	1.6	_	-	-	-	-	-	-		260	0.30	3.0		-	-	-	_	-	-		-	-	_

a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	HNEF 09-F	HNEF 09-M	HNMF 09-R	HNEF 09 ZZL-W	HNEF 09 ZZR-W
RE	-	_	_	-	-
BS	1.20	-	_	1.26	1.26

0.63

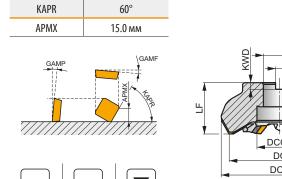
0.63

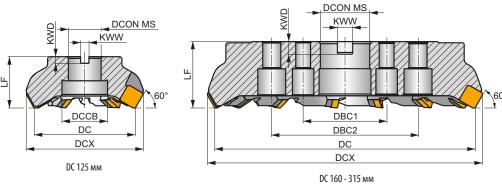
0.4

0.06 — 0.10 — 0.16 — 0.25 — 0.25 — 0.4 — 0.63 — 1.0 — 1.0

0.25

FSB22X



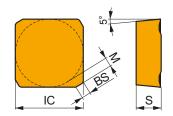


Фреза ROUGH SB с углом в плане 60° для обработки плоскостей

Конструкция фрезы имеет позитивно-негативную геометрию, переменный шаг зубьев. Односторонние пластины SB.. 22 с глубиной резания до 15 мм имеют 4 режущие кромки. Фреза подходит для обработки плоскостей в тяжелых черновых условиях.

ROUGH SB

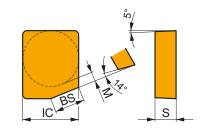
	Обозначение	DC	DCX	LF	DCON MS	DCCB	DBC1	DBC2	KWW	KWD	GAMF	GAMP			max.		∫ kg			
		(MM)	(мм)	(MM)	(мм)	(мм)	(MM)	(мм)	(мм)	(MM)	(°)	(°)								
	125B05R-F60SB22X	125	144.4	63	40	56	-	-	16.4	9	-9	9	5	\checkmark	-	-	3.88	GI144	FA111	AC003
	125B07R-F60SB22X	125	144.4	63	40	56	-	-	16.4	9	-9	9	7	\checkmark	-	_	3.64	GI144	FA111	AC003
	160C06R-F60SB22X	160	178.7	63	40	-	66.7	-	16.4	9	-9	9	6	\checkmark	-	_	6.51	GI144	FA114	-
	160C08R-F60SB22X	160	178.7	63	40	_	66.7	_	16.4	9	-9	9	8	\checkmark	_	_	6.30	GI144	FA114	_
	200C08R-F60SB22X	200	217.9	63	60	_	101.6	_	25.7	14	-9	9	8	\checkmark	-	_	10.59	GI144	FA115	_
ISO 6462 DIN 8030	200C10R-F60SB22X	200	217.9	63	60	_	101.6	-	25.7	14	-9	9	10	✓	-	-	9.81	GI144	FA115	-
	250C09R-F60SB22X	250	267.4	63	60	_	101.6	-	25.7	14	-9	9	9	✓	-	-	17.54	GI144	FA115	_
	250C12R-F60SB22X	250	267.4	63	60	_	101.6	_	25.7	14	-9	9	12	✓	_	-	16.50	GI144	FA115	_
	315C11R-F60SB22X	315	331.8	80	60	_	101.6	177.8	25.7	14	-9	9	11	✓	_	_	36.00	GI144	FA115	_
	315C14R-F60SB22X	315	331.8	80	60	_	101.6	177.8	25.7	14	-9	9	14	✓	_	_	36.50	GI144	FA115	_



	©	3	Pa				
FA111	LNX 220616	US 6013-T20P	SDR T20P-T	KU SBMR 2207	DS 01Z	KL 04	_
FA114	LNX 220616	US 6013-T20P	SDR T20P-T	KU SBMR 2207	DS 01Z	KL 04	HS 1240
FA115	LNX 220616	US 6013-T20P	SDR T20P-T	KU SBMR 2207	DS 01Z	KL 04	HS 1655

AC003	KS 2040	K.FMH40

PRAMET



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

применение инструме	нта, начальнь	е значе	сния с	корс	сти рез	кинь ((VC)	, 110Да	чи (і) и	1111901	ИΗЬ	і резан	ия (ар). ДЛЯ Д	цоп	ОЛНИІ	ельных	Срасче	HORE	BOCIIC	шьзуит	есь пр	иложе	нием	Calculati
•-	PHOPOLOGY	RE			P				M				K				N				S			Н	
Обозначение		(мм)	(vc и/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (M/MNH)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(1	vс м/мин)	f (мм/зуб)	ар (мм)	VC (M/MI		ар зуб) (мм)
	10° 0,2		*	1	*	S		(44,550,7)	(()		(an analy	((y		(((y				()	(10)	, ,	
	1		Геом	етри	ıя для ч	ернов	юй (обраб	отки.																
SBMR 2207DZSR	M8326	_		140	0.38	8.5		-	-	-		130	0.38	8.5		-	-	-		_	-	_	_	-	
	M8346	-		120	0.38	8.5		70	0.38	8.5		-	-	-		-	-	-		-	-	-	_	-	
	M9325	_		175	0.38	8.5		-	-	-		165	0.38	8.5		-	-	-		-	-	-	_	-	
	0,2		1	1	*	S																			
	12°		Геом	етри	я со ста	абильн	НОЙ	конст	рукциє	ей для	чер	оновой	обраб	отки.											
SBMR 2207DZSR-R	M5326	_		160	0.44	9.8		-	-	-		150	0.44	9.8		-	-	-		-	-	-	_	-	
	M8326	_		135	0.44	9.8		_	_	_		125	0.44	9.8		-	_	-		-	-	_	_	-	
	M8346			115	0 44	9.8		65	0.40	9.8						_	_	_		_			_		

	S	SBKX 2	2	
	IC	М	S	BS
	(MM)	(MM)	(мм)	(MM)
2207	22.000	3	8.00	11.84

PRAMET

0.5	PSCHOPS	RE			Р				M				K				N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
			<u>Γ</u>	√ N	E	TD2 FL				VERO44				· vnov			0.01.11110		 - D2 06	inakarı				
SBKX 2207DZER	M8326	_	leo	метри 100	метрия с нейтральным передним углом и подчищающей кромкой для повышения качества обработки. 100 0.60 8.5 — — — 95 0.60 8.5 — — — — — — — — — — — — — — — — — — —																			

a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

20020000	SBMR 22	SBMR 22-R	SBKX 22
RE	_	-	-
BS	1.99	1.99	11.84

DORMER PRAMET

ПОМОЩЬ ПОД РУКОЙ

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ – НАВИГАТОР

ФРЕЗЕРОВАНИЕ ПАЗОВ И УСТУПОВ

>>>

	SADO	7D	SAD1	1E	SAD1	6E	SAP10	D	SAP1	6D
	90°)	90°)	90°		90°		90°)
	АРМХ (мм)	5.0	АРМХ (мм)	9.0	АРМХ (мм)	13.0	АРМХ (мм)	9.0	АРМХ (мм)	13.0
	DC (мм)	10 – 32	DC(MM)	16 – 125	DC(MM)	25 – 175	DC (мм)	10 – 63	DC(мм)	25 – 160
Цилиндрический хвостовик	Ţ.	DC = 10 – 25 (MM)	ď.	DC = 16 – 35 (MM)	K	DC = 25 – 32 (MM)				
Хвостовик Weldon			1	DC = 16 – 32 (MM)		DC = 25 - 40 (MM)		DC = 10 - 25 (MM)		DC = 25 – 40 (MM)
Сменная головка с резьбовым хвостовиком		DC = 12 – 32 (MM)	4	DC = 16 – 40 (MM)		DC = 32 - 40 (MM)				
Насадная фреза				DC = 40 – 125 (mm)		DC = 40 – 175 (MM)		DC = 40 – 63 (MM)		DC = 40 – 160 (MM)
Страница	4	11	4	18	42	.7	436		4	39
ISO	P M K	N S	P M K	N S H	P M K	N S H	P M K N	S	P M K	N S
Форма пластины	9	7			9		g		8	
Тип пластины	AD.X 07	702	AD.X 11	IT3	AD.X 16	06	APKT 100:	3	AP.T 16	504
Количество режущих кромок	2		2		2		2		2	
Фрезерование неглубоких уступов										
Фрезерование с винтовой интерполяцией										
Фрезерование неглубоких пазов										
Плунжерное фрезерование										
Фрезерование с засверливанием										
Врезание под углом										
Фрезерование плоскостей										
Копировальное фрезерование										
00										

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ – НАВИГАТОР

<<<

ФРЕЗЕРОВАНИЕ ПАЗОВ И УСТУПОВ

	STN1	0	STN16	NEW	SLN	12	SL	N16	SSO0	50	SSO	09
'	90°		90)°	90	0	9)0°	90°)	90°	
	APMX (MM)	5.0	APMX (mm)	10.0	APMX (mm)	9.0	APMX (MM)	13.0	APMX (MM)	4.5	APMX (MM)	8.0
	DC (MM)	18 – 32	DC (MM)	25 – 175	DC (MM)	25 – 125	DC (MM)	63 – 175	DC (MM)	12 – 40	DC (MM)	20 – 125
	ā	DC = 18 – 35 (MM)		DC = 25 – 35 (MM)		DC = 25 – 32 (MM)			H	DC = 12 – 25 (MM)		
		DC = 20 - 32 (MM)		DC = 25 – 40 (MM)		DC = 25 - 40 (MM)			1.	DC = 20 - 32 (MM)	14	DC = 20 - 32 (MM)
	C. C.	DC = 20 - 32 (MM)		DC = 25 – 40 (MM)	1	DC = 25 – 40 (MM)						
		DC = 40 – 80 (mm)		DC = 40 - 175 (mm)		DC= 40 - 125 (MM)	To the state of th			DC= 32 – 40 (MM)		DC = 40 – 125 (mm)
	4 4	4		448	4	53	Œ	459	4 6	64	4	67
	P M K N	1	P M K	N	P M K	N	P K	N H	P M K	S	P M K	S
	Q			1	Q				Q		©	
	TNGX 10	04	TNGX	1606	LNG. 1	205	LN.U	J 1607	SOMT 05	502	SOMT 0	9T3
	6		6	5	4			4	4		4	
	-											
							İ					
							l					
					Z							
							ļ					
												409

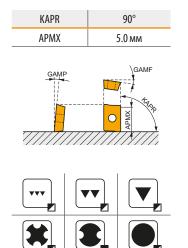
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ПАЗОВ И УСТУПОВ – НАВИГАТОР

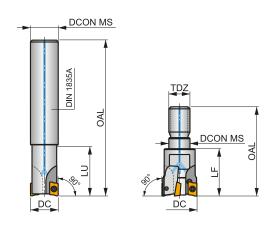
<<<

ФРЕЗЕРОВАНИЕ ПАЗОВ И УСТУПОВ

	SSD12	FTB27X		
	90°	90°		
	APMX (мм) 10.0	APMX (мм) 18.0		
	DC (MM) 50 - 160	DC (MM) 140 – 260		
Цилиндрический хвостовик				
Хвостовик Weldon				
Сменная головка с резьбовым хвостовиком				
Насадная фреза	ST S			
Страница	470	473		
ISO	P M K N S	P M K		
Форма пластины		4		
Тип пластины	SDMT 1205	TBMR 2707		
Количество режущих кромо	к 4	3		
Фрезерование неглубоких уступов				
Фрезерование с винтовой интерполяцией				
Фрезерование неглубоких пазов				
Плунжерное фрезерование				
Фрезерование с засверливанием				
Врезание под углом				
Фрезерование плоскостей				
Копировальное фрезерование				
410				

SAD07D



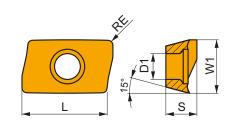


Фреза FORCE AD07 для обработки уступов

Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины AD.. 07 с глубиной резания до 5 мм имеют 2 режущие кромки. Фреза подходит для широкого применения.

FORCE AD

	Обозначение	DC	OAL	DCON MS	LU	LF	TDZ	GAMF	GAMP			max.		∫ kg		
		(мм)	(мм)	(мм)	(MM)	(мм)		(°)	(°)							
	10A2R016A08-SAD07D-C	10	100	8	16	-	-	-12	8	2	-	61600	✓	0.07	GI276	SQ010
	10A2R016A10-SAD07D-C	10	80	10	16	-	_	-12	8	2	-	61600	✓	0.07	GI276	SQ010
	10A2R018A08-SAD07D-CF	10	100	8	18	_	_	-12	8	2	_	61600	✓	0.07	GI276	SQ010
	10A2R018A10-SAD07D-CF	10	80	10	18	_	_	-12	8	2	_	61600	✓	0.07	GI276	SQ010
	12A2R018A10-SAD07D-C	12	120	10	18	_	_	-10	8	2	_	56300	✓	0.09	GI276	SQ010
	12A2R018A12-SAD07D-C	12	90	12	18	_	_	-10	8	2	_	56300	✓	0.10	GI276	SQ010
	12A3R018A12-SAD07D-C	12	90	12	18	_	_	-10	8	3	_	56200	✓	0.10	GI276	SQ010
	12A3R020A12-SAD07D-CF	12	90	12	20	_	_	-10	8	3	_	56200	✓	0.10	GI276	SQ010
	14A3R018A12-SAD07D-C	14	140	12	18	_	_	-9	8	3	_	52100	✓	0.15	GI276	SQ010
	14A3R018A14-SAD07D-C	14	90	14	18	_	_	-9	8	3	_	52100	✓	0.12	GI276	SQ010
	14A3R020A12-SAD07D-CF	14	140	12	20			-9	8	3		52100	✓	0.14	GI276	SQ010
DIN 1835A	14A3R020A14-SAD07D-CF	14	90	14	20	_		-9	8	3	_	52100	✓	0.09	GI276	SQ010
	16A3R019A14-SAD07D-C	16	160	14	19	_	_	-8	8	3	_	48700	✓	0.21	GI276	SQ011
	16A3R019A16-SAD07D-C	16	110	16	19	_	_	-8	8	3	_	48700	✓	0.18	GI276	SQ011
	16A4R019A16-SAD07D-C	16	110	16	19			-8	8	4		48700	✓	0.18	GI276	SQ011
	18A4R019A16-SAD07D-C	18	180	16	19	_		-7.5	8	4	✓	45900	✓	0.28	GI276	SQ011
	18A4R019A18-SAD07D-C	18	110	18	19	_	_	-7.5	8	4	✓	45900	✓	0.22	GI276	SQ011
	20A4R020A18-SAD07D-C	20	200	18	20	_	_	-7	8	4	✓	43600	✓	0.38	GI276	SQ011
	20A4R020A20-SAD07D-C	20	125	20	20	_		-7	8	4	✓	43600	✓	0.30	GI276	SQ011
	20A5R020A20-SAD07D-C	20	125	20	20	_	_	-7	8	5	✓	43600	✓	0.30	GI276	SQ011
	25A5R024A25-SAD07D-C	25	140	25	24	_	_	-6.5	8	5	✓	39000	✓	0.52	GI276	SQ011
	25A6R024A25-SAD07D-C	25	140	25	24	_	_	-6.5	8	6	✓	39000	✓	0.52	GI276	SQ011
	12A2R020M06-SAD07D-C	12	35	6.5	-	20	M6	-10	8	2	_	_	✓	0.05	GI276	SQ010
	14A3R020M08-SAD07D-C	14	38	8.5	_	20	M8	-9	8	3	_	_	✓	0.05	GI276	SQ010
MODULAR	14A3R023M08-SAD07D-CF	14	41	8.5	-	23	M8	-9	8	3	_	_	✓	0.05	GI276	SQ010
	16A4R023M08-SAD07D-C	16	41	8.5	-	23	M8	-8	8	4	✓	_	✓	0.06	GI276	SQ011
	20A5R030M10-SAD07D-C	20	49	10.5	_	30	M10	-7	8	5	✓	-	✓	0.09	GI276	SQ011

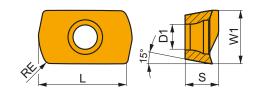

Обозначение	DC	OAL	DCON MS	LU	LF	TDZ	GAMF	GAMP			max.		∫ kg		
	(MM)	(MM)	(MM)	(MM)	(MM)		(*)	(~)							
25A6R035M12-SAD07D-C	25	57	12.5	(MM) —	35	M12	-6.5	8	6	✓	_	✓	0.13	GI276	SQ011

GI276	AD., 0702.,

		Nm			
SQ010	US 62003A-T06P	0.6	M 2	3	Flag T06P
SQ011	US 62004A-T06P	0.6	M 2	4	Flag T06P

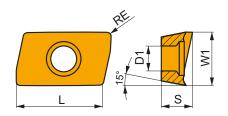
	A	DMX (7	
	W1	D1	L	S
	(MM)	(мм)	(мм)	(мм)
0702	4.482	2.20	6.95	2.48

PRAMET



	Delegan Ha	RE		F	P				M				K			N			S			Н		
Обозначение			1	c	f	ap		VC	f	ap		VC	f	ap	VC	f	ар	VC	f	ap	VC		f	ар
		(MM)	(M/I	ин) (и	им/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(M/M	ін) (ми	/зуб)	(MM)
	0,03	31°		*	<u>}</u>	S																		
NEW			Позит	ивная	я геол	иетри	я ді	пя чис	товой (брабо	TKI	И.												
ADMX 070202SR-F	M8330	0.2	2 2	20 0	0.07	2.0		130	0.06	2.0		_	-	-	660	0.08	2.0	55	0.05	1.6	_		-	-
	M8340	0.2	2 0	00 (0.07	2.0		120	0.06	2.0		-	-	_	_	-	_	50	0.05	1.6	-		-	_
ADMX 070204SR-F	M6330	0.4	2 (0 (0.07	2.0		140	0.06	2.0		-	_	_	_	_	_	60	0.05	1.6	_		_	-
	M8310	0.4	2 0	55 (0.07	2.0		135	0.06	2.0		-	_	_	_	_	_	_	_	-	-		_	_
	M8330	0.4	2	35 (0.07	2.0		140	0.06	2.0		-	_	_	705	0.08	2.0	55	0.05	1.6	-		_	_
	M8340	0.4	2	5 (0.07	2.0		125	0.06	2.0		-	-	_	-	-	_	50	0.05	1.6	-		_	_
	M9340	0.4	2 9	0 (0.07	2.0		170	0.06	2.0		_	_	_	_	_	_	70	0.05	1.6	_		_	_
ADMX 070208SR-F	M6330	0.8	2 4	10 (0.07	2.0		170	0.06	2.0		-	-	_	_	-	_	70	0.05	1.6	-		_	_
	M8310	8.0	3 2	20 (0.07	2.0		160	0.06	2.0		_	-	_	_	-	_	_	_	-	_		-	_
	M8330	8.0	2 2	30 (0.07	2.0		165	0.06	2.0		-	-	_	840	0.08	2.0	70	0.05	1.6	_		-	_
	M8340	8.0	2 :	55 (0.07	2.0		150	0.06	2.0		-	-	_	_	_	_	60	0.05	1.6	_		_	_
	0,03	21°	***	Ę		S																		
		*	Позит	ивная	я геол	иетри	я ді	пя чис	товой і	і получ	INC	товой	обрабо	тки.										
ADMX 070202SR-M	8215	0.2	2	0 (0.09	2.2		125	0.08	2.2	Z	195	0.09	2.2	630	0.11	2.2	50	0.06	1.8	-		_	_
	M8330	0.2	2 0)5 (0.09	2.2		120	0.08	2.2	Z	190	0.09	2.2	615	0.11	2.2	50	0.06	1.8	-		_	-
	M8340	0.2	1 3	35 (0.09	2.2		110	0.08	2.2		175	0.09	2.2	_	_	_	45	0.06	1.8	-		_	_

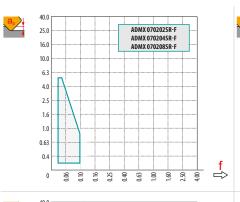
	P42803H1	RE			Р			M				K			N			S			н	
Обозначение				VC	f	ap	VC	f	ар		VC	f	ар									
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	0,03	21°	По	зитивн	ная геог	S метри	пя чис	говой и	получ	чис	товой	обрабо	тки.									
ADMX 070204SR-M	8215	0.4		225	0.09	2.2	135	0.08	2.2		210	0.09	2.2	675	0.11	2.2	55	0.06	1.8	-	-	_
	M6330	0.4		190	0.09	2.2	135	80.0	2.2		-	-	_	-	-	-	55	0.06	1.8	-	_	_
	M8310	0.4		245	0.09	2.2	120	0.08	2.2		230	0.09	2.2	-	-	-	-	-	-	-	_	_
	M8330	0.4		220	0.09	2.2	130	0.08	2.2		_00	0.09		660	0.11	2.2	55	0.06	1.8	-	-	_
	M8340	0.4		200	0.09	2.2		0.08			190	0.09	2.2	-	-	-	50	0.06	1.8	-	-	-
	M9340	0.4		265	0.09	2.2	155	0.08	2.2		-	-	-	-	-	-	65	0.06	1.8	-	-	_
ADMX 070208SR-M	8215	0.8		270	0.09	2.2	160	0.08			255	0.09	2.2	810	0.11	2.2	65	0.06	1.8	-	-	-
	M6330	0.8		225	0.09	2.2	160	0.08	2.2		-	_	_	-	-	-	65	0.06	1.8	-	-	-
	M8310	0.8	Н	290	0.09	2.2		0.08	2.2	4	275	0.09	2.2		-		_	-	-	-	-	-
	M8330	0.8		260	0.09	2.2		0.08	2.2	4		0.09		780	0.11	2.2	65	0.06	1.8	_	-	_
	M8340	0.8	H	240	0.09	2.2	140	0.08			225	0.09	2.2	_	_	_	60	0.06	1.8	_	_	_
ADMX 070212SR-M	M9340	0.8	H	315	0.09	2.2	.05	0.08	2.2		-	-	-	_	_		75	0.06	1.8	_	_	_
ADMX 0702125R-M ADMX 070216SR-M	M8340	1.2	H	250	0.09	2.2		0.08	2.2			0.09	2.2	_	_	_	60	0.06	1.8	_	-	_
ADMA 0702 103N-M	M8310 M8330	1.6	H	320 290	0.09	2.2		0.08	2.2			0.09	2.2	870	0.11	2.2	70	0.06	1.8	_	_	_
	M8340		H					0.08										0.00		_	_	_
ADMX 070220SR-M	M6330	1.6 2.0		265 260	0.09	2.2	155 185	0.08	2.2		250	0.09	2.2	_	_	_	65	0.06	1.8	_		_
ADMIX U/ UZZUJN-MI	M8310	2.0		340	0.09	2.2		0.08			320	0.09	2.2	_	_	_	75	0.00	1.8	_	_	_
	M8330	2.0		300	0.09	2.2		0.08				0.09		900	0.11	2.2	75	0.06	1.8	_	_	_
	M8340	2.0		275	0.09			0.08				0.09	2.2	900	0.11	۷.۷	65	0.06	1.8	_	_	
	W0340	2.0		2/3	0.09	۷.۷	100	0.00	2.2		200	0.09	2.2	_	_	_	00	0.00	1.0	_	_	_

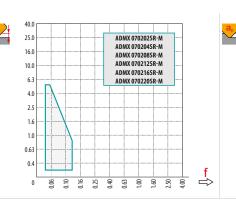

	ΑC	DEX 07-	HF											
	ADEX 07-HF W1 D1 L S (MM) (MM) (MM) (MM)													
	(MM)	(MM)	(MM)	(MM)										
0702	4.439	2.20	6.45	2.48										

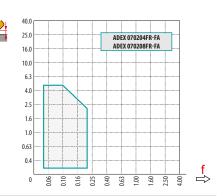
PRAMET

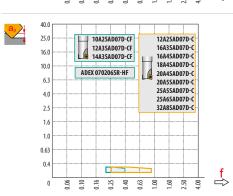
06	PRESENTATION OF THE PROPERTY O	RE			Р				M				K			N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)
	0,0	08	-	НГС	S	метри	ІЯ Д	ля обр	аботки	с выс	0К0	й пода	чей.										
ADEX 070206SR-HF	M6330	0.6		200	0.60	0.3		140	0.54	0.3		-	-	-	-	-	-	_	_	_	_	-	_
	M8330	0.6		225	0.60	0.3		135	0.54	0.3		-	-	-	_	_	_	-	_	_	_	_	-
	M8340	0.6		215	0.60	0.3		125	0.54	0.3		-	-	-	-	-	-	-	-	-	-	-	-

W1 D1 L S (мм) (мм) (мм) (мм) 0702 4.497 2.20 6.95 2.48


	,			- F -	1	,	. ,, .	1. (, ,		1	(· I ·)	-11				P			/				
	PROPORT	RE			Р			M		ı		K				N				S			Н	
Обозначение				VC	f	ар	V	f	ap		VC	f	ap		VC	f	ap		VC	f	ap	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(мм)	(м/м	н) (мм/з	/б) (мм)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм
FA	30°			озитивн	ная геог	Г	для ч	1CT0B0	й и пол	vчи	стовой	обрабо	тки цв	ветн	ных спл	павов.								
ADEX 070204FR-FA	HF7	0.4		_	_	_			_		_	_	_		240		3.0		_	_	_	_	_	_
	M0315	0.4		_	_	_	_	_	_		-	_	_		555	0.18	3.0		_	_	_	_	_	_
ADEX 070208FR-FA	HF7	0.8	T	_	_	_	_	_	_		_	_	_	П	285	0.18	3.0		_	_	_	_	_	_






a _e / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	ADMX 07-F			ADMX 07-M							HF ADEX 07-FA	
RE	0.2	0.4	0.8	0.2	0.4	0.8	1.2	1.6	2.0	0.6	0.4	0.8
BS	1.38	0.89	0.54	1.38	0.89	0.54	1.07	0.7	0.33	_	0.94	0.55

ADEX 07-HF							
DC	a _p	0	0.1	0.2	0.3		
10		5.6	7.8	8.7	9.4		
12		7.6	9.8	10.7	11.4		
14		9.6	11.8	12.7	13.4		
16	DEF	11.6	13.8	14.7	15.4		
18	DEF	13.6	15.8	16.7	17.4		
20		15.6	17.8	18.7	19.4		
25		20.6	22.8	23.7	24.4		
32		27.6	29.8	30.7	31.4		

		HFC	
a _p	0.1	0.2	0.3
‡ ⇒f	0.9	0.8	0.6

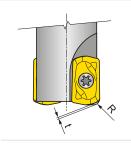
3.0

					HFC	
a _p	1.0	3.0	5.0	0.1	0.2	0.3
♣	0.13	0.08	0.05	0.7	0.6	0.4

			н	FC
DC	RPMX	APMX/I	RPMX	APMX/I
10	5.2	5.0/56	3.5	0.3/6
12	3.4	5.0/86	2.2	0.3/9
14	2.5	4.2/100	1.6	0.3/12
16	1.9	3.2/100	1.3	0.3/15
18	1.7	2.8/100	1.1	0.3/17
20	1.5	2.5/100	0.9	0.3/21
25	1.1	1.8/100	0.7	0.3/26
32	0.8	1.2/100	0.5	0.3/36

						Н	-c	
DC	DMIN	DMAX	SMAX DMIN	DMAX O	DMIN	DMAX	DMIN Ø	DMAX DMAX
10	12.0	20.0	0.5	2.8	12	20	0.30	0.30
12	16.0	24.0	0.7	2.2	16	24	0.30	0.30
14	20.0	28.0	0.8	1.9	20	28	0.30	0.30
16	24.0	32.0	0.8	1.6	24	32	0.30	0.30
18	28.0	36.0	0.9	1.6	28	36	0.30	0.30
20	32.0	40.0	0.9	1.6	32	40	0.30	0.30
25	42.0	50.0	1.0	1.5	42	50	0.30	0.30
32	56.0	64.0	1.0	1.4	56	64	0.30	0.30

Λ.Ε



DC	μm	3	5	10	15	20	30	40	50	60	80	100
10		0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
12		0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
14		0.410	0.529	0.748	0.917	1.058	1.296	1.497	1.673	1.833	2.117	2.366
16	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
18		0.465	0.600	0.849	1.039	1.200	1.470	1.697	1.897	2.078	2.400	2.683
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578

i

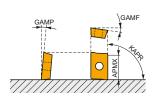
ADMX 07	R
ADMX 070216SR-M	1
ADMX 070220SR-M	1.5
ADEX 070206SR-HF	1

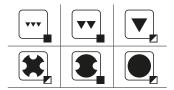
ADEX 07	R	t
ADEX 070206SR-HF	0.8	0.18

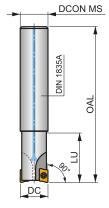
SAD11E

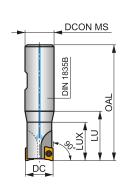
FORCE AD

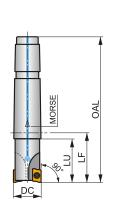
DCON MS KWW

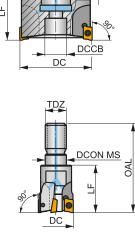



Фреза FORCE AD11 для обработки уступов


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины АД.. 11 с глубиной резания до 9 мм имеют 2 режущие кромки. Фреза подходит для широкого применения.

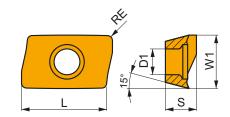



KAPR	90°
APMX	9.0 мм



	Обозначение	DC	OAL	DCON MS	DCCB	LU	LUX	LF	TDZ	CZC MS						(i)	max.		∫? kg			
	16A2R024A14-SAD11E-C	(MM) 16	(MM) 160	(MM) 14	(MM)	(MM)	(MM)	(MM)			(MM)	(MM)	(°)	(°) 4	٦.		30100	√	0.21	C11C0	COOSE	
	16A2R024A16-SAD11E-C	16	135	16	_	24	_	_	_	_		_	-12.8 -12.8	4	2		30100	▼	0.21		SQ025 S0025	
	16A2R050A16-SAD11E-C	16	135	16		50	_		_	_	_	_	-12.8	4	2		30100		0.19		• • •	
	18A2R029A20-SAD11E-C	18	150	20	_	29							-12.6	4.5	2		28400	<u> </u>	0.20		S0025	
	20A2R029A20-SAD11E-C	20	150	20	_	29	_					_	-11.5	5	2		27000	✓	0.33		•	
	20A2R070A20-SAD11E-C	20	150	20		70							-11.5	5	2		27000	· /	0.32			
	20A3R029A18-SAD11E-C	20	200	18		29						_	-11.5	5	3		27000	· /	0.38		S0025	
	20A3R029A20-SAD11E-C	20	150	20	_	29	_						-11.5	5	3	_	27000	· /	0.33			_
	22A3R029A20-SAD11E-C	22	200	20	_	29	_	_	_	_	_	_	-11.5	5	3	_	25600	√	0.49		•	_
DIN 1835A	25A3R034A25-SAD11E-C	25	170	25	_	34	_	_	_	_	_	_	-10.2	5	3	_	24100	√	0.42		50020	_
	25A3R080A25-SAD11E-C	25	170	25	_	80	_	_	_	_	_	_	-10.2	5	3	_	24100	√	0.55			_
	25A4R034A25-SAD11E-C	25	170	25	_	34	_	_	_	_	_	_	-10.2	5	4	_	24100	✓	0.42	GI169		_
	25A4R040A25-SAD11E-C	25	250	25	_	40	_	_	_	_	_	_	-10.2	5	4	_	24100	✓	0.86	GI169	SQ025	_
	30A3R080A32-SAD11E-C	30	200	32	_	80	_	_	_	_	_	_	-9.3	7	3	_	22000	✓	1.02	GI169	SQ020	_
	32A3R090A32-SAD11E-C	32	195	32	_	90	_	_	_	_	_	_	-9	5	3	_	21300	✓	1.01	GI169	SQ020	_
	32A5R034A32-SAD11E-C	32	195	32	_	34	_	_	_	_	_	_	-9	8	5	_	21300	✓	1.03	GI169	SQ025	_
	35A5R025A32-SAD11E-C	35	200	32	_	25	_	_	_	_	_	_	-9	8	5	_	20300	✓	1.16	GI169	SQ020	_
	16A2R027B16-SAD11E-C	16	75	16	-	-	27	-	-	-	-	-	-12.8	4	2	-	30100	✓	0.09	GI169	SQ025	_
	20A2R032B20-SAD11E-C	20	82	20	_	_	32	_	_	_	-	_	-11.5	5	2	_	27000	✓	0.13	GI169	SQ020	-
	20A3R032B20-SAD11E-C	20	82	20	-	-	32	-	-	-	-	-	-11.5	5	3	-	27000	✓	0.13	GI169	SQ025	-
DIN 1835B	25A3R042B25-SAD11E-C	25	98	25	-	-	42	-	-	-	-	-	-10.2	5	3	-	24100	✓	0.29	GI169	SQ020	-
	25A4R042B25-SAD11E-C	25	98	25	_	_	42	_	_	_	-	_	-10.2	5	4	_	24100	✓	0.31	GI169	SQ025	_
	32A4R042B32-SAD11E-C	32	102	32	_	_	42	_	-	_	-	_	-9	8	4	_	21300	✓	0.27	GI169	SQ020	_
	32A5R042B32-SAD11E-C	32	102	32	-	-	42	-	-	-	-	-	-9	8	5	-	21300	✓	0.52			_
	16A2R030E02-SAD11E-C	16	94	_	-	25	-	30	-	2	-	-	-12.8	4	2	-	30100	✓	0.15	GI169	SQ025	_
DIN 228A	20A3R035E03-SAD11E-C	20	116	_	_	30	_	35	_	3	_	-	-11.5	5	3	_	27000	✓	0.28	GI169	SQ025	
	25A4R043E03-SAD11E-C	25	124	_	_	38	_	43	-	3	_	_	-10.2	5	4	_	24100	✓	0.32	GI169	SQ025	

	Обозначение	DC (MM)	OAL (MM)	DCON MS	DCCB	LU (MM)	LUX (MM)	LF (MM)	TDZ	CZC MS	KWW (MM)	KWD	GAMF	GAMP			max.		S kg	<u></u>	7	
	16A2R024M08-SAD11E-C	16	38	8.5	-	-	-	24	M8	-	-	-	-12.8	4	2	-	-	✓	0.04	GI169	SQ025	_
	20A2R026M10-SAD11E-C	20	45	11	_	_	-	26	M10	_	-	_	-11.5	5	2	_	_	✓	0.09	GI169	SQ020	-
	20A3R026M10-SAD11E-C	20	45	10.5	-	-	-	26	M10	-	-	_	-11.5	5	3	-	-	\checkmark	0.06	GI169	SQ025	-
	25A3R033M12-SAD11E-C	25	55	12.5	_	-	-	33	M12	-	-	_	-10.2	5	3	-	-	✓	0.15	GI169	SQ020	_
MODULAR	25A4R033M12-SAD11E-C	25	55	12.5	_	_	-	33	M12	_	-	_	-10.2	5	4	-	_	✓	0.09	GI169	SQ025	_
	32A4R043M16-SAD11E-C	32	66	17	_	-	-	43	M16	_	-	_	-9	8	4	-	-	✓	0.21	GI169	SQ020	_
	32A5R043M16-SAD11E-C	32	66	17	-	-	-	43	M16	-	-	-	-9	8	5	-	-	✓	0.19	GI169	SQ025	-
	40A4R043M16-SAD11E-C	40	66	17	-	-	-	43	M16	-	-	-	-8.1	11	4	-	-	✓	0.27	GI169	SQ020	_
	40A6R043M16-SAD11E-C	40	66	17	-	_	-	43	M16	-	-	-	-8.1	11	6	-	-	\checkmark	0.21	GI169	SQ020	_
	40A04R-S90AD11E-C	40	_	16	14	-	-	40	_	-	8.4	5.6	-8.1	11	4	✓	19100	✓	0.16	GI169	SQ022	_
	40A05R-S90AD11E-C	40	_	16	14	-	-	40	-	-	8.4	5.6	-8.1	11	5	✓	19000	✓	0.32	GI169	SQ022	_
	40A06R-S90AD11E-C	40	-	16	14	-	-	40	-	-	8.4	5.6	-8.1	11	6	✓	19100	✓	0.16	GI169	SQ022	
	50A05R-S90AD11E-C	50	_	22	18	_	_	40	_	_	10.4	6.3	-7.2	12	5	✓	17000	✓	0.31	GI169	SQ023	
	50A07R-S90AD11E-C	50	_	22	18	_	-	40	_	_	10.4	6.3	-7.2	12	7	✓	17000	✓	0.45	GI169	SQ023	
ISO 6462 DIN 8030	63A06R-S90AD11E-C	63	-	22	18	_	-	40	-	-	10.4	6.3	-6.5	12	6	✓	15200	✓	0.54	GI169	SQ023	_
	63A09R-S90AD11E-C	63	-	22	18	-	-	40	-	-	10.4	6.3	-6.5	12	9	✓	15200	✓	0.63	GI169	SQ023	
	80A10R-S90AD11E-C	80	_	27	38	_	_	50	-	-	12.4	7	-6	12	10	✓	13500	✓	1.05	GI169	SQ021	AC001
	100A11R-S90AD11E-C	100	_	32	45	-	_	50	_	-	14.4	8	-5.5	12	11	✓	12100	✓	1.89	GI169	SQ021	AC002
	125A12R-S90AD11E-C	125	-	40	56	-	_	63	-	-	16.4	9	-5.2	12	12	✓	10800	✓	2.97	GI169	SQ021	AC003


GI169	ADMX 11T3	ADEX 11T3

		Nm			10			(a) The same of th
SQ020	US 62506-T07P	1.2	M 2.5	6	_	_	Flag T07P	_
SQ021	US 62506-T07P	1.2	M 2.5	6	D-T07P/T09P	FG-15	_	_
SQ022	US 62506-T07P	1.2	M 2.5	6	D-T07P/T09P	FG-15	_	HS 0830C
SQ023	US 62506-T07P	1.2	M 2.5	6	D-T07P/T09P	FG-15	_	HS 1030C
SQ025	US 62505-T07P	1.2	M 2.5	5	_	_	Flag T07P	_

AC001	KS 1230	K,FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

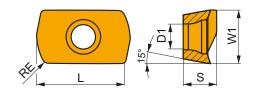
ADMX 11

	W1	D1	L	S
	(MM)	(мм)	(мм)	(MM)
11T3	6.530	2.90	11.00	3.97

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

0.5	PRPCPE	RE		Р			M				K			N			S			Н	
Обозначение		(мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VС (м/мі	f н) (мм/зуб	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	23°	0,06	т на притив	ная гео	S	для чис	товой о	брабо	DΤΚ	и.											

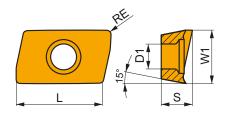
ADMX 11T304SR-F	8215	0.4	245	0.10	2.0	145	0.09	2.0	230	0.10	2.0	735	0.12	2.0	60	0.08	1.6	-	_	_
	M8310	0.4	270	0.10	2.0	135	0.09	2.0	255	0.10	2.0	_	_	_	_	_	-	_	_	_
	M8330	0.4	240	0.10	2.0	140	0.09	2.0	225	0.10	2.0	720	0.12	2.0	60	0.08	1.6	_	_	_
	M8340	0.4	220	0.10	2.0	130	0.09	2.0	205	0.10	2.0	_	_	_	55	0.08	1.6	_	_	_
	M9340	0.4	285	0.10	2.0	170	0.09	2.0	-	_	_	_	_	_	70	0.08	1.6	_	_	_
ADMX 11T308SR-F	8215	0.8	290	0.10	2.0	170	0.09	2.0	275	0.10	2.0	870	0.12	2.0	70	0.08	1.6	_	_	_
	M8330	0.8	285	0.10	2.0	170	0.09	2.0	270	0.10	2.0	855	0.12	2.0	70	0.08	1.6	_	_	_
	M8340	0.8	260	0.10	2.0	155	0.09	2.0	245	0.10	2.0	_	_	_	65	0.08	1.6	_	_	_
	M9340	0.8	340	0.10	2.0	200	0.09	2.0	-	_	_	_	_	_	85	0.08	1.6	_	_	_



Позитивная геометрия для чистовой и получистовой обработки.

ADMX 11T302SR-M	M8330	0.2	190	0.15	4.0	110	0.14	4.0	180	0.15	4.0	_	_	-	45	0.12	3.2	-	-	-
	M8340	0.2	170	0.15	4.0	100	0.14	4.0	160	0.15	4.0	-	-	_	40	0.12	3.2	_	-	_
ADMX 11T304SR-M	8215	0.4	205	0.15	4.0	120	0.14	4.0	190	0.15	4.0	_	_	_	50	0.12	3.2	_	-	-
	M8310	0.4	220	0.15	4.0	110	0.14	4.0	205	0.15	4.0	_	_	_	_	-	_	_	_	_
	M8330	0.4	205	0.15	4.0	120	0.14	4.0	190	0.15	4.0	_	_	_	50	0.12	3.2	_	_	_
	M8340	0.4	185	0.15	4.0	110	0.14	4.0	175	0.15	4.0	_	_	_	45	0.12	3.2	_	_	_
	M9325	0.4	255	0.15	4.0	_	_	-	240	0.15	4.0	_	_	_	_	_	_	_	_	_
	M9340	0.4	235	0.15	4.0	140	0.14	4.0	_	_	_	_	_	_	55	0.12	3.2	_	_	_
ADMX 11T308SR-M	8215	0.8	245	0.15	4.0	145	0.14	4.0	230	0.15	4.0	_	_	_	60	0.12	3.2	_	_	_
	M5315	0.8	335	0.15	4.0	-	_	-	315	0.15	4.0	_	_	_	_	_	_	_	_	_
	M8310	0.8	265	0.15	4.0	135	0.14	4.0	250	0.15	4.0	_	_	-	-	-	_	_	_	_
	M8330	0.8	245	0.15	4.0	145	0.14	4.0	230	0.15	4.0	_	_	_	60	0.12	3.2	_	_	_
	M8340	0.8	220	0.15	4.0	130	0.14	4.0	205	0.15	4.0	_	_	_	55	0.12	3.2	_	_	_
	M9315	0.8	330	0.15	4.0	-	_	-	310	0.15	4.0	_	_	_	_	_	_	_	_	_
	M9325	0.8	305	0.15	4.0	-	_	-	285	0.15	4.0	_	_	-	-	-	_	_	_	_
	M9340	0.8	275	0.15	4.0	165	0.14	4.0	_	_	_	_	_	_	65	0.12	3.2	_	_	_
ADMX 11T310SR-M	M8330	1.0	255	0.15	4.0	150	0.14	4.0	240	0.15	4.0	_	_	_	60	0.12	3.2	_	_	_
	M8340	1.0	230	0.15	4.0	135	0.14	4.0	215	0.15	4.0	_	_	_	55	0.12	3.2	_	_	_
ADMX 11T312SR-M	8215	1.2	255	0.15	4.0	150	0.14	4.0	240	0.15	4.0	_	_	_	60	0.12	3.2	_	_	_
	M8330	1.2	255	0.15	4.0	150	0.14	4.0	240	0.15	4.0	_	_	_	60	0.12	3.2	_	_	_
	M8340	1.2	230	0.15	4.0	135	0.14	4.0	215	0.15	4.0	_	_	_	55	0.12	3.2	_	_	_
ADMX 11T316SR-M	8215	1.6	270	0.15	4.0	160	0.14	4.0	255	0.15	4.0	_	_	-	65	0.12	3.2	_	_	_
	M6330	1.6	230	0.15	4.0	165	0.14	4.0	_	_	_	_	_	_	65	0.12	3.2	_	_	_
	M8310	1.6	295	0.15	4.0	150	0.14	4.0	280	0.15	4.0	_	_	_	_	-	_	-	_	_
	M8330	1.6	270	0.15	4.0	160	0.14	4.0	255	0.15	4.0	_	_	-	65	0.12	3.2	_	_	_
	M8340	1.6	240	0.15	4.0	140	0.14	4.0	225	0.15	4.0	_	_	_	60	0.12	3.2	_	_	_

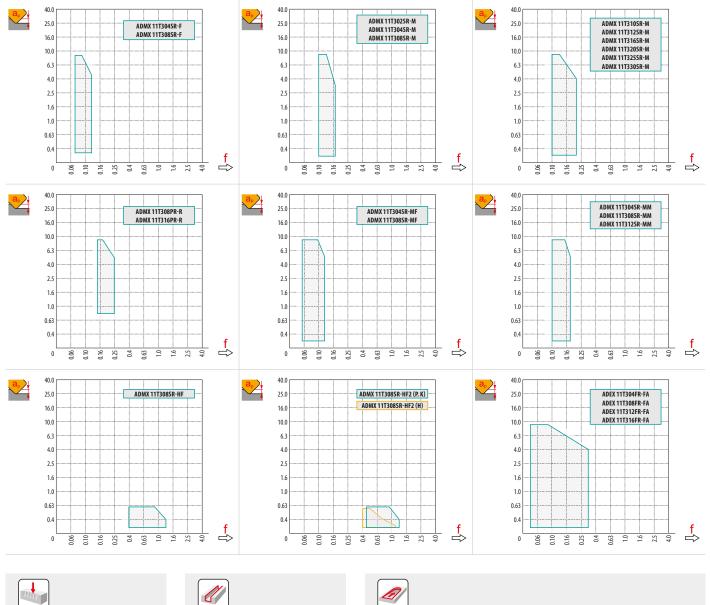
0602112112112	CHARSES	RE			P				M				K			N				S				Н	
Обозначение		(****)		VC	f (maybush)	ap		VC	f	ap		VC	f	ap	VC	f	ap		VC	f	ap		VC	f	ap
		(MM)		(м/мин)	(MM/3y6)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(M)
	23°	,09	4	1	₹Ŭ}	S																			
			Ξ																						
			Поз	ВИТИВН	ная гео	метри	я д	ля чис	товой и	1 полу	чис	товой	обрабо	тки.											
DHY 11T220CD M	114222	2.0		240	0.45	4.0		470	0.44	4.0									70	0.43	2.2				
ADMX 11T320SR-M	M6330	2.0		240	0.15	4.0	H	170	0.14	4.0		-	- 0.15	-	_	-	-		70	0.12	3.2		-	-	-
	M8330 M8340	2.0		280 255	0.15	4.0	H	165 150	0.14	4.0		265 240	0.15	4.0	_	_	_		70 60	0.12	3.2		_	_	_
NDMX 11T325SR-M	M6330	2.5	Ħ	240	0.15	4.0	Ħ	170	0.14	4.0		_	0.13	4.0	<u> </u>		_		70	0.12	3.2		_		
	M8340	2.5	Ħ	255	0.15	4.0	Ī	150	0.14	4.0		240	0.15	4.0	_	_	_		60	0.12	3.2		_	_	
DMX 11T330SR-M	M6330	3.0		240	0.15	4.0		170	0.14	4.0		_	_	_	-	_	_		70	0.12	3.2		_	_	-
	M8330	3.0		280	0.15	4.0		165	0.14	4.0		265	0.15	4.0	_	_	-		70	0.12	3.2		-	_	-
	M8340	3.0		255	0.15	4.0		150	0.14	4.0		240	0.15	4.0	_	-	-		60	0.12	3.2		-	_	-
	210.		•																						
	4 T),12	1		P																				
	+		Поз	RNTNBI	138 ርቀቦ	метпи	ІЯ Л	пя нес	табиль	ных и	יחת	вий об	паботк	и.											
			1100	וטוייייי			д)(.,,01	00	Pavoin												
ADMX 11T308PR-R	8215	0.8		230	0.18	4.0		135	0.16	4.0		215	0.18	4.0	_	_	_		55	0.16	3.2		45	0.15	1.
	M5315	0.8			0.18	4.0	Ī	_	_	_		290	0.18	4.0	_	_	_	Ī	_	_	_		60	0.15	1.
	M8310	0.8		250	0.18	4.0		125	0.16	4.0		235	0.18	4.0	_	_	-		_	-	_		50	0.15	1.
	M8330	0.8		230	0.18	4.0		135	0.16	4.0		215	0.18	4.0	_	-	-		55	0.16	3.2		45	0.15	1
	M8340	0.8		210	0.18	4.0		125	0.16	4.0		195	0.18	4.0	_	_	-		50	0.16	3.2		-	_	-
	M9315	0.8		310	0.18	4.0		-	-	-		290	0.18	4.0	_	-	-		-	-	-		60	0.15	1
DMX 11T316PR-R	M9325	0.8	-	290	0.18	4.0		150	- 0.16	-	H	275	0.18	4.0	_	-	_		-	- 0.16	-		55	0.15	1.
IDMIX III3 IOPK-K	8215 M8330	1.6		255 255	0.18	4.0		150 150	0.16	4.0	H	240 240	0.18	4.0	_		_		60	0.16	3.2		50 50	0.15	1. 1.
	M9325	1.6	Ħ	320	0.18	4.0		-	0.10	4.0	H	300	0.18	4.0	_		_		-	0.10	J.Z		60	0.15	1.
	myszs	1.0		, ,								300	0.10	1.0									00	0.13	
	0,1	~ \B	7		۵	S	,																		
0:0	-		_																						
		7	Поз	ВИТИВН	ная гео	метри	я д	ля чис	товой (обрабо)TKI	и нерж	авеющ	их стале	ей и жар	опрочн	ых спл	1280	В						
DIAV 44T20 4CD ME																									
ADMX 11T304SR-MF	M6330	0.4	-	215	0.08	2.5	H	150	0.07	2.5		-	_	-	_	_	-	H	60	0.06	2.0		-	_	-
IDMX 11T308SR-MF	M8340 M6330	0.4	H	220 255	0.08	2.5	Ħ	130 180	0.07	2.5		-		-	_		_	H	55 75	0.06	2.0		_		-
IDMX 1113003K MI	M8340	0.8	Ħ	265	0.08	2.5	Ħ	155	0.07	2.5		_	_	_	_		_	Ħ	75 65	0.06	2.0		_		
	M9340	0.8	П	360	0.08				0.07	2.5		-	_	_	_	_	_	Ħ	90	0.06	2.0		_	_	_
	0,1	2 /2°	1		٥	S																			
105	1		Пол										.66.												
		1	1103	ВИТИВІ	ная гео	метри	ІЯ Д.	ля чис	товои и	1 полу	чис	товои	oopaoo	тки нер	жавеюі	цих ста.	пеи и х	карс	проч	ных спл	авов.	•			
DMX 11T304SR-MM	116220	0.4		105	0.14	2 5		120	Λ 12	2 [ГГ	0.11	2.0				
DINK TITOOTSK MIM	M6330 M8340	0.4	H	185 195	0.14	2.5		130 115	0.13	2.5								Ħ	55 45	0.11	2.0		_		
	M9340	0.4		250	0.14			150	0.13	2.5		_	_			_	_		60	0.11	2.0		_	_	
DMX 11T308SR-MM	M6330	0.8		225	0.14			155	0.13	2.5		-	_	_	_	_	_		65	0.11	2.0		_	_	-
	M8340	0.8		235	0.14	2.5		140	0.13	2.5		-	-	-	_	_	-		55	0.11	2.0		-	-	
	M8345	0.8		190	0.14	2.5		110	0.13	2.5		-	-	-	_	-	-		45	0.11	2.0		-	-	
	M9340	0.8		300	0.14	2.5		180	0.13	2.5		-	-	-	-	-	-		75	0.11	2.0		-	-	-
DMX 11T312SR-MM	M6330	1.2			0.14	2.5		165	0.13	2.5		-	-	-	-	-	-		70	0.11	2.0		-	-	-
	M8340	1.2			0.14	2.5		145	0.13	2.5		-	-	-	-	-	-		60	0.11	2.0		_	-	-
	M9340	1.2		315	0.14	2.5		185	0.13	2.5		-	-	-	_	_	-		75	0.11	2.0		_	-	-


ADEX 11-HF W1 D1 L (MM) 6.450 2.90 10.67 3.82

					D				N/I				V				.			c			ш	
Обозначение	\$\$\$20\d\$	RE			Р				M				K			ı	И			S			Н	
ОООЗНАЧЕНИЕ				VC	f	ap		VC	f	ap		VC	f	ap	V		f	ap	VC	f	ap	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(M/M	ин) (и	им/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
9	0,	<u>15</u>	_	IFC	S																			
	16°		По	ЗИТИВН	ая гео	иетри	я д	ля обр	аботки	СВЫС	OKO	й пода	чей.											
ADEX 11T308SR-HF	8215	0.8		215	0.68	0.4		125	0.61	0.4		-	-	-	_		_	_	_	-	_	_	_	-
	M6330	8.0		185	0.68	0.4		130	0.61	0.4		-	-	-	-		_	_	_	_	-	_	_	_
	M8310	8.0		220	0.68	0.4		110	0.52	0.4		-	-	-	-		_	-	_	_	-	_	_	_
	M8330	8.0		215	0.68	0.4		125	0.61	0.4		-	-	-	-		_	-	_	-	-	-	-	_
	M8340	0.8		200	0.68	0.4		120	0.61	0.4		-	_	-	-		_	_	_	_	_	-	_	_
	M9340	0.8		220	0.68	0.4		130	0.61	0.4		-	_	-	-		_	_	_	_	_	-	_	-
61	0,2	2- \13°	H	IFC	S																			
93	23°	7	По	ЗИТИВН	ая гео	метри	я д	ля обр	аботки	с выс	OKO	й пода	чей.											
ADEX 11T308SR-HF2	M8310	0.8		220	0.68	0.4		110	0.61	0.4		205	0.68	0.4	-		-	_	-	_	-	40	0.15	1.0
	M8330	0.8		215	0.68	0.4		125	0.61	0.4		200	0.68	0.4	-		_	-	50	0.48	0.3	40	0.15	1.0
	M8340	0.8		200	0.68	0.4		120	0.61	0.4		190	0.68	0.4	Ι-		_	_	50	0.48	0.3	_	_	_
	M9325	0.8		250	0.68	0.4		_	_	_		235	0.68	0.4	Ι-		_	_	-	_	_	50	0.15	1.0
	M9340	8.0		220	0.68	0.4		130	0.61	0.4		-	_	-	-		_	-	55	0.48	0.3	_	_	_

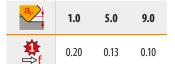
PRAMET

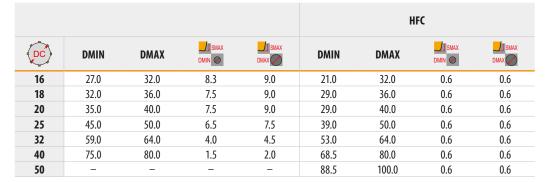
Применение инструме	нта, начальнь	не значе	ния ско	ростир	езания (vc), пода	ачи (1)	итлуог	инь	ы резап	ия (ар)	. для д	TOII	ОЛНИП	прных	расче	IOR	OCH	шьзуиі	есь п	טונוענ	жение	ew Car	Cuiall
Обозначение	\$3528ADA	RE		P			M				K				N				S				Н	
ооозначение			VC	f	ap	VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap
		(MM)	(M/MI	н) (мм/зу	б) (мм)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(i	и/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)
	34°		+	C.	F																			
	1		Позити	вная ге	ометрия	I ДЛЯ ЧИС	стовой	и полу	чис	стовой	обрабо	тки цв	етн	ІЫХ СПЈ	1 a B0B.									
ADEX 11T304FR-FA	HF7	0.4	_	-	-	_	_	_		_	-	_		210	0.30	5.0		_	_	_		_	_	_
	M0315	0.4	_	_	-	_	_	_		-	_	_		480	0.30	5.0		_	_	_		_	_	-
ADEX 11T308FR-FA	HF7	0.8	_	_	-	_	_	_		-	_	_		240	0.30	5.0		_	_	_		_	_	-
	M0315	0.8	_	_	-	_	_	_		-	_	-		570	0.30	5.0		_	_	_		_	_	-
ADEX 11T312FR-FA	HF7	1.2	_	_	_	_	_	_		-	_	_		255	0.30	5.0		_	_	_		_	_	_
	M0315	1.2	_	_	_	_	_	_	Ī	-	_	_		600	0.30	5.0		_	_	_		_	_	_



a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒×.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

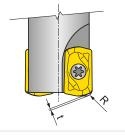
0000000	ADM	X 11-F											K 11-R	ADMX	11-MF
RE	0.4	0.8	0.2 0.4 0.8 1.0		1.2	1.6	2.0	2.5	3.0	0.8	1.6	0.4	0.8		
BS	1.89	1.48	2.09	1.89	1.48	1.27	1.08	0.68	1.61	1.13	0.66	1.48	0.68	1.89	1.48


000000		ADMX	11-MM		ADEX 11-HF	ADEX 11-HF2		ADEX	11-FA	
RE	0.4	0.8	1.2	1.6	0.8	0.8	0.4	0.8	1.2	1.6
BS	1.89	1.48	1.08	0.61	0.17	0.17	1.77	1.39	1.0	0.62



				HFC	
DC	RPMX	APMX/I	RPMX *	RPMX **	APMX/I
16	13.5	9.0/40	4.1	5.7	0.6/8
18	10.0	9.0/53	2.8	4.5	0.6/12
20	9.0	9.0/59	2.3	4.3	0.6/15
25	6.0	9.0/87	1.3	6.7	0.6/26
32	5.3	9.0/99	0.7	4.3	0.6/49
40	3.8	6.5/100	0.3	2.9	0.6/100
50	2.8	4.7/100	0.1	2.1	0.6/100
63	1.8	3.0/100	_	-	-
80	1.6	2.6/100	_	_	_

- * Обработка с высокой подачей
- ** Стандартная обработка


RE	μm	3	5	10	15	20	30	40	50	60	80	100
1.0		0.155	0.200	0.283	0.346	0.400	0.490	0.566	0.632	0.693	0.800	0.894
1.2		0.170	0.219	0.310	0.379	0.438	0.537	0.620	0.693	0.759	0.876	0.980
1.6	FE	0.196	0.253	0.358	0.438	0.506	0.620	0.716	0.800	0.876	1.012	1.131
2.0		0.219	0.283	0.400	0.490	0.566	0.693	0.800	0.894	0.980	1.131	1.265
2.5		0.245	0.316	0.447	0.548	0.632	0.775	0.894	1.000	1.095	1.265	1.414
3.0		0.268	0.346	0.490	0.600	0.693	0.849	0.980	1.095	1.200	1.386	1.549

ADMX/ADEX 11	R
ADMX 11T320SR-M	1.0
ADMX 11T325SR-M	1.8
ADMX 11T330SR-M	1.8
ADEX 11T308SR-HF	1.4
ADEX 11T308SR-HF2	1.4

ADEX 11	R	t
ADEX 11T308SR-HF	1.42	0.35
ADEX 11T308SR-HF2	1.34	0.38

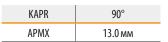
SAD16E

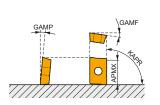
FORCE AD

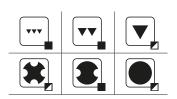
DCON MS

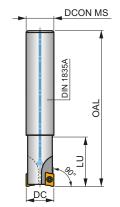
PRAMET

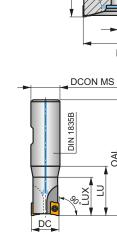
DCON MS KWW

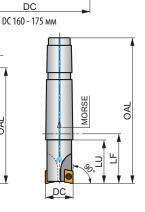


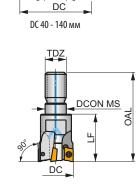



Фреза FORCE AD16 для обработки уступов


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины AD.. 16 с глубиной резания до 13 мм имеют 2 режущие кромки. Фреза подходит для широкого применения.

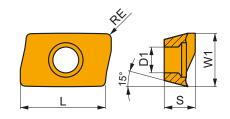






DCCB

· · · m																							
	Обозначение	DC	OAL	DCON MS	DCCB	DBC1	LU	LUX	LF	TDZ	CZC MS	KWW	KWD	GAMF	GAMP		(0)	max.		S kg			
		(мм)	(мм)	(мм)	(мм)	(мм)	(мм)	(мм)	(мм)			(мм)	(MM)	(°)	(°)								
	25A2R033A25-SAD16E-C	25	165	25	_	-	33	-	-	-	-	-	_	-13	5	2	-	18700	\checkmark	0.52	GI165	SQ030	-
	25A2R038A25-SAD16E-C	25	200	25	_	-	38	_	_	_	-	-	_	-13	5	2	_	18700	✓	0.71	GI165	SQ030	
DIN 1835A	32A3R033A32-SAD16E-C	32	195	32	_	_	33	_	_	_	-	_	_	-12	7	3	_	16500	✓	1.03	GI165	SQ030	_
	32A3R048A32-SAD16E-C	32	250	32	_	-	48	-	-	-	-	-	_	-12	7	3	-	16500	\checkmark	1.37	GI165	SQ030	_
	25A2R042B25-SAD16E-C	25	98	25	_	_	_	42	-	-	-	-	_	-13	5	2	-	18700	✓	0.29	GI165	SQ030	-
	32A3R040B32-SAD16E-C	32	100	32	_	-	-	40	_	_	-	-	_	-12	7	3	_	16500	✓	0.50	GI165	SQ030	
DIN 1835B	40A3R050B32-SAD16E-C	40	110	32	_	_	-	50	_	_	-	_	_	-8.2	10.5	3	_	14800	✓	0.59	GI165	SQ030	
	40A4R050B32-SAD16E-C	40	110	32	_	-	-	50	-	-	-	-	-	-8.2	10.5	4	-	14800	✓	0.65	GI165	SQ030	_
	25A2R043E03-SAD16E-C	25	98	_	_	_	38	_	43	-	3	-	_	-13	5	2	-	18600	✓	0.31	GI165	SQ030	-
	32A3R043E03-SAD16E-C	32	100	_	_	-	38	_	43	_	3	-	_	-12	7	3	_	16500	✓	0.33	GI165	SQ030	
DIN 228A	40A3R054E04-SAD16E-C	40	110	_	_	_	48	_	54	-	4	_	_	-8.2	10.5	3	_	14700	✓	0.74	GI165	SQ030	_
	40A4R054E04-SAD16E-C	40	110	_	_	_	48	-	54	-	4	-	-	-8.2	10.5	4	-	14700	✓	0.70	GI165	SQ030	_
	32A3R043M16-SAD16E-C	32	66	17	_	-	-	-	43	M16	-	-	_	-12	7	3	-	-	✓	0.20	GI165	SQ030	_
MODULAR	40A4R043M16-SAD16E-C	40	66	17	-	-	-	-	43	M16	-	-	-	-8.2	10.5	4	-	-	✓	0.27	GI165	SQ030	_
	40A04R-S90AD16E-C	40	-	16	14	-	-	-	40	-	-	8.4	5.6	-8.2	10.5	4	-	14700	\checkmark	0.21	GI165	SQ032	-
	50A03R-S90AD16E-C	50	-	22	18	_	_	_	40	-	_	10.4	6.3	-7	11	3	-	13200	\checkmark	0.43	GI165	SQ033	_
	50A05R-S90AD16E-C	50	_	22	18	_	-	_	40	_	-	10.4	6.3	-7	11	5	✓	13200	✓	0.59	GI165	SQ033	_
	63A04R-S90AD16E-C	63	-	22	18	-	-	-	40	-	-	10.4	6.3	-6	12	4	\checkmark	11800	✓	0.62	GI165	SQ033	_
	63A06R-S90AD16E-C	63	-	22	18	-	-	-	40	_	-	10.4	6.3	-6	12	6	✓	11800	✓	0.46	GI165	SQ033	_
71-172	80A05R-S90AD16E-C	80	_	27	38	_	_	_	50	_	_	12.4	7	-5	12	5	✓	10400	✓	1.01	GI165	SQ031	AC001
ISO 6462 DIN 8030	80A07R-S90AD16E-C	80	_	27	38	-	-	_	50	_	-	12.4	7	-5	13	7	✓	10400	✓	0.97	GI165	SQ031	AC001
DIN 8030	100A06R-S90AD16E-C	100	-	32	45	-	-	-	50	-	-	14.4	8	-4	12	6	✓	9300	✓	1.89	GI165	SQ031	AC002
	100A08R-S90AD16E-C	100	-	32	45	-	-	-	50	-	-	14.4	8	-4	12	8	✓	9300	✓	1.69	GI165	SQ031	AC002
	125A09R-S90AD16E-C	125	_	40	56	-	-	_	63	_	-	16.4	9	-3.8	12	9	✓	8400	✓	3.46	GI165	SQ031	AC003
	140A08R-S90AD16E-C	140	_	40	56	-	-	_	63	_	-	16.4	9	-3.8	12	8	✓	7900	✓	4.06	GI165	SQ031	
	160C10R-S90AD16E-C	160	-	40	_	66.7	-	-	63	-	-	16.4	9.2	-3.8	10	10	✓	7300	✓	6.04	GI165	SQ036	_
	175C10R-S90AD16E-C	175	-	40	_	66.7	-	-	63	-	-	16.4	9.2	-3.8	12	10	✓	7000	✓	7.00	GI165	SQ036	_

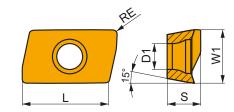


		Nm			10			(1) James		6)	(°
SQ030	US 4008-T15P	3.5	M 4	8	_	-	Flag T15P	_	_	-	_
SQ031	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	_	-	_	_	_
SQ032	US 4008-T15P	3.5	M 4	8	D-T08P/T15P	FG-15	_	HS 0830C	_	_	_
SQ033	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	_	HS 1030C	_	_	_
SQ036	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	_	HS 1240C	CAC 160C	HSD 0825C	HXK 5

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

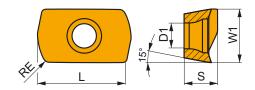
	A	DMX 1	L6	
	W1	D1	L	S
	(MM)	(MM)	(MM)	(MM)
1606	9.950	4.50	16.00	6.25

PRAMET


Применение инструме	нта, начальнь	ые значе	RNHS	скоро	сти ре:	вания	(Vc)), пода	чи (†) I	1 глуби	ΙНЬ	ы резан	ия (ар)	. Для	доп	ОЛНИТ	ельных	(расч	етов	В ВОСП	ользуй [.]	гесь пр	илож	ение	em Calc	ulat
	PSCHSPS	RE			P				M				K		ı		N				S				Н	
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vин)	f (мм/зуб)	ap (MA
	25°	<u>),1</u>	+			S																				
	1		Поз	ВИТИВН	ная гео	метри	ия д	пя чис	товой (обрабо	TKI	И.														
ADMX 160608SR-F	8215	8.0		265	0.15	2.0		155	0.14	2.0		250	0.15	2.0		795	0.18	2.0		65	0.11	1.6		-	-	-
	M8310	0.8		285	0.15	2.0		145	0.14	2.0		270	0.15	2.0		_	-	_		-	-	-	-	-	-	-
	M8330	0.8		260	0.15	2.0		155	0.14	2.0		245	0.15	2.0		780	0.18	2.0		65	0.11	1.6	-	-	-	
	M8340	0.8		235	0.15	2.0		140	0.14	2.0		220	0.15	2.0		_	-	-		55	0.11	1.6		-	-	-
	M9340	0.8		300	0.15	2.0		180	0.14	2.0		-	-	-		_	-	-		75	0.11	1.6		-	-	
	24°	0,17_	4	*		S																				
	,		Поз	ВИТИВН	ная гео	метри	ия д	пя чис	товой і	и получ	чис	стовой	обрабо	тки.												
ADMX 160604SR-M	8215	0.4		190	0.18	5.0		110	0.16	5.0		180	0.18	5.0		-	-	-		45	0.13	4.0		-	-	-
	M8330	0.4		190	0.18	5.0		110	0.16	5.0		180	0.18	5.0		_	-	_		45	0.13	4.0	-	-	-	-
	M8340	0.4		170	0.18	5.0		100	0.16	5.0		160	0.18	5.0		_	_	_		40	0.13	4.0		-	_	-

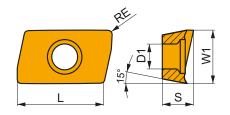
060000000000	CHARKES	RE	P				M				K				N			S				Н			
Обозначение			(M/N		ар б) (мм)		VC (м/мин)	f (444/206)	ap		VC (M/MM)	f (444/206)	ap	VC		ap		VC	f	ap		VC	f	ap	
		(MM)	(M/N				(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(M/MI	ін) (мм/зуб) (мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(MM/3y6)	(MM)	
	24°),17_	4	₹Ŭ.																					
	+		Позиті	ивная ге	ометп	ия л	пя чис	товой і	и попу	чис	товой	ირიგრი	тки												
			11031111	ibiiani i	omerp	,,,, ,	,,,,	.1000111		.,,	.100011	oopaoo	,,,,,,,												
ADMX 160608SR-M	8215	0.8	2 2	.5 0.18	5.0		135	0.16	5.0		210	0.18	5.0	_	-	-		55	0.13	4.0		-	-	-	
	M5315	0.8	2 30				-		-		285	0.18	5.0	_	_	-		-	_	-		-	-	_	
	M8310	0.8	25				125	0.16	5.0		235	0.18	5.0	_	_	_		-	- 0.12	-		_	_	_	
	M8330 M8340	0.8	2 2			H	135 120	0.16	5.0		210 190	0.18	5.0 5.0					55 50	0.13	4.0		_	_	_	
	M9315	0.8	30			ī	-	-	-		285	0.18	5.0	-	_	_		_	-	-		_	_	_	
	M9325	0.8	2 8	0.18			-	_	-		265	0.18	5.0	-	-	_		-	-	_		_	-	_	
	M9340	8.0	2 5	5 0.18	5.0		150	0.16	5.0		_	-	-	_	-	_		60	0.13	4.0		-	-	-	
DMX 160616SR-M	8215	1.6	25					0.16	5.0		235	0.18	5.0	_	-	-		60	0.13	4.0		-	-	-	
	M8310	1.6	27					0.16	5.0		260	0.18	5.0	-	_	_		-	- 0.12	- 4.0		-	_	-	
	M8330 M8340	1.6	2 5 2 2 2 2				150 135	0.16	5.0			0.18	5.0 5.0	-				60 55	0.13	4.0		_		_	
	M9325	1.6	31			-	-	-	-	É	290	0.18	5.0		_	_		-	-	-		_	_	_	
DMX 160620SR-M	M6330	2.0	2 2				155	0.16	5.0		-	_	_	-	_	_		65	0.13	4.0		_	_	_	
	M8330	2.0	2 6	5 0.18	5.0		155	0.16	5.0		250	0.18	5.0	_	-	_		65	0.13	4.0		-	-	-	
DIIV 4 40 420 CD 14	M8340	2.0	2 4				140	0.16	5.0			0.18	5.0	_	_	_		60	0.13	4.0		-	_	-	
DMX 160630SR-M	M8330	3.0	26			H	155	0.16	5.0	L	250	0.18	5.0	-	_	_		65	0.13	4.0		-	-	-	
DMX 160632SR-M	M8340 M6330	3.0	24			H	140 155	0.16	5.0		225	0.18	5.0					60	0.13	4.0		_		_	
Sink 1000525K iii	M8330	3.2	26			ī		0.16	5.0	F	250	0.18	5.0	-	_	_		65	0.13	4.0		_	_		
	M8340	3.2	2 4				140	0.16	5.0			0.18	5.0	-	_	_		60	0.13	4.0		_	_	_	
	M9325	3.2	3 2	5 0.18	5.0		-	-	-		305	0.18	5.0	_	-	-		-	-	-		-	-	-	
DMX 160640SR-M	M6330	4.0	2 2				155	0.16	5.0		-	_	-	_	_	_		65	0.13	4.0		-	_	-	
	M8330	4.0	26			H	155	0.16	5.0		250	0.18	5.0	-	_	_		65	0.13	4.0		-	_	-	
DMX 160650SR-M	M8340 M8330	4.0 5.0	2 4				140 155	0.16	5.0		225	0.18	5.0 5.0					60	0.13	4.0		_			
Shirt 10005051t III	M8340	5.0	24			ī	140	0.16	5.0			0.18	5.0	_	_	_		60	0.13	4.0		_	_	_	
	21°	,22	*	P																					
	+		Позит	Позитивная геометрия для получистовой и черновой обработки.																					
			1103011	прпан го	owerp	ил д.	נטוו אונ	іучисто	БОИ И	чср	ловои	oopaoi	UINVI.												
DMX 160608PR-R	8215	0.8	2 0	5 0.25	6.0		120	0.23	6.0		190	0.25	6.0	T -	_	_		50	0.20	4.8		40	0.15	1.0	
	M5315	0.8	2 6				-	_	-		245	0.25	6.0	-	-	_		-	_	-		50	0.15	1.0	
	M8310	8.0	2 2				110	0.23	6.0		205	0.25	6.0	_	-	-		-	-	-		40	0.15	1.0	
	M8330	0.8	20				120	0.23	6.0		190	0.25	6.0	-	-	_		50	0.20	4.8		40	0.15	1.0	
	M8340 M9315	0.8	■ 19 ■ 26				110	0.23	6.0			0.25	6.0	_	_	_		45 _	0.20	4.8		- 50	0.15	1.0	
	M9315	0.8	25				_		_	Ħ	235	0.25	6.0					_		_		50	0.15	1.0	
DMX 160616PR-R	M5315	1.6	Z 29				-	_	_			0.25	6.0	-	_	_		_	_	_		55	0.15	1.0	
	M8330	1.6	2 2				135	0.23	6.0		210	0.25	6.0	_	_	_		55	0.20	4.8		45	0.15	1.0	
	M8340	1.6	2 1				125	0.23	6.0	Z	195	0.25	6.0	_	_	_		50	0.20	4.8		-	-	-	
	M9315	1.6	29				-	-	-		280	0.25	6.0	-	-	-		-	-	-			0.15	1.	
	M9325	1.6	27	5 0.2	6.0		-	-	-	L	260	0.25	6.0	-	_	_		-	-	-		55	0.15	1.0	
	0,1	7 0∖ 22°	+	٥																					
	1	7°\23°																							
	<i>></i>	*	Позиті	ивная ге	ометр	ия д	ля чис	товой (обрабо	OTKI	и нерж	авеюш	их стал	ей и ж	аропро	чных сі	плав	0B.							
ADMX 160608SR-MF	M6330	0.8	2 1				150	0.07	4.0		-	-	-	-	_	-		60	0.06	3.2		-	-	-	
	M8340	0.8	22				135	0.07	4.0		-	-	-	-	_	-		55	0.06	3.2		-	-	_	
	M9340	0.8	30	5 0.08	4.0		180	0.07	4.0		_	_	-	-	_	_		75	0.06	3.2		_	-	-	

	TREAM SAN	RE		Р			M				K				N				S				н			
Обозначение				VC	f	ар	VC	f	ар		VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap	
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин) (мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	
	0,17	10°																								
		25°	По	ЗИТИВІ	ная гео	метрия	для чи	стовой	и получ	ИС	товой (обрабо	тки не	рж	авеюц	цих ста	лей и х	жар	опроч	ных сп	ілавов	•				
ADMX 160604SR-MM	M6330	0.4		145	0.18	4.0 I	1 05	0.16	4.0		-	_	-		_	_	_		40	0.14	3.2		_	_	_	
	M8340	0.4		160	0.18	4.0	95	0.16	4.0		-	_	-		_	_	_		40	0.14	3.2		-	_	-	
ADMX 160608SR-MM	M6330	0.8		175	0.18	4.0	125	0.16	4.0		-	_	-		_	_	_		50	0.14	3.2		-	_	-	
	M8340	0.8		190	0.18	4.0	1 10	0.16	4.0		-	_	_		_	_	_		45	0.14	3.2		_	_	_	
	M8345	0.8		150	0.18	4.0	90	0.16	4.0		-	_	_		_	_	_		35	0.14	3.2		_	_	_	
	M9340	0.8		235	0.18	4.0	1 40	0.16	4.0		-	_	_		_	_	_		55	0.14	3.2		_	_	_	
ADMX 160616SR-MM	M6330	1.6		195	0.18	4.0	1 40	0.16	4.0		-	_	-		_	_	_		55	0.14	3.2		_	_	-	
	M8340	1.6		210	0.18	4.0	125	0.16	4.0		-	_	_		_	_	_		50	0.14	3.2		_	_	_	
	M8345	1.6		165	0.18	4.0	95	0.16	4.0		-	_	_		_	_	_		40	0.14	3.2		_	_	_	
	M9340	1.6		260	0.18	4.0	155	0.16	4.0		-	_	_		_	_	_		65	0.14	3.2		_	_	_	


	ı	ADEX 1	.6	
	W1	D1	L	S
	(MM)	(мм)	(мм)	(MM)
1606	9.950	4.50	16.00	6.25

PRAMET

применение инструмента, на налиние эта тентия спорости резантия (ст.), пода ти (с																											
Обозначение	PRESSE	RE	Р					М				K				N				S				н			
				VC	f	ар		VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap	
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(A	и/мин)	(мм/зуб)	(MM)	
0,14																											
Позитивная геометрия для получистовой обработки.																											
ADEX 160608SR-FM	8215	0.8		260	0.16				0.14		-	245		2.0				_		65	0.11	1.6		_		_	
	M8330	0.8		255	0.16	2.0		150	0.14	2.0		240	0.16	2.0		_	_	_		60	0.11	1.6		-	-	-	
	M8340	8.0		235	0.16	2.0		140	0.14	2.0	Z	220	0.16	2.0		_	_	_		55	0.11	1.6		_	_	_	

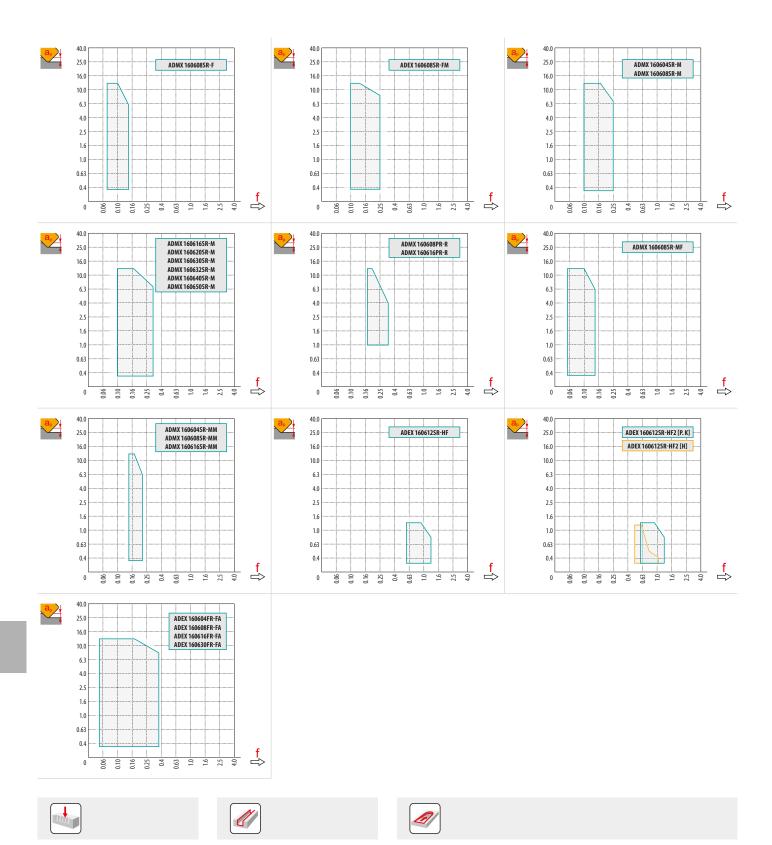


Применение инструмен	па, начальнь	не знач	ених	н скорс	сти рез	кинь	(VC), ПОДа	IЧИ (I <i>)</i> И	ııııyov	IHb	і резан	ия (ар)	. для д	UII	олните	ельны.	х расч	2106	8 ROCIII	льзуи	тесь п	рилс	жени	em Caic	.uidloi.
	P\$280.R9	RE			Р				M				K				N				S				Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)
9	16°	<u>),15</u>	_	HFC	S																					
			110		ная гео	метри	я д.	пя обр)KO	й пода	чей.													
ADEX 160612SR-HF	8215	1.2		195	1.00	0.6		115	0.90	0.6		-	-	-		-	-	-		-	-	-		-	-	-
	M8310	1.2		205	1.00	0.6		100	0.77	0.6		-	-	-		-	-	-		-	-	-		-	-	-
	M8330	1.2		200	1.00	0.6		120	0.90	0.6		-	-	-		-	-	-		-	-	-		-	-	-
	M8340	1.2		185	1.00	0.6		110	0.90	0.6		-	-	-		-	-	-		-	-	_		-	-	_
	M9340	1.2		195	1.00	0.6		115	0.90	0.6		-	-	-		-	-	-		-	_	-		-	-	-
	27,	<u>,2</u> 5°	ŀ	HFC	S																					
	,		По	ЗИТИВІ	ная гео	метри	я д.	пя обр	аботки	СВЫС	OKO	й пода	чей.													
ADEX 160612SR-HF2	M8310	1.2		225	0.70	0.6		110	0.63	0.6		210	0.70	0.6		-	-	-		_	-	-		45	0.15	1.0
	M8330	1.2		215	0.70	0.6		125	0.63	0.6		200	0.70	0.6		-	-	-		50	0.63	0.5		40	0.15	1.0
	M8340	1.2		205	0.70	0.6		120	0.63	0.6		190	0.70	0.6		_	-	_		50	0.63	0.5		-	-	_
	M9325	1.2		245	0.70	0.6		_	_	_		230	0.70	0.6		_	_	_		_	_	_		45	0.15	1.0
	M9340	1.2		215	0.70	0.6		125	0.63	0.6		-	_	-		_	-	_		50	0.63	0.5		-	_	_

ADEX 16-FA

	W1	D1	L	S
	(MM)	(мм)	(мм)	(MM)
1606	9.950	4.50	16.00	6.17

Применение инструме	нта, начальнь	ые знач	RNHS	скоро	сти рез	вания (Vс), по	дачи	(†) и г	глуби	НЫ	і резан	ия (ар)	. Для до	ОПО	лните	льных	расче	TOB	восп	ользуйт	гесь пр	ОИЛО	жени	em Calo	ulator
	PROBLEM	RE			Р			N	1				K				N				S				Н	
Обозначение				VC	f	ар	V	С	f	ар		VC	f	ар		VC	f	ар		VC	f	ар		VC	f	ар
		(мм)		(м/мин)	(мм/зуб)	(мм)	(M/N	ин) (мі	м/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(1	м/мин)	(мм/зуб)	(MM)		м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)
	27°					F																				
	,		Поз	ЗИТИВН	ая гео	метрия	і для ч	ИСТОЕ	зой и г	получ	ИС	товой (обрабо	тки цве	тнь	ых спл	авов.									
ADEX 160604FR-FA	HF7	0.4		_	_	_	-	-	_	-		_	_	- 1		195	0.28	6.0		_	_	_		_	_	_
	M0315	0.4		_	_	_	-	-	_	_		-	_	- 1		480	0.28	6.0		_	_	_		_	_	_
ADEX 160608FR-FA	HF7	0.8		_	_	_	-	-	_	_		-	_	- 1		240	0.28	6.0		_	_	_		_	_	_
	M0315	0.8		_	_	_	-	-	_	-		-	_	- 1		570	0.28	6.0		_	_	_		_	_	_
ADEX 160616FR-FA	HF7	1.6		_	_	_	-	-	_	-		-	_	- 1		255	0.28	6.0		_	_	_		_	_	_
	M0315	1.6		_	_	_	-	-	_	_		-	_	- 1		630	0.28	6.0		_	_	-		_	_	_
ADEX 160630FR-FA	HF7	3.0		_	_	_	_		_	_		_	_	-		270	0.28	6.0		_	_	_		_	_	_



a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	ADMX 16-F	ADEX 16-FM				ADMX	(16-M				ADM)	(16-R
RE	0.8	0.8	0.4	0.8	1.6	2.0	3.0	3.2	4.0	5.0	0.8	1.6
BS	2.99	2.18	3.39	2.99	1.62	1.23	0.28	0.09	2.69	1.52	2.99	1.62

00000000	ADMX 16-MF		ADMX 16-MM		ADEX 16-HF	ADEX 16-HF2		ADEX	16-FA	
RE	0.8	0.4	0.8	1.6	1.2	1.2	0.4	0.8	1.6	3.0
BS	2.99	3.39	2.99	1.62	0.52	0.52	2.84	2.44	1.65	0.69

a _p	1.0	6.0	13.0					HFC	
‡ ⇒f	0.28	0.19	0.10	DC	RPMX	APMX/I	RPMX *	RPMX **	APMX/I
				25	12.5	13.0/60	4.0	8.0	1.3/19
				32	7.5	13.0/100	2.0	7.5	1.3/38
				40	5.0	8.6/100	1.2	4.5	1.3/65
				50	3.5	6.0/100	0.8	3.0	1.3/100
				63	2.5	4.2/100	0.5	2.0	0.8/100
				80	2.0	3.3/100	0.4	1.5	0.6/100

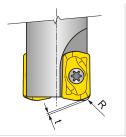
^{*} Обработка с высокой подачей

7.5

^{**} Стандартная обработка

						Н	FC	
DC	DMIN	DMAX	DMIN Ø	DMAX O	DMIN	DMAX	DMIN Ø	DMAX DMAX
25	42.0	50.0	10.0	12.5	42.0	50.0	1.3	1.3
32	55.0	64.0	6.5	9.0	55.0	64.0	1.3	1.3
40	72.0	80.0	5.0	8.0	72.0	80.0	1.3	1.3
50	92.0	100.0	4.5	6.0	92.0	100.0	1.3	1.3
63	118.0	126.0	4.0	5.0	118.0	126.0	1.3	1.3
80	136.0	160.0	1.5	2.0	136.0	160.0	1.3	1.3

RE	μm	3	5	10	15	20	30	40	50	60	80	100
1.6		0.196	0.253	0.358	0.438	0.506	0.620	0.716	0.800	0.876	1.012	1.131
2.0		0.219	0.283	0.400	0.490	0.566	0.693	0.800	0.894	0.980	1.131	1.265
3.0	FE	0.268	0.346	0.490	0.600	0.693	0.849	0.980	1.095	1.200	1.386	1.549
3.2		0.277	0.358	0.506	0.620	0.716	0.876	1.012	1.131	1.239	1.431	1.600
4.0		0.310	0.400	0.566	0.693	0.800	0.980	1.131	1.265	1.386	1.600	1.789
5.0		0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000

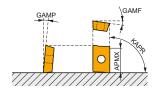

i

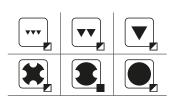
ADMX/ADEX 16	R
ADMX 160630SR-M	2.5
ADMX 160632SR-M	2.5
ADMX 160640SR-M	4.0
ADMX 160650SR-M	4.5
ADEX 160612SR-HF	3.0

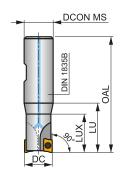
ADEX 160612SR-HF2

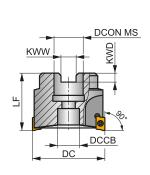
ADEX 16	R	t
ADEX 160612SR-HF	2.59	0.56
ADEX 160612SR-HF2	2.48	0.57

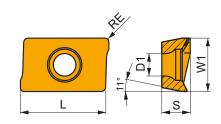
SAP10D


PRAMET




Фреза для обработки уступов с пластинами АРКТ 10


Конструкция фрезы имеет двойную позитивную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины АРКТ 10 с глубиной резания до 9 мм имеют 2 режущие кромки. Фреза подходит для широкого применения.



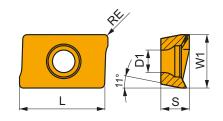
	Обозначение	DC	OAL	DCON MS	DCCB	LU	LUX	LF	KWW	KWD	GAMF	GAMP			max.		∫ kg		
		(мм)	(MM)	(MM)	(мм)	(мм)	(мм)	(MM)	(мм)	(мм)	(°)	(°)							
	10A1R020B16-SAP10D-C	10	78	16	_	30	20	_	_	_	12	2	1	_	39000	✓	0.09	GI081	SQ215
	12A1R027B16-SAP10D-C	12	75	16	-	27	-	_	_	_	12	2	1	-	35600	\checkmark	0.10	GI081	SQ210
	14A1R027B16-SAP10D-C	14	75	16	-	27	_	_	-	-	12	2	1	-	32900	\checkmark	0.13	GI081	SQ210
DIN 1835B	16A2R032B16-SAP10D-C	16	80	16	_	32	_	_	_	_	12	4	2	-	30800	\checkmark	0.12	GI081	SQ210
UNI 1033B	18A2R032B20-SAP10D-C	18	82	20	_	32	_	_	_	_	12	4	2	-	29100	\checkmark	0.15	GI081	SQ210
	20A3R032B20-SAP10D-C	20	82	20	-	32	-	_	_	_	12	4	3	-	27600	\checkmark	0.15	GI081	SQ210
	25A3R042B25-SAP10D-C	25	98	25	-	42	-	-	-	_	12	4	3	-	24700	\checkmark	0.36	GI081	SQ210
B+420	40A6R-S90AP10D	40	40	16	14	40	_	_	8.4	5.6	8	3	6	\checkmark	19500	_	0.23	GI081	SQ211
	50A7R-S90AP10D	50	40	22	18	40	-	_	10.4	6.3	8	3	7	✓	17400	-	0.41	GI081	SQ211
DIN 8030	63A9R-S90AP10D	63	50	22	18	40	_	_	10.4	6.3	8	3	9	✓	15500	_	0.57	GI081	SQ211

GI081	APKT 1003

		Nm			10		
SQ210	US 2506-T07P	1.2	M 2.5	6.3	_	_	Flag T07P
SQ211	US 2506-T07P	1.2	M 2.5	6.3	D-T07P/T09P	FG-15	_
SQ215	US 2505-T07P	1.2	M 2.5	5.2	_	_	Flag T07P

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

0.0	RE	P	M	K	N	S	Н
Обозначение	(MM)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)
	0.00						

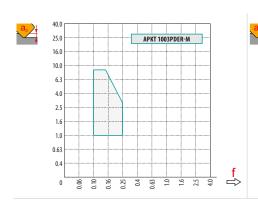


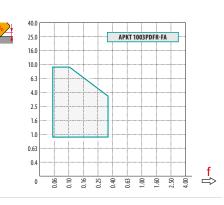
Позитивная геометрия для чистовой и получистовой обработки.

APKT 1003PDER-M	8215	0.5	285	0.12	4.0	170	0.11	4.0	270	0.12	4.0	-	_	-	70	0.11	3.2	_	-	-
	M8330	0.5	285	0.12	4.0	170	0.11	4.0	270	0.12	4.0	_	_	_	70	0.11	3.2	-	-	_
	M8340	0.5	255	0.12	4.0	150	0.11	4.0	240	0.12	4.0	-	_	_	60	0.11	3.2	-	-	_
	M9315	0.5	400	0.12	4.0	-	-	-	380	0.12	4.0	_	_	-	-	_	-	-	-	_
	M9325	0.5	360	0.12	4.0	-	_	_	340	0.12	4.0	_	_	_	_	_	-	-	-	_
	M9340	0.5	335	0.12	4.0	200	0.11	4.0	_	_	_	_	_	_	80	0.11	3.2	_	_	_

	Al	PKT 10	-FA	
	W1	D1	L	S
	(MM)	(MM)	(MM)	(MM)
1003	6.700	2.88	11.00	3.50

PRAMET


	PSEANING	RE		Р		,, -11	M				K				N			S					Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	V (M/A		f и/зуб)	ар (мм)	(VC (м/мин)	f (мм/зуб)	ар (мм)
6		,	†	F																				
3			Позитивн	ная геог	метрия	I ДЛЯ ЧИС	товой и	и получ	чис	стовой	обрабо	тки цв	етн	ІЫХ СПЈ	1aB0B.									
APKT 1003PDFR-FA	A HF7	0.5	_	_	-	-	_	_		_	_	-		300	0.18	5.0	-	-	_	_		_	_	-



a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	APKT 10-M	APKT 10-FA
RE	0.5	0.5
BS	0.84	0.84

a		1.0	3.0	5.0
*	∤ >f	0.20	0.13	0.10

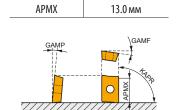
32

1.6

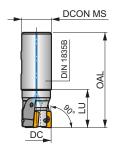
2.6/100

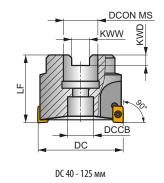
DC	DMIN	DMAX	DMIN 🕢	DMAX O
10	11.0	20.0	0.4	3.8
12	13.0	24.0	0.3	3.9
14	17.5	28.0	1.0	3.9
16	20.5	32.0	0.6	2.0
18	23.8	36.0	0.7	2.2
20	27.2	40.0	0.9	2.4
25	37.9	50.0	1.6	3.0
32	50.9	64.0	1.7	2.8

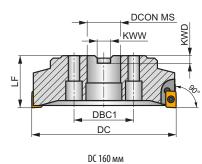
SAP16D

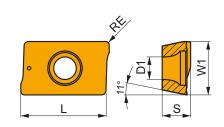

90°

Фреза для обработки уступов с пластинами АРКТ 16


Конструкция фрезы имеет нейтрально-позитивную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины АРКТ 16 с глубиной резания до 13 мм имеют 2 режущие кромки. Фреза подходит для широкого применения.



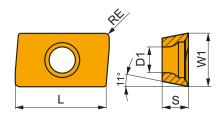

KAPR


	Обозначение	DC	OAL	DCON MS	DCCB	DBC1	LU	LF	KWW	KWD	GAMF	GAMP		(1)	max.		∫ kg			
		(мм)	(MM)	(мм)	(мм)	(MM)	(MM)	(MM)	(MM)	(MM)	(°)	(°)								
	25A2R042B25-SAP16D-C	25	98	25	_	_	42	_	_	_	0	6	2	_	16800	✓	0.31	GI080	SQ030	_
	32A3R040B32-SAP16D-C	32	100	32	-	-	50	-	-	-	0	8	3	-	14800	✓	0.51	GI080	SQ220	-
DIN 1835B	40A3R050B32-SAP16D-C	40	110	32	_	_	50	_	_	_	0	8	3	_	13200	✓	0.65	GI080	SQ220	_
	40A4R050B32-SAP16D-C	40	110	32	_	-	50	_	_	-	0	8	4	-	13200	\checkmark	0.67	GI080	SQ220	-
	40A4R-S90AP16D	40	40	16	11	-	-	40	8.4	5.6	0	6	4	\checkmark	13200	_	0.23	GI080	SQ031	-
	50A5R-S90AP16D	50	40	22	18	-	_	40	10.4	6.3	0	6	5	\checkmark	11800	_	0.33	GI080	SQ031	-
	63A6R-S90AP16D	63	40	22	18	-	_	40	10.4	6.3	0	6	6	\checkmark	10600	_	0.50	GI080	SQ031	-
21-4720	80B5R-S90AP16D	80	50	27	38	_	_	50	12.4	7	0	6	5	\checkmark	9400	_	0.97	GI080	SQ031	AC001
ISO 6462	80B7R-S90AP16D	80	50	27	38	_	_	50	12.4	7	0	6	7	\checkmark	9400	_	1.07	GI080	SQ031	AC001
DIN 8030	100B6R-S90AP16D	100	50	32	45	_	_	50	14.4	8	0	6	6	\checkmark	8400	_	1.60	GI080	SQ031	AC002
	100B8R-S90AP16D	100	50	32	45	_	_	50	14.4	8	0	6	8	\checkmark	8400	_	1.50	GI080	SQ031	AC002
	125B9R-S90AP16D	125	63	40	56	-	_	63	16.4	9	0	6	9	\checkmark	7500	_	2.80	GI080	SQ031	AC003
	160C10R-S90AP16D	160	63	40	_	66.7	-	63	16.4	9	0	6	10	✓	6600	_	5.12	GI080	SQ031	_

		Nm					X
SQ030	US 4008-T15P	3.5	M 4	8	_	-	Flag T15P
SQ031	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	_
SQ220	US 4011-T15P	3.5	M 4	10.6	_	_	Flag T15P

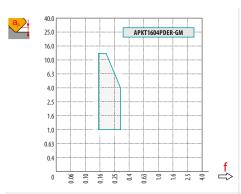
AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

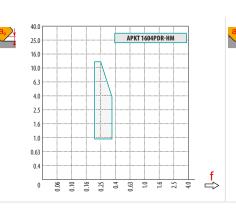
	ı	APKT 1	6	
	W1	D1	L	S
	(MM)	(мм)	(мм)	(мм)
1604	9.440	4.60	17.00	5.67

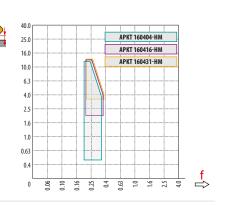


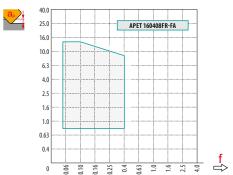
					_														_					
	PASSED FEAT	RE			Р				M				K			N			S			ŀ	1	
Обозначение				VC	f	ар		VC	f	ap		VC	f	ар	VC	f	ар	VC	f	ар	٧	c	f	ар
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(M/N	чин) (и	им/зуб)	(MM)
6	0,0	09 24°	1	1	Û	S																		
	,	24	Поз	ЗИТИВН	іая геоі	иетри	я ді	пя чис	товой и	і полу	-INC	товой	обрабо	тки.										
APKT 1604PDR-GM	M8330	8.0		235	0.20	8.0		140	0.18	8.0		220	0.20	8.0	-	-	-	55	0.16	6.4	-	-	-	-
	M8340	8.0		210	0.20	8.0		125	0.18	8.0		195	0.20	8.0	-	-	-	50	0.16	6.4	-	-	-	-
	M9315	8.0		310	0.20	8.0		-	_	_		290	0.20	8.0	-	-	-	_	-	-	-	-	-	-
	M9325	8.0		285	0.20	8.0		-	_	_		270	0.20	8.0	-	-	-	_	-	-	-	-	-	-
	M9340	8.0		260	0.20	8.0		155	0.18	8.0		_	-	-	-	-	_	65	0.16	6.4	-	-	-	-
	0.	24°	Поз	витивн	S	метри	я ді	пя обр	аботки	в нест	табі	ильны:	к услов	иях.										

APKT 160404-HM	M8340	0.4	160	0.30	6.0	95	0.27	6.0	150	0.30	6.0	-	-	_	_	40	0.24	4.8	_	_	_
APKT 160416-HM	M8340	1.6	210	0.30	6.0	125	0.27	6.0	195	0.30	6.0	-	-	_	_	50	0.24	4.8	_	-	_
APKT 160431-HM	M8340	3.1	220	0.30	6.0	130	0.27	6.0	205	0.30	6.0	-	-	-	_	55	0.24	4.8	-	-	_
APKT 1604PDR-HM	8215	8.0	220	0.30	6.0	130	0.27	6.0	205	0.30	6.0	-	-	_	_	55	0.24	4.8	_	_	_
	M5315	0.8	270	0.30	6.0	_	-	_	255	0.30	6.0	-	-	_	_	_	-	-	_	_	_
	M8330	0.8	220	0.30	6.0	130	0.27	6.0	205	0.30	6.0	-	-	_	_	55	0.24	4.8	_	_	_
	M8340	0.8	200	0.30	6.0	120	0.27	6.0	190	0.30	6.0	-	-	_	_	50	0.24	4.8	_	-	_
	M9315	8.0	275	0.30	6.0	-	-	_	260	0.30	6.0	-	-	_	_	_	_	-	_	_	_
	M9325	0.8	260	0.30	6.0	_	-	_	245	0.30	6.0	-	-	_	_	_	_	-	_	_	_

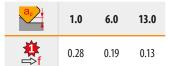

	PALANI SPA	RE		Р			М				K				N			S			Н	
Обозначение		(MM)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	(M/M		ар б) (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
6/	25°		+	F																		
			Позитив	ная гео	метрия	я для чис	товой и	и получ	чис	стовой	обрабо	тки цв	етн	ых спл	авов.							
APET 160408FR-FA	HF7	0.8	_	-	-	_	_	_		_	_	-		255	0.24	8.0	_	_	_	_	_	-






a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

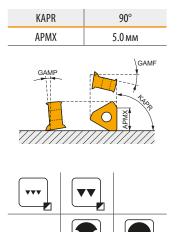
00000000	APKT 16-GM		APKT	16-HM		APET 16-FA
RE	0.8	0.8	0.4	1.6	3.1	0.8
BS	1.39	1.48	1.87	0.64	1.30	1.59

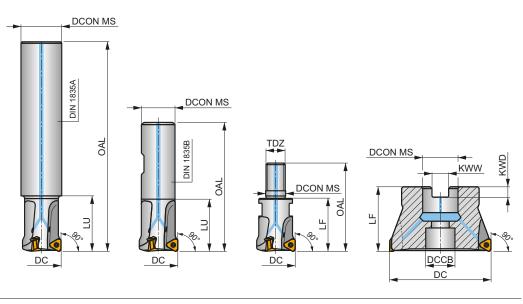


DC	DMIN	DMAX	DMIN Ø	SMAX DMAX
25	34.7	50.0	1.2	3.1
32	48.5	64.0	0.9	1.7
40	63.5	80.0	1.3	2.2
50	83.5	100.0	0.9	1.4
63	110.0	126.0	1.0	1.4
80	144.0	160.0	1.1	1.3

DC	RPMX	APMX/I
25	2.3	3.9/100
32	1.0	1.6/100
40	1.0	1.6/100
50	0.5	0.7/100
63	0.4	0.5/100
80	0.3	0.4/100

STN10


S



Фреза ECON TN10 для обработки уступов

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины TNGX 10 с глубиной резания до 5 мм имеют 6 режущих кромок. Фреза подходит для широкого применения.

ECON TN

18a2RoSoA2O-STN1O-C 18 180 20 - 50 - - - - - - 17.1 -11 2 - 29100 \(\sqrt{0.40} \)			DC	OAL	DCON	DCCB	LU	LF	TDZ	KWW	KWD	GAMF	GAMP				N	S kg	<u></u>		
18a2Ro50A20-STN10-C 18 180 20		Обозначение	<i>DC</i>	OnL	MS	DCCD	LO		IDE		KWD	G/ IIIII	G/IIIII	54/		™max.		Kg	<u>7</u> 01		8
20A2R029A20-STN10-C 20 150 20 - 29 16.5 -11 2 - 27600			(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		(мм)	(MM)	(°)	(°)								
20A3R029A20-STN10-C		18A2R050A20-STN10-C	18	180	20	-	50	_	_	_	-	-17.1	-11	2	-	29100	\checkmark	0.40	G1292	SQ300	-
22A3R050A25-STN10-C 22 180 25 - 50 16.5 -11 3 - 26300 25A3R034A25-STN10-C 25 170 25 - 34 16 -11 3 - 24700 25A4R034A25-STN10-C 25 170 25 - 34 16 -11 4 24C700 25A4R03A425-STN10-C 25 170 25 - 34 16 -11 4 24C700 25A4R03A425-STN10-C 25 170 25 - 34 16 -11 4 24C700 25A4R03A25-STN10-C 25 170 25 - 34 16 -11 4 24C700 25A4R03A32-STN10-C 25 170 25 - 37 16 -11 4 24C700 25A3R03A25-STN10-C 25 170 25 - 37 16 -11 4 25A5R03A32-STN10-C 25 170 25 - 37 16 -11 5 25A5R03A32-STN10-C 25 170 25 - 37 16 -11 5 25A5R03A32-STN10-C 25 170 25 - 32 - 37 16 -11 5 25A5R03A32-STN10-C 25 170 25 - 32 - 37 16 -11 5 25A5R03A32-STN10-C 25 170 25 - 32 - 37 16 -11 5 25A5R03A32-STN10-C 25 170 25 - 32 - 37 16 -11 5 25A5R03A32-STN10-C 25 170 25 - 32 - 37 16 -11 5 25A5R03A32-STN10-C 26 90 20 - 32 - 80 16 -11 5 25A5R03A32-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R032B20-STN10-C 27A3R03AN12-STN10-C 27A3R03AN12-STN10-C 27A3R03AN12-STN10-C 27A3R03AN12-STN10-C 27A3R03AN12-STN10-C 27A3R03AN12-STN10-C 27A3R03AN12-STN10-C 27A3R03AN11-STN10-C 27A3R03AN11-STN		20A2R029A20-STN10-C	20	150	20	_	29	-	_	-	_	-16.5	-11	2	_	27600	\checkmark	0.35	G1292	SQ300	-
2538R034825-STN10-C 25 170 25 - 34 16 -11 3 - 24700 254R034A25-STN10-C 25 170 25 - 34 16 -11 4 254R034A25-STN10-C 30 200 32 - 50 16 -11 4 254R034A25-STN10-C 30 200 32 - 50		20A3R029A20-STN10-C	20	150	20	-	29	-	-	-	_	-16.5	-11	3	-	27600	\checkmark	0.34	G1292	SQ300	_
25A4R034A25-STN10-C 25 170 25 - 34 16 -11 4		22A3R050A25-STN10-C	22	180	25	-	50	_	_	-	-	-16.5	-11	3	-	26300	\checkmark	0.59	GI292	SQ300	-
25A4R034A25-STN10-C 25 170 25 - 34 16 -11 4		25A3R034A25-STN10-C	25	170	25	-	34	_	_	-	_	-16	-11	3	_	24700	\checkmark	0.58	GI292	SQ300	_
32A4R037A32-STN10-C 32 195 32 - 37 16 -11 4		25A4R034A25-STN10-C	25	170	25	-	34	_	_	-	_	-16	-11	4	✓	24700	✓	0.59	GI292	SQ300	_
32ASR037A32-5TN10-C 32 195 32 - 37		30A4R050A32-STN10-C	30	200	32	_	50	_	_	_	_	-16	-11	4	✓	22500	✓	1.07	GI292	SQ300	_
35A\$R080A32-\$TN10-C 35		32A4R037A32-STN10-C	32	195	32	_	37	_	_	_	_	-16	-11	4	✓	21800	✓	1.09	GI292	SQ300	_
202R032B20-5TN10-C 20 90 20 - 3216.5 -11 2 - 27600		32A5R037A32-STN10-C	32	195	32	_	37	_	_	_	_	-16	-11	5	✓	21800	✓	1.09	GI292	SQ300	_
203R032B20-STN10-C 20 90 20 - 32		35A5R080A32-STN10-C	35	200	32	_	80	_	_	_	_	-16	-11	5	✓	20800	✓	0.08	GI292	SQ300	_
25A3R042B25-STN10-C 25 100 25 - 42 - - - - - - 16 -11 3 - 24700 ✓ 0.31 Gl292 S0300 - 25A4R042B25-STN10-C 32 110 32 - 42 - - - - - - - - -		20A2R032B20-STN10-C	20	90	20	_	32	_	_	_	_	-16.5	-11	2	_	27600	✓	0.20	GI292	SQ300	_
25A4R042B25-STN10-C		20A3R032B20-STN10-C	20	90	20	_	32	_	_	_	_	-16.5	-11	3	_	27600	✓	0.20	GI292	SQ300	_
25A4R042B25-STN10-C 25 100 25 - 42 16 -11 4		25A3R042B25-STN10-C	25	100	25	_	42	_	_	_	_	-16	-11	3	_	24700	✓	0.31	GI292	SQ300	_
32A5R042B32-STN10-C 32 110 32 - 4216 -11 5		25A4R042B25-STN10-C	25	100	25	_	42	_	_	-	_	-16	-11	4	✓	24700	✓	0.31	GI292	SQ300	_
20A2R026M10-STN10-C 20 45 10.5 26 M1016.5 -11 2 ✓ 0.07 Gl292 SQ300 - 20A3R026M10-STN10-C 20 45 10.5 26 M1016.5 -11 3 ✓ 0.07 Gl292 SQ300 - 25A3R033M12-STN10-C 25 55 12.5 33 M1216 -11 3 ✓ 0.10 Gl292 SQ300 - 25A4R033M12-STN10-C 25 55 12.5 33 M1216 -11 4 ✓ - ✓ 0.11 Gl292 SQ300 - 32A4R043M16-STN10-C 32 66 17 43 M1616 -11 4 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 40A04R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 4 ✓ 19500 ✓ 0.35 Gl292 SQ302 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 10.4 6.3 - 10.4 6.3 - 10.4 6.3 - 10.4 6.3 - 10.4		32A4R042B32-STN10-C	32	110	32	_	42	_	_	_	_	-16	-11	4	✓	21800	✓	0.57	GI292	SQ300	_
20A3R026M10-STN10-C 20 45 10.5 26 M1016.5 -11 3 ✓ 0.07 Gl292 SQ300 - 25A3R033M12-STN10-C 25 55 12.5 33 M1216 -11 3 ✓ 0.10 Gl292 SQ300 - 25A4R033M12-STN10-C 25 55 12.5 33 M1216 -11 4 ✓ - ✓ 0.11 Gl292 SQ300 - 32A4R043M16-STN10-C 32 66 17 43 M1616 -11 4 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 40A04R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 5 ✓ 19500 ✓ 0.35 Gl292 SQ302 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.4 6.3 -15 -11 7 ✓ 17400		32A5R042B32-STN10-C	32	110	32	_	42	_	_	_	_	-16	-11	5	✓	21800	✓	0.56	GI292	SQ300	_
25A3R033M12-STN10-C 25 55 12.5 33 M12 16 -11 3 ✓ 0.10 Gl292 SQ300 - 25A4R033M12-STN10-C 25 55 12.5 33 M12 16 -11 4 ✓ - ✓ 0.11 Gl292 SQ300 - 32A4R043M16-STN10-C 32 66 17 43 M16 16 -11 4 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M16 16 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 40A04R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 4 ✓ 19500 ✓ 0.35 Gl292 SQ302 - 40A06R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 6 ✓ 19500 ✓ 0.34 Gl292 SQ302 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10 - 10.4 6.3 - 10 - 10.4 6.3 - 10 - 10.4 6.3 - 10 - 10 - 10.4 6.3 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		20A2R026M10-STN10-C	20	45	10.5	_	_	26	M10	_	_	-16.5	-11	2	_	_	✓	0.07	GI292	SQ300	_
25A4R033M12-STN10-C 25 55 12.5 33 M1216 -11 4 ✓ - ✓ 0.11 Gl292 SQ300 - 32A4R043M16-STN10-C 32 66 17 43 M1616 -11 4 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 40A04R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 4 ✓ 19500 ✓ 0.35 Gl292 SQ302 - 40A06R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 6 ✓ 19500 ✓ 0.34 Gl292 SQ302 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 -		20A3R026M10-STN10-C	20	45	10.5	_	_	26	M10	_	_	-16.5	-11	3	_	-	✓	0.07	GI292	SQ300	_
25A4R033M12-STN10-C 25 55 12.5 33 M1216 -11 4 ✓ - ✓ 0.11 Gl292 SQ300 - 32A4R043M16-STN10-C 32 66 17 43 M1616 -11 4 ✓ - ✓ 0.22 Gl292 SQ300 - 32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 Gl292 SQ300 - 40A04R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 4 ✓ 19500 ✓ 0.35 Gl292 SQ302 - 40A06R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 6 ✓ 19500 ✓ 0.34 Gl292 SQ302 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 - 15 - 11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 - 10.50A07R-S90TN10-C 50 - 10.4 6.3 -		25A3R033M12-STN10-C	25	55	12.5	_	_	33	M12	_	_	-16	-11	3	_	_	✓	0.10	GI292	SQ300	_
32A5R043M16-STN10-C 32 66 17 43 M1616 -11 5 ✓ - ✓ 0.22 GI292 SQ300 - 40A04R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 4 ✓ 19500 ✓ 0.35 GI292 SQ302 - 40A06R-S90TN10-C 40 - 16 14 - 40 - 8.4 5.6 -15 -11 6 ✓ 19500 ✓ 0.34 GI292 SQ302 - 50A05R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 GI292 SQ303 - 50A07R-S90TN10-C 50 - 22 18 - 40 - 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 GI292 SQ303 -		25A4R033M12-STN10-C	25	55	12.5	_	_	33	M12	_	_	-16	-11	4	✓	_	✓	0.11	GI292	SQ300	_
40A04R-S90TN10-C 40 − 16 14 − 40 − 8.4 5.6 -15 -11 4 ✓ 19500 ✓ 0.35 Gl292 SQ302 − 40A06R-S90TN10-C 40 − 16 14 − 40 − 8.4 5.6 -15 -11 6 ✓ 19500 ✓ 0.34 Gl292 SQ302 − 50A05R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 -15 -11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 − 50A07R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 −		32A4R043M16-STN10-C	32	66	17	_	_	43	M16	_	_	-16	-11	4	✓	_	✓	0.22	GI292	SQ300	_
40A06R-S90TN10-C 40 − 16 14 − 40 − 8.4 5.6 −15 −11 6 ✓ 19500 ✓ 0.34 Gl292 SQ302 − 50A05R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 −15 −11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 − 50A05R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 −15 −11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 −		32A5R043M16-STN10-C	32	66	17	_	_	43	M16	-	_	-16	-11	5	✓	_	✓	0.22	GI292	SQ300	_
50A05R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 −15 −11 5 ✓ 17400 ✓ 0.49 Gl292 SQ303 − 50A07R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 −15 −11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 −		40A04R-S90TN10-C	40	_	16	14	_	40	_	8.4	5.6	-15	-11	4	✓	19500	✓	0.35	GI292	SQ302	_
50A07R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 GI292 SQ303 −	73-472	40A06R-S90TN10-C	40	_	16	14	_	40	_	8.4	5.6	-15	-11	6	✓	19500	✓	0.34	GI292	SQ302	_
50A07R-S90TN10-C 50 − 22 18 − 40 − 10.4 6.3 -15 -11 7 ✓ 17400 ✓ 0.50 Gl292 SQ303 −	ISO 6462	50A05R-S90TN10-C	50	_	22	18	_	40	_	10.4	6.3	-15	-11	5	✓	17400	✓	0.49	GI292	SQ303	_
CARACE CONTRIAC (2 22 10 40 10.4 (2 15 11 (/ 15500 / 0.02 (100) CO202	DIN 8030	50A07R-S90TN10-C	50	_	22	18	_	40	_	10.4	6.3	-15	-11	7	✓	17400	✓	0.50	GI292	SQ303	_
03AU0K-39U1N1U-L 03 - 22 18 - 40 - 10.4 0.3 -13 -11 0 V 13300 V 0.03 G1292 30303 -		63A06R-S90TN10-C	63	_	22	18	_	40	_	10.4	6.3	-15	-11	6	✓	15500	✓	0.63	GI292	SQ303	_

	Обозначение	DC	OAL (MM)	DCON MS	DCCB	LU (MM)	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		∫ kg		
ISO 6462 DIN 8030	63A09R-S90TN10-C	63	_	22	18	_	40	-	10.4	6.3	-15	-11	9	✓	15500	✓	0.64	G1292 SQ3	03 –
ISO 6462	80A10R-S90TN10-C	80		27	38	_	50	_	12.4	7	_15	-11	10	✓	13800	1	1.11	GI292 SQ3	01 10001

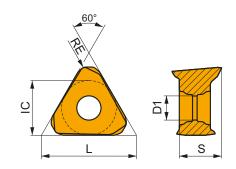
GI292	TNGX 1004

		Nm			10			
SQ300	US 52506-T07P	0.8	M 2.5	6	-	_	Flag T07P	-
SQ301	US 52506-T07P	0.8	M 2.5	6	D-T07P/T09P	FG-15	_	_
SQ302	US 52506-T07P	0.8	M 2.5	6	D-T07P/T09P	FG-15	_	HS 0830C
SQ303	US 52506-T07P	0.8	M 2.5	6	D-T07P/T09P	FG-15	_	HS 1030C

AC001	KS 1230	K.FMH27

		TNGX 1	.0	
	IC	D1	L	S
	(MM)	(MM)	(MM)	(мм)
1004	6.000	2.80	10.39	4.69

M8330


M8340

M9340

8.0

8.0

PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

•	PKNAN	RE			Р				M				K			N			S			Н	
Обозначение				VC	f	ap		VC	f	ар		VC	f	ар	VC	f	ap	VC	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин) (мм/зу	б) (мм)
	3/	0,06		†	S																		
	22°		По	ЗИТИВ	ная гео	метри	я д	пя чис	товой с	обрабо	TKI	И.											
TNGX 100402SR-F	M8330	0.2		205	0.09	2.0		120	0.08	2.0		190	0.09	2.0	_	_	-	-	_	-	_	_	-
	M8340	0.2		190	0.09	2.0		110	0.08	2.0		180	0.09	2.0	_	_	-	-	_	-	_	_	_
TNGX 100404SR-F	8215	0.4		225	0.09	2.0		135	0.08	2.0		210	0.09	2.0	_	_	-	-	_	-	_	_	_
	M6330	0.4		190	0.09	2.0		135	0.08	2.0		-	_	-	_	-	_	_	_	-	_	_	_
	M8330	0.4		220	0.09	2.0		130	0.08	2.0	Z	205	0.09	2.0	_	_	_	_	_	-	_	_	_
	M8340	0.4		200	0.09	2.0		120	0.08	2.0	Z	190	0.09	2.0	_	_	_	_	_	-	_	_	_
	M9340	0.4		270	0.09	2.0		160	0.08	2.0		-	_	-	_	_	-	-	_	-	_	_	_
TNGX 100408SR-F	8215	0.8		270	0.09	2.0		160	0.08	2.0	Z	255	0.09	2.0	_	_	_	-	_	-	_	_	_
	M6330	0.8		225	0.09	2.0		160	0.08	2.0		-	_	-	_	_	-	-	_	-	_	_	-

2.0 🔼 155 0.08 2.0 🔼 245 0.09 2.0

2.0

240 0.09 2.0 **2** 140 0.08

320 0.09 2.0 **190** 0.08

2.0 🗷 225 0.09

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

применение инструме	.пта, пачальнь	or Share	спи	л скорс	сти ре.	эапил	(VC)	, подо	19VI (1 <i>)</i> V	TIJIYOV	ІПЬ	i pesar	ил (ар	. для д	UIII	ОЛПИПС	ЛОПОІ	расч	IUD	DUCIII	ользуи	ссь пр	טונוענ	тспи	EWI Carc	uiato
	PREAD SHA	RE			P				M				K				N				S				Н	
Обозначение				vc	f	ap		VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ар		VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)
	31°	0,10	2		ÉÚ	S																				
	и получ	чис	товой	обрабо	тки.																					
TNGX 100404SR-M	8215	0.4		205	0.13	2.0		120	0.12	2.0		190	0.13	2.0		-	-	-		50	0.09	1.6		-	_	-
	M6330	0.4		175	0.13	2.0			0.12	2.0		-	-	-		-	-	-		50	0.09	1.6		-	_	-
	M8330	0.4		205	0.13	2.0			0.12				0.13	2.0		_	_	_		50	0.09	1.6		_	-	-
	M8340	0.4		185	0.13	2.0		110	0.12			175	0.13	2.0		_	_	_		45	0.09	1.6		_	_	_
	M8345	0.4		150	0.13	2.0			0.12	2.0		-	-	-		-	_	-		35	0.09	1.6		-	-	-
THEY 100 400CD 14	M9340	0.4		240	0.13	2.0			0.12	2.0		-	-	-		_	_	_		60	0.09	1.6		_	-	_
TNGX 100408SR-M	8215	0.8		245	0.13	2.0			0.12			230	0.13	2.0				_		60	0.09	1.6		_	_	_
	M6330	0.8		210	0.13	2.0		150	0.12	2.0		-	-	-		_	_	_		60	0.09	1.6		_	-	_
	M8310	0.8		270	0.13	2.0			0.12				0.13	2.0		_	_	_		-	-	-		_	_	-
	M8330	0.8	٠	245	0.13	2.0			0.12				0.13	2.0		_		_		60	0.09	1.6		_	-	_
	M8340	0.8	٠	220	0.13	2.0			0.12			205	0.13	2.0		_	_	_		55	0.09	1.6		_	_	_
	M8345	0.8	H	180	0.13	2.0			0.12	2.0		-	_	-		_	_	_		45	0.09	1.6		_	_	_
TNGX 100412SR-M	M9340	0.8		285	0.13	2.0			0.12	2.0		240	0.12	-		_	_	_		70	0.09	1.6		_	_	-
INUA IUU4123K-M	M8330	1.2		255	0.13	2.0			0.12				0.13	2.0		_	_	_		60	0.09	1.6		_	_	-
TNGX 100416SR-M	M8340	1.2		230	0.13	2.0			0.12				0.13	2.0		_	_	_		55	0.09	1.6		_	_	_
INGV 1004103K-M	M8310	1.6		300	0.13	2.0		150	0.12	2.0		285	0.13	2.0		_	_	-		_	_	-		_	-	_

■ 270 0.13 2.0 **■** 160 0.12 2.0 **■** 255 0.13 2.0

■ 245 0.13 2.0 **□** 145 0.12 2.0 **□** 230 0.13 2.0

TNGX 10-FA IC D1 L S (MM) (MM) (MM) (MM) (MM) 1004 6.000 2.80 10.39 4.69

0.4

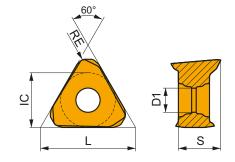
0.8

0.8

M0315

M0315

HF7


M8330

M8340

PRAMET

0.09

0.09

0.10 1.5

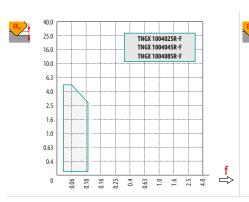
0.10 1.5

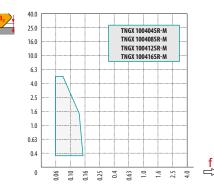
0.10

1.5

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	PRANTE	RE			Р			M				K				N			S				Н	
Обозначение		(мм)		vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MI		ар б) (мм)	()	v c м/мин)	f (мм/зуб)	ар (мм)
	(37°				F																			
	`		По	ЗИТИВН	іая геоі	метрия	я для чи	стовой і	и получ	INC	стовой	обрабо	тки цв	етн	ІЫХ СП.	лавов.								
TNGX 100404FR-FA	HF7	0.4		-	-	-	_	_	-		_	-	-		345	0.10	1.5	-	-	-		-	-	-


TNGX 100408FR-FA



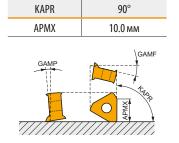
a。/ DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

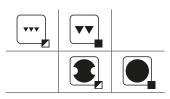
0000000		TNGX 10-F		TNG	(10-M	TNGX	(10-FA
RE	0.2	0.4	0.8	0.4	0.8	0.4	0.8
BS	1.53	1.34	0.92	1.34	0.92	1.33	0.93

a _p	1.0	3.0	5.0
‡	0.10	0.08	0.04

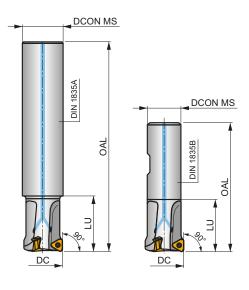
DC	RPMX	APMX/I
18	1.80	3.05/100
20	1.60	2.70/100
22	1.20	2.00/100
25	1.00	1.70/100
30	0.90	1.45/100
32	0.80	1.30/100
35	0.65	1.0/100
40	0.60	0.90/100
50	0.50	0.70/100
63	0.40	0.50/100
80	0.25	0.30/100

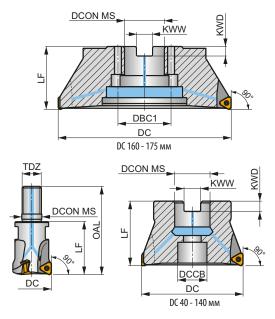
DC	DMIN	DMAX	SMAX DMIN	SMAX DMAX
18	33	36	1.2	1.2
20	37	40	1.2	1.2
22	41	44	1.0	1.0
25	47	50	1.0	1.0
30	57	60	1.0	1.0
32	61	64	1.0	1.0
35	67	70	0.9	0.9
40	77	80	0.9	0.9
50	97	100	0.9	0.9
63	123	126	0.9	0.9
80	157	160	0.9	0.9





90°

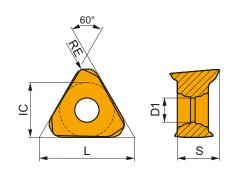




Фреза ECON TN16 для обработки уступов

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины TNGX 16 с глубиной резания до 10 мм имеют 6 режущих кромок. Фреза подходит для широкого применения.

ECON TN


	Обозначение	DC	OAL	DCON MS	DCCB	DBC1	LU	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)	(°)	(°)							
	25A2R034A25-STN16-C	25	170	25	-	-	34	-	_	-	_	-18.5	-9.5	2	-	20000	✓	0.54	GI340	C0382
	32A2R034A32-STN16-C	32	195	32	_	_	34	-	_	_		-16	-9.5	2	_	17500	✓	1.05	GI340	C0382
	25A2R080A25-STN16-C	25	170	25	_	_	80	-	_	_	_	-18.5	-9.5	2	_	20000	✓	0.48	GI340	C0382
DIN 1835A	32A2R080A32-STN16-C	32	195	32	-	-	80	-	-	-	_	-16	-9.5	2	-	17500	✓	0.96	GI340	C0382
	32A3R034A32-STN16-C	32	195	32	-	-	34	-	-	-	-	-16	-9.5	3	-	17500	✓	1.04	GI340	C0382
	35A3R034A32-STN16-C	35	195	32	-	-	34	-	-	-	-	-16	-9.5	3	-	17000	✓	1.07	GI340	C0382
	25A2R042B25-STN16-C	25	55	25	_	_	42	_	_	_	_	-18.5	-9.5	2	_	20000	✓	0.30	GI340	C0382
DIN 1835B	32A3R042B32-STN16-C	32	110	32	-	-	42	-	-	-	_	-16	-9.5	3	-	17500	✓	0.52	GI340	C0382
	40A4R050B32-STN16-C	40	120	32	-	-	50	-	-	-	-	-16	-9.5	4	-	16000	✓	0.67	GI340	C0382
	25A2R033M12-STN16-C	25	55	12.5	-	-	-	33	M12	-	-	-18.5	-9.5	2	-	20000	✓	80.0	GI340	C0382
	32A2R043M16-STN16-C	32	66	17	_	_	-	43	M16	_	_	-16	-9.5	2	_	17500	✓	0.18	GI340	C0382
MODULAR	32A3R043M16-STN16-C	32	66	17	-	-	-	43	M16	-	_	-16	-9.5	3	-	17500	✓	0.17	GI340	C0382
	40A3R043M16-STN16-C	40	66	17	-	-	-	43	M16	-	_	-16	-9.5	3	-	16000	✓	0.20	GI340	C0382
	40A4R043M16-STN16-C	40	66	17	_	-	_	43	M16	_	_	-16	-9.5	4	_	16000	✓	0.21	GI340	C0382
	40A03R-S90TN16-C	40	40	16	12.4	_	_	40	_	8.4	5.6	-16	-9.5	3	_	16000	✓	0.20	GI340	C0384
	40A04R-S90TN16-C	40	40	16	12.4	_	_	40	-	8.4	5.6	-16	-9.5	4	-	16000	✓	0.20	GI340	C0384
	50A04R-S90TN16-C	50	40	22	18.1	_	-	40	-	10.4	6.3	-16	-9.5	4	✓	14000	✓	0.34	GI340	C0386
	50A05R-S90TN16-C	50	40	22	18.1	_	_	40	_	10.4	6.3	-16	-9.5	5	✓	14000	✓	0.32	GI340	C0386
	63A04R-S90TN16-C	63	40	22	18.1	_	_	40	_	10.4	6.3	-16	-9.5	4	✓	12500	✓	0.47	GI340	C0386
RI-FEAL	63A06R-S90TN16-C	63	40	22	18.1	_	_	40	-	10.4	6.3	-16	-9.5	6	✓	12500	✓	0.48	GI340	C0386
ISO 6462 DIN 8030	80A05R-S90TN16-C	80	50	27	22.1	_	-	50	-	12.4	7	-16	-9.5	5	✓	11000	✓	1.02	GI340	C0388
DIN 8030	80A07R-S90TN16-C	80	50	27	22.1	_	_	50	_	12.4	7	-16	-9.5	7	✓	11000	✓	1.05	GI340	C0388
	100A06R-S90TN16-C	100	50	32	45.1	_	_	50	_	14.4	8	-16	-9.5	6	✓	10000	✓	1.79	GI340	C0390
	100A08R-S90TN16-C	100	50	32	45.1	-	-	50	-	14.4	8	-16	-9.5	8	✓	10000	\checkmark	1.66	GI340	C0390
	115A06R-S90TN16-C	115	50	32	45.1	-	-	50	_	14.4	8	-16	-9.5	6	✓	9500	\checkmark	2.04	GI340	C0390
	125A07R-S90TN16-C	125	63	40	56.1	_	-	63	_	16.4	9	-16	-9.5	7	\checkmark	9000	✓	3.05	GI340	C0390
	125A09R-S90TN16-C	125	63	40	56.1	_	_	63	_	16.4	9	-16	-9.5	9	✓	9000	✓	3.14	GI340	C0390

	Обозначение	DC	OAL (MM)	DCON MS	DCCB	DBC1	LU (MM)	LF (MM)	TDZ	KWW	KWD	GAMF	GAMP) (()	max.		∫ kg		
20-422	140A08R-S90TN16-C	140	63	40	56.1	-	-	63	-	16.4	9	-16	-9.5	8	✓	8500	✓	3.69	GI340	C0390
ISO 6462 DIN 8030	160C10R-S90TN16-C	160	63	40	_	66.7	_	63	_	16.4	9.2	-16	-9.5	10	✓	8000	\checkmark	5.16	GI340	C0394
DIN 8030	175C10R-S90TN16-C	175	63	40	_	66.7	_	63	_	16.4	9.2	-16	-9.5	10	✓	7500	✓	5.99	GI340	C0394

GI340	TNGX1606

		Nm			10			(a) Marie		
C0382	US 44010-T15P	3.5	M 4	10	_	-	Flag T15P	-	_	_
C0384	US 44010-T15P	3.5	M 4	10	D-T08P/T15P	FG-15	_	HS 90835	_	_
C0386	US 44010-T15P	3.5	M 4	10	D-T08P/T15P	FG-15	_	HS 1030C	_	_
C0388	US 44010-T15P	3.5	M 4	10	D-T08P/T15P	FG-15	_	HS 1230C	_	_
C0390	US 44010-T15P	3.5	M 4	10	D-T08P/T15P	FG-15	_	_	_	_
C0394	US 44010-T15P	3.5	M 4	10	D-T08P/T15P	FG-15	-	HS 1240C	HSD 0825C	CAC 160C

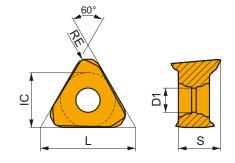
NEV	/			
		TNGX 1	.6	
	IC	D1	L	S
	(MM)	(MM)	(MM)	(мм)
1606	9.525	4.40	16.50	6.58

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	17 .7						`	,, -II-	. ,	.,.			V- F-2						•					
	PERMAN	RE			P				M				K			N			S				Н	
Обозначение				VC	f	ap		VC	f	ap		VC	f	ар	VC	f	ар	VC	f	ap		VC	f	ар
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(N	/мин)	(мм/зуб)	(MM)
	36°	0,09			S																			
	19°		П	03ИТИВН	ная гео	метри	ІЯ Д	µля чис	говой с	брабо	TK	И.												
TNGX 160604SR-	F M8330	0.4		205	0.10	3.0		120	0.09	3.0	Z	190	0.10	3.0	_	_	_	_	_	_		_	_	_
	M8340	0.4		190	0.10	3.0		110	0.09	3.0	Z	180	0.10	3.0	_	-	_	_	_	_		_	_	_
TNGX 160608SR-	F 8215	0.8		250	0.10	3.0		150	0.09	3.0		235	0.10	3.0	_	-	_	_	-	_		_	-	_
	M6330	0.8		215	0.10	3.0		150	0.09	3.0		-	_	-	_	-	_	_	_	_		_	_	_
	M8310	0.8		280	0.10	3.0		140	0.09	3.0	Z	265	0.10	3.0	_	_	_	_	_	_		_	_	_
	M8330	0.8		245	0.10	3.0		145	0.09	3.0		230	0.10	3.0	_	_	_	_	_	_		_	_	_
	M8340	0.8		225	0.10	3.0		135	0.09	3.0		210	0.10	3.0	_	_	_	_	_	_		_	_	_

PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.


применение инструме	.ווומ, וומימוטווו.	חכ אוני	CIIVI/I	скоро	лети рез	outivizi ((• •)	,, подо	י (ו) וערו	1 IJIy OV	טווו	pesan	ил (ар)	. дли д	UIII	OTHIVITO	, אוטווטוג	pacac	.100	DOCIN	льзуи	icco iip	אונועו	MCIIVI	civi car	uiu
	PRESIDENT SERVICES	RE			Р				M				K				N				S				Н	
Обозначение				VC	f	ap		vc	f	ap		VC	f	ap		VC	f	ap		VC	f	ар		VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(м
	33° 19°	0,14	Поз	З итивн	ная геог	S метрия	я дл	ля чис	товой и	и получ	чис	товой	обрабо	тки.												
TNGX 160604SR-M	8215	0.4		190	0.15	3.0		110	0.14	3.0		180	0.15	3.0		_	_	_		45	0.11	2.4		-	_	
	M6330	0.4		165	0.15	3.0		115	0.14	3.0		-	_	-		_	_	-		45	0.11	2.4		_	-	
	M8310	0.4		205	0.15	3.0		100	0.14	3.0		190	0.15	3.0		_	_	_		_	_	_		_	-	
	M8330	0.4		190	0.15	3.0		110	0.14	3.0		180	0.15	3.0		_	_	_		45	0.11	2.4		_	_	
	140240	0.4		170	0.15	2.0		100	0.14	2.0		100	0.15	2.0						40	Λ 11	2.4				

M8340 170 0.15 3.0 **■** 100 0.14 3.0 **■** 160 0.15 3.0 0.4 40 0.11 2.4 TNGX 160608SR-M 8215 8.0 230 0.15 3.0 🗷 135 0.14 3.0 215 0.15 3.0 0.11 55 2.4 M6330 8.0 195 0.15 3.0 135 0.14 3.0 0.11 2.4 M8310 245 3.0 0.8 0.15 3.0 120 0.14 230 0.15 3.0 225 3.0 135 3.0 3.0 M8330 0.8 0.15 0.14 210 0.15 55 0.11 2.4 205 3.0 M8340 0.8 0.15 120 0.14 190 3.0 0.11 3.0 50 2.4 95 M8345 8.0 160 0.15 0.14 3.0 3.0 0.11 285 M9325 8.0 0.15 3.0 270 3.0 0.15 260 M9340 8.0 0.15 3.0 🖊 155 0.14 3.0 65 0.11 2.4 TNGX 160612SR-M 235 3.0 M8330 1.2 0.15 3.0 🔼 140 0.14 220 3.0 55 0.15 0.11 2.4 3.0 215 0.15 125 0.14 200 0.15 3.0 M8340 3.0 50 0.11 2.4 TNGX 160616SR-M 275 3.0 🔼 140 3.0 M8310 0.15 0.14 260 0.15 3.0 M8330 250 0.15 3.0 🖊 150 0.14 3.0 235 0.15 3.0 **6**0 0.11 2.4 M8340 **■** 225 0.15 3.0 **■** 135 0.14 3.0 **■** 210 **5**5 0.11

NEW **TNGX 16-FA** IC D1 L S (MM) (MM) (MM) (MM)

4.40

PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

Обозначение	PRECIPE	RE		P			M			K			N			S			Н	
Орозначение		(MM)	(M/I		ар) (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)									
	√ 38°		٥	F						·			·							

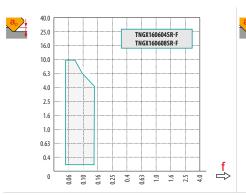
1606

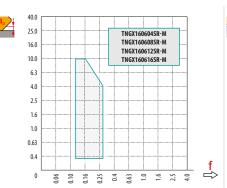
9.525

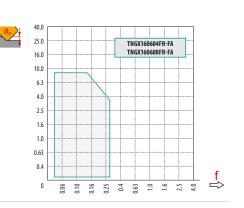
16.50

6.58

Позитивная геометрия для чистовой и получистовой обработки цветных сплавов.

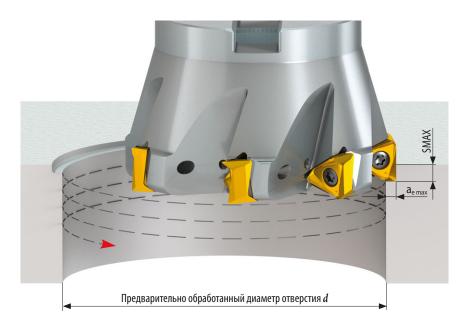

TNGX 160604FR-FA	HF7	0.4	-	-	_	-	_	_	_	-	_	_	255	0.14	2.0	_	_	-	_	_	_
	M0315	0.4	-	-	_	-	_	_	_	_	_	_	585	0.14	2.0	_	_	-	_	_	_
TNGX 160608FR-FA	HF7	0.8	-	-	_	-	-	-	-	-	-	-	300	0.14	2.0	-	-	-	-	-	_
	M0315	0.8	-	-	_	-	_	_	_	-	_	_	690	0.14	2.0	_	_	-	_	_	_





a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	TNGX	16-F		TNGX	16-M		TNGX	16-FA
RE	0.4	0.8	0.4	0.8	1.2	1.6	0.4	0.8
BS	2.10	1.9	2.10	1.90	1.73	1.14	2.10	1.90

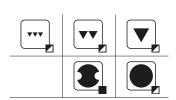


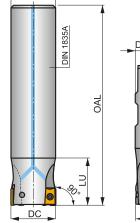
a _p	3.0	4.5	6.0
‡ ⇒f	0.18	0.14	0.10

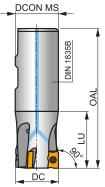
DC	(b)	d _{min} =	DC*		d = 1.	25 DC		d = 1	.5 DC		d = 1.	75 DC		d ≥ 3	2 DC
DC	min	SMAX	a _{e max}		SMAX	a _{e max}		SMAX	a _{e max}		SMAX	a _{e max}		SMAX	a _{e max}
25	25	0.14	1.3	31	0.22	2.2	38	0.33	3.0	44	0.60	4.0	50	0.70	5.0
32	32	0.16	1.5	40	0.33	2.8	48	0.44	4.0	56	0.70	5.0	64	0.90	6.5
40	40	0.22	2.0	50	0.38	3.5	60	0.55	5.0	70	0.90	6.5	80	1.15	8.0
50	50	0.27	2.5	63	0.50	4.5	75	0.70	6.5	88	1.00	8.0	100	1.40	10.0
63	63	0.33	3.2	80	0.60	5.5	95	0.90	8.0	110	1.45	10.0	125	1.80	12.5
80	80	0.55	4.0	100	1.00	7.0	120	1.45	10.0	140	2.15	13.0	160	2.60	16.0
100	100	0.70	5.0	125	1.20	9.0	150	1.80	12.5	175	2.70	16.5	200	3.30	20.0
115	115	0.85	6.0	145	1.50	10.0	175	1.90	14.5	200	2.80	19.0	230	3.80	23.0
125	125	0.90	6.5	155	1.60	11.0	190	2.30	15.5	220	3.10	20.0	250	4.10	25.0
140	140	1.00	7.0	175	1.80	12.5	210	2.60	17.5	245	3.70	23.0	280	4.60	28.0
160	160	1.20	8.0	200	2.00	14.0	240	2.90	20.0	280	4.30	26.0	320	5.30	32.0
175	175	1.30	8.8	220	2.20	15.5	265	3.20	22.0	305	4.70	29.0	350	5.80	35.0

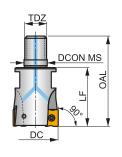
^{*} При диаметре отверстия d_{min} - 1.5 DC необходима проверка снижения подачи.

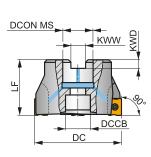
SLN12


PRAMET


Фреза ECON LN12 для обработки уступов


Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины LN.. 12 с глубиной резания до 9 мм имеют 4 режущие кромки. Фреза подходит для широкого применения.





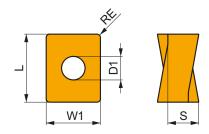
ECON LN

	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		∫ kg			
		(мм)	(мм)	(мм)	(мм)	(MM)	(мм)		(мм)	(мм)	(°)	(°)								
	25A2R034A25-SLN12-C	25	170	25	-	34	_	_	-	_	-23	-8	2	-	19500	✓	0.58	GI205	SQ340	_
	25A2R080A25-SLN12-C	25	170	25	-	80	-	_	_	-	-23	-8	2	_	19500	\checkmark	0.51	GI205	SQ340	-
DIN 1835A	32A2R034A32-SLN12-C	32	195	32	-	34	-	_	_	-	-15	-6	2	_	17300	\checkmark	1.05	GI205	SQ340	_
	32A2R090A32-SLN12-C	32	195	32	_	90	_	_	_	_	-15	-6	2	_	17300	\checkmark	0.98	GI205	SQ340	_
	25A2R042B25-SLN12-C	25	99	25	-	42	-	-	_	-	-23	-8	2	_	19500	\checkmark	0.30	GI205	SQ340	-
DIN 1835B	32A3R042B32-SLN12-C	32	103	32	-	42	_	-	_	-	-15	-6	3	-	17300	\checkmark	0.50	GI205	SQ340	-
	40A4R050B32-SLN12-C	40	111	32	_	50	_	_	_	_	-15	-6	4	✓	15500	✓	0.62	GI205	SQ340	_
	25A2R033M12-SLN12-C	25	55	12.5	-	-	33	-	-	-	-22	-6	2	-	-	✓	0.12	GI205	SQ340	_
	32A2R043M16-SLN12-C	32	66	17	-	-	43	-	-	-	-15	-6	2	-	-	✓	0.22	GI205	SQ340	_
MODULAR	32A3R043M16-SLN12-C	32	66	17	_	_	43	_	_	_	-15	-6	3	_	-	✓	0.23	GI205	SQ340	_
	40A3R043M16-SLN12-C	40	66	17	-	_	43	-	_	_	-15	-6	3	_	-	✓	0.30	GI205	SQ340	
	40A04R-S90LN12-C	40	_	16	14	_	40	-	8.4	5.6	-15	-6	4	✓	15500	✓	0.23	GI205	SQ342	_
	50A04R-S90LN12-C	50	_	22	18	_	40	-	10.4	6.3	-14.5	-6	4	✓	13800	✓	0.35	GI205	SQ343	_
	50A05R-S90LN12-C	50	_	22	18	_	40	_	10.4	6.3	-14.5	-6	5	✓	13800	✓	0.11	GI205	SQ343	_
	63A04R-S90LN12-C	63	_	22	18	-	40	-	10.4	6.3	-14	-6	4	✓	12300	✓	0.55	GI205	SQ343	
	63A06R-S90LN12-C	63	_	22	18	_	40	-	10.4	6.3	-14	-6	6	✓	12300	✓	0.50	GI205	SQ343	_
	80A05R-S90LN12-C	80	-	27	38	-	50	-	12.4	7	-14	-6	5	✓	10900	✓	1.18	GI205	SQ341	AC001
ISO 6462 DIN 8030	80A07R-S90LN12-C	80	_	27	38	_	50	-	12.4	7	-14	-6	7	✓	10900	✓	1.02	GI205	SQ341	AC001
	100A06R-S90LN12-C	100	_	32	45	_	50	-	14.4	8	-14	-6	6	✓	9800	✓	1.78	GI205	SQ341	AC002
	100A08R-S90LN12-C	100	_	32	45	_	50	-	14.4	8	-14	-6	8	✓	9800	✓	2.01	GI205	SQ341	AC002
	110A06R-S90LN12-C	110	_	32	45	-	50	-	14.4	8	-14	-6	6	✓	9300	✓	2.09	GI205	SQ341	AC002
	125A07R-S90LN12-C	125	_	40	56	_	63	_	16.4	9	-14	-6	7	✓	8700	✓	3.44	GI205	SQ341	AC003
	125A09R-S90LN12-C	125	_	40	56	_	63	_	16.4	9	-14	-6	9	\checkmark	8700	\checkmark	3.38	GI205	SQ341	AC003



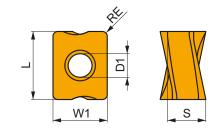
		Nm			10		×.	(a) James
SQ340	US 44012-T15P	3.5	M 4	12	_	_	Flag T15P	_
SQ341	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	_
SQ342	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	HS 0830C
SQ343	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	HS 1030C

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40


		LNGX 1	.2	
	W1	D1	L	S
	(MM)	(MM)	(MM)	(MM)
1205	9.500	4.50	12.00	5.96

0.5	PROPERTY	RE			P				M				K			N			S		Н		
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc /мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	иин) (м <i>і</i>	f 1/3y6)	ар (мм)
	Q) 33°			E																		
			По	озитиві	ная гео	метрия	1 для	чист	овой о	брабо	TKI	1.											
LNGX 120504ER-F	8215	0.4		200	0.15	1.5		-	-	-		190	0.15	1.5	_	-	-	-	-	-	-	-	-
	M8330	0.4		200	0.15	1.5		-	-	_		190	0.15	1.5	_	-	-	-	-	-	-	-	-
	M8340	0.4		180	0.15	1.5		-	-	-		170	0.15	1.5	_	-	-	-	-	-	-	-	-
LNGX 120508ER-F	8215	0.8		240	0.15	1.5		-	-	-		225	0.15	1.5	_	-	-	_	-	-	-	-	-
	M8310	0.8		260	0.15	1.5		_	_	_		245	0.15	1.5	_	_	_	_	_	-	-	_	_
	M8330	0.8		235	0.15	1.5		_	-	-		220	0.15	1.5	_	-	-	_	-	-	_	_	-
	M8340	0.8		215	0.15	1.5		_	_	_		200	0.15	1.5	_	_	-	_	_	-	_	_	_
		33°	По	ОЗИТИВ	Е ная гео	метрия	і для	чист	овой и	получ	чис	товой	обрабо	отки.									

06	E-SENERAL	RE		P			M				K			N			S			Н	
Обозначение			VC	f	ap	VC	f	ap		VC	f	ap	VC	f	ap	VC	f	ap	VC	f	ap
		(MM)	(M/MИH)	(MM/3y6)	(MM)	(м/мин)	(мм/зуб)	(мм)	(1	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин) (мм/зуб)	(MM)	(м/мин)	(MM/3y6)	(MM)
		١	1	E																	
		33°																			
			Позитив	ная гео	метрия	я для чис	товой и	і получ	исто	овой (обрабо	тки.									
LNGX 120512ER-M	M8330	1.2	230	0.15	3.0	_	_	-		215	0.15	3.0	-	-	-	-	-	-	-	-	-
LNGX 120516ER-M	M8340	1.2	210	0.15	3.0	_	_			195	0.15	3.0	-	_	-	-	_	-	_	_	-
LNGA 1203 IOLK-W	M8330 M8340	1.6 1.6	240 220	0.15	3.0	_		_		225205	0.15	3.0	_		_	H	_	_	_	_	_
LNGX 120520ER-M	M8310	2.0	280	0.15	3.0	_		_		265	0.15	3.0	<u> </u>		_			_	_		_
	M8330	2.0	255	0.15	3.0	_	_	_		240	0.15	3.0	_	_	_	_	_	_	_	_	_
	M8340	2.0	230	0.15	3.0	_	_	_				3.0	_	_	_	-	_	_	_	_	_
									_												
	0,15 * * 3	l° 1	*	S																	
		28°																			
			Позитив	ная гео	метрия	я для обр	аботки	в нест	абил	ПЬНЫ	(услов	иях.									
LNGX 120508SR-R	8215	0.8	205	0.20	3.5	_				190	0.20	3.5	_		-			-			-
	M5315	0.8	2 65	0.20	3.5	_	_	_		250	0.20	3.5	-	_	-	-		-	_	_	_
	M8310 M8330	0.8	220 205	0.20	3.5 3.5	_	_	_		205 190	0.20	3.5	_	_	-	-	_	_	_	_	_
	M8340	0.8	185	0.20	3.5	_	_			175	0.20	3.5	=		_	=	_	_			_
	M9315	0.8	265	0.20	3.5	_	_	_		250	0.20	3.5	_	_	_	_	_	_	_	_	_
	M9325	0.8	250	0.20	3.5	_	_	_		235	0.20	3.5	_	_	_	_	_	_	_	_	_
	M9340	0.8	225	0.20	3.5	_	-	_		-	-	-	_	-	-	-	_	-	_	_	-
LNGX 120516SR-R	8215	1.6	225	0.20	3.5	_	-	-		210	0.20	3.5	_	-	-	_	_	_	_	_	-
	M8330	1.6	225	0.20	3.5	_	-	-		210	0.20	3.5	_	-	-	_	-	-	_	-	-
	M8340	1.6	205	0.20	3.5	_	-	_		190	0.20	3.5	-	-	-	_	-	-	_	-	-
	M9325	1.6	275	0.20	3.5	_	-	-		260	0.20	3.5	-	-	-	-	-	-	_	-	-
			+	E																	
)33°		\ <u>L</u>																	
		/33	Позитив	ная гео	метрия	я для чис	товой о	брабо	тки н	нерж	авеющ	их стал	ей.								
LNGX 120504ER-MF	M6330	0.4	175	0.15	1.0	1 25	0.14	1.0		_	_	-	-	_	-	_	_	-	_	_	_
	M8340	0.4	1 90	0.15	1.0	1 10	0.14	1.0		_	-	-	-	-	-	_	-	-	_	-	_
	M9340	0.4	2 40	0.15		1 40	0.14	1.0		-	-	-	_	-	-	_	-	-	_	-	-
LNGX 120508ER-MF	M6330	0.8	2 10	0.15		150	0.14	1.0		-	-	-	-	-	-	-	-	-	-	-	-
	M8340	0.8	225	0.15		135	0.14	1.0		-	-	-	-	-	-	-	-	-	-	-	-
	M9340	0.8	285	0.15	1.0	170	0.14	1.0		-	-	-	-	-	-	-	-	-	-	-	-
	0,07	٥°	+	S																	
	2	 	Т	7																	
	7	28°	Позитив	ная гео	метрия	я для чис	товой и	і получ	исто	овой (обрабо	тки нер	жавеюц	цих ста	лей.						
								,													
LNGX 120508SR-MM	M6330	0.8	1 90	0.15	2.8	1 35	0.14	2.8		_	_	_	_	_	_	_	_	-	_	_	_
	M8340	0.8	200			120	0.14	2.8		_	-	-	-	-	-	-	_	-	-	_	_
	M8345	0.8	1 60			9 5	0.14	2.8		-	-	-	-	-	-	_	-	-	-	_	-
	M9340	0.8	255	0.15	2.8	1 50	0.14	2.8		_	_	_	_	_	_	_	_	_	_	_	_

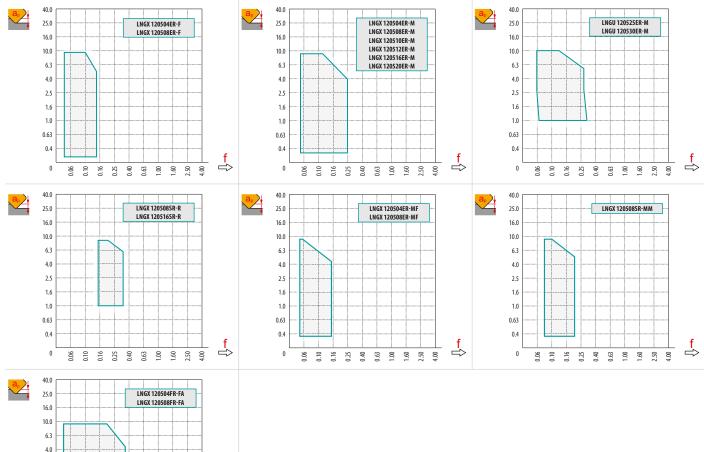


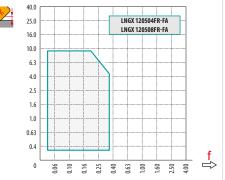
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

				-																				
0.5	PSCAPA.	RE			P			M				K			N				S			- 1	Н	
Обозначение				VC	f	ap	vc	f	ap		VC	f	ap	VC	f	ар		ıc	f	ар		VC	f	ар
		(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)	(M/	иин)	(мм/зуб)	(MM)	(N	и/мин)	(мм/зуб)	(MM)
		33°	Поз	ЗИТИВН	Е ная геон	метрия	для пол	учистов	зой об	раб	о́отки.													
LNGU 120525ER-M	M8330	2.5		255	0.15	3.0	_	_	_		240	0.15	3.0	_	_	_		_	_	_		_	_	_
	M8340	2.5		230	0.15	3.0	-	_	_		215	0.15	3.0	_	-	_		_	_	-		-	_	_
LNGU 120530ER-M	M8330	3.0		255	0.15	3.0	-	_	-		240	0.15	3.0	_	-	-		-	_	-		-	_	_
	M8340	3.0		230	0.15	3.0					215	0.15	3.0											

PRAMET

••	PERMAPH	RE			Р				M				K		ı		N			S				Н	
Обозначение				VC	f	ар		VC	f	ap		VC	f	ap		VC	f	ap	VC	f	ap		VC	f	ap
		(MM)		м/мин)	(мм/зуб)	(мм)	(м	/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
		_ 38°	1		-	F																			
			Позі	итивн	ая геоі	метрия	для	чист	говой и	и полу	чис	товой	обрабо	тки ц	веті	ных сп.	павов.								
LNGX 120504FR-FA	HF7	0.4		_	_	_		_	_	_		-	_	_		270	0.30	2.0	-	_	_		-	-	_
LNGX 120508FR-FA	HF7	0.8		_	_	_		_	_	_		-	_	_		315	0.30	2.0	-	_	_		_	-	_
	M0315	0.8		-	-	-		-	-	-		-	-	-		720	0.30	2.0	-	-	-		-	-	-





a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
(⊚) ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	LNG)	(12-F			LNGX	(12-M			LNGU	12-M
RE	0.4	0.8	0.4	0.8	1.0	1.2	1.6	2.0	2.5	3.0
BS	2.29	1.89	2.29	1.89	1.69	1.49	1.09	0.68	0.87	0.36

00000000	LNGX	(12-R	LNGX	12-MF	LNGX 12-MM	LNGX	12-FA
RE	0.8	1.6	0.4	0.8	0.8	0.4	0.8
BS	1.88	1.88 1.08		1.88	1.88	2.30	1.89

a _p	1.0	5.0	9.0
∯ ⇒f	0.19	0.13	0.08

	LNGX 12	
DC	RPMX	APMX/I
25	1.3	2.1/100
32	0.7	1.1/100
40	0.5	0.7/100
50	0.4	0.5/100
63	0.2	0.3/100
80	0.2	0.2/100

		LNGX 12		
DC	DMIN	DMAX	DMIN 🕢	DMAX DMAX
25	35.0	50.0	0.7	1.7
32	49.0	64.0	0.6	1.2
40	65.0	80.0	0.6	1.0
50	85.0	100.0	0.7	1.0
63	111.0	126.0	0.6	0.8
80	145.0	160.0	0.7	0.8

0.196

0.219

0.245

0.268

0.253

0.283

0.316

0.346

1.6

2.0

2.5

3.0

FE

DC	μm	3	5	10	15	20	30	40	50	60	80	100
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
40	FE	0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
50		0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
RE	μm	3	5	10	15	20	30	40	50	60	80	100

0.506

0.566

0.632

0.693

0.716

0.800

0.894

0.980

0.620

0.693

0.775

0.849

0.876

0.980

1.095

1.200

0.800

0.894

1.000

1.095

1.012

1.131

1.265

1.386

1.131

1.265

1.414

1.549

0.438

0.490

0.548

0.600

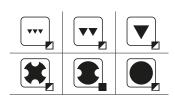
0.358

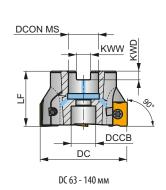
0.400

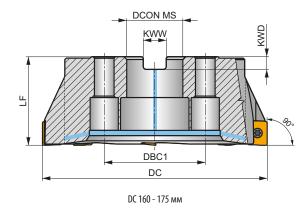
0.447

0.490

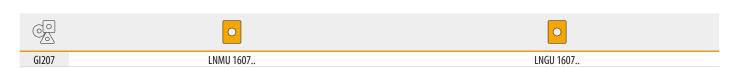
SLN16

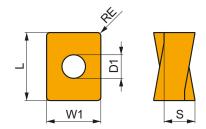



Фреза ECON LN16 для обработки уступов


Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины LN.. 16 с глубиной резания до 13 мм имеют 4 режущие кромки. Фреза подходит для широкого применения.

ECON LN




	Обозначение	DC (MM)	LF (MM)	DCON MS	DCCB	DBC1	KWW	KWD	GAMF (°)	GAMP			max.		∫ kg			
	63A04R-S90LN16-C	63	40	22	18	(mm)	10.4	6.3	-10.5	-6	4	√	7600	√	0.46	GI207	SQ353	
	63A05R-S90LN16-C	63	40	22	18	_	10.4	6.3	-10.5	-6	5	✓	7600	✓	0.46	GI207	SQ353	_
	80A04R-S90LN16-C	80	50	27	38	_	12.4	7	-10.5	-6	4	✓	6800	✓	0.98	GI207	SQ351	AC001
	80A06R-S90LN16-C	80	50	27	38	_	12.4	7	-10.5	-6	6	✓	6800	✓	0.89	GI207	SQ351	AC001
RH-193	100A05R-S90LN16-C	100	50	32	45	-	14.4	8	-10.5	-6	5	✓	6100	\checkmark	0.98	GI207	SQ351	AC002
ISO 6462 DIN 8030	100A07R-S90LN16-C	100	50	32	45	-	14.4	8	-10.5	-6	7	\checkmark	6100	\checkmark	1.84	GI207	SQ351	AC002
DIN 8030	125A06R-S90LN16-C	125	63	40	56	_	16.4	9	-10.5	-6	6	✓	5400	✓	3.44	GI207	SQ351	AC003
	125A08R-S90LN16-C	125	63	40	56	-	16.4	9	-10.5	-6	8	✓	5400	✓	3.33	GI207	SQ351	AC003
	140A06R-S90LN16-C	140	63	40	56	-	16.4	9	-10.5	-6	6	\checkmark	5100	\checkmark	3.91	GI207	SQ351	AC003
	160C08R-S90LN16-C	160	63	40	-	66.7	16.4	9	-10.5	-6	8	✓	4700	✓	6.19	GI207	SQ356	_
	175C08R-S90LN16-C	175	63	40	_	66.7	16.4	9	-10.5	-6	8	✓	4500	✓	7.11	GI207	SQ356	

		Nm			₽				\bigcirc
SQ351	US 45012-T20P	5.0	M 5	12	SDR T20P-T	-	_	_	-
SQ353	US 45012-T20P	5.0	M 5	12	SDR T20P-T	HS 1030C	_	_	_
SQ356	US 45012-T20P	5.0	M 5	12	SDR T20P-T	HS 1240C	CAC 160C	HSD 0825C	HXK 5

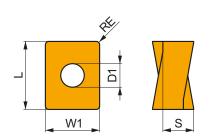
AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

	L	NMU 1	.6	
	W1	D1	L	S
4.607	(MM)	(MM)	(MM)	(MM)
1607	13.200	5.70	16.60	7.50

Применение инструме	нта, начальнь	не значе	ения скор	сти рез	и) кинь	с), пода	чи (і) и	ПЛУОИГ	ibi pesai	ійл (ар)	. дли д	цополни	CHUIIDIA	расчето	D BUCIII	ользуи	icco np	иложен	vicivi Cai	Luiatui
	THE DESIGN	RE		Р			M			K			N			S			Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	VС (м/мин)	f) (мм/зуб)	ар (мм)
		32°	(w/min)	E	(mm)	(м/мин)	(MM/3yU)	(mm)	(м/мин)	(mm/3yu)	(mm)	(M/MnH)	(MM/3yU)	(MM)	(м/мин)	(mm/3yu)	(mm)	(м/мин) (mm/syu)	(MM)
	7		Позитив	ная гео	метрия	для чис	товой о	бработ	ки.											
LNMU 160708ER-F	8215	0.8	235	0.16	1.7	_	_	-	-	-	-	_	-	-	_	_	-	_	-	-
	M8330	0.8	230	0.16	1.7	_	-	-	_	-	-	_	-	-	_	-	-	_	-	-
	M8340	8.0	210	0.16	1.7	_	-	-	-	-	-	_	-	-	_	-	-	_	-	_
	0,1	0° \		S																
	7	30°	Позитив	ная гео	метрия	для пол	учистоі	зой обр	аботки.											
LNMU 160708SR-M	8215	0.8	200	0.18	5.0	_	_	-	190	0.18	5.0	_	_	-	_	_	-	_	_	-
	M6330	0.8	170	0.18	5.0	_	_	-	-	-	-	_	_	-	-	_	_	_	_	-
	M8330	0.8	200	0.18	5.0	_	_	-	190	0.18	5.0	_	_	-	_	-	-	_	_	_

M8340 8.0 **180** 0.18 5.0 170 0.18 5.0 M9325 8.0 250 0.18 5.0 235 0.18 5.0 LNMU 160720SR-M M8330 2.0 **230** 0.18 215 0.18 5.0 5.0 5.0 M8340 2.0 **210** 0.18 195 0.18 5.0 LNMU 160730SR-M M8330 3.0 **230** 0.18 215 0.18 5.0 5.0 M8340 3.0 **210** 0.18 195 0.18 5.0 5.0 LNMU 160740SR-M M8330 4.0 **230** 0.18 215 0.18 5.0 5.0 M8340 4.0 **210** 0.18 5.0 **195** 0.18

Позитивная геометрия для черновой обработки.


LNMU 160708SR-R	M5315	0.8	265	0.18	6.3	_	_	_	250	0.18	6.3	_	_	-	-	_	_	50	0.15	1.0
	M8310	0.8	215	0.18	6.3	-	-	-	200	0.18	6.3	_	-	-	-	-	_	40	0.15	1.0
	M8330	8.0	195	0.18	6.3	-	-	-	185	0.18	6.3	_	-	-	-	-	_	35	0.15	1.0
	M8340	8.0	175	0.18	6.3	-	_	_	165	0.18	6.3	_	_	-	-	_	_	_	-	_
	M9315	8.0	260	0.18	6.3	-	_	_	245	0.18	6.3	_	_	-	_	_	_	50	0.15	1.0
	M9325	0.8	240	0.18	6.3	_	_	_	225	0.18	6.3	_	_	-	_	_	_	45	0.15	1.0

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

24	RE	Р	M	K	N	S	Н
Обозначение	KE (MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)
	0,12	* S					

	15°	113	По	ЗИТИВІ	ная гео	метрия	я д	ля чері	новой	обраб	0ТК	И.											
LNMU 160716SR-R	M8330	1.6		215	0.18	6.3		-	_	_		200	0.18	6.3	_	_	-	_	_	_	40	0.15	1.0
	M8340	1.6		195	0.18	6.3		-	_	-		185	0.18	6.3	_	_	-	_	_	_	-	_	_
	M9315	1.6		285	0.18	6.3		-	_	-		270	0.18	6.3	_	_	-	_	_	_	55	0.15	1.0
	M9325	1.6		265	0.18	6.3		-	_	_		250	0.18	6.3	_	_	-	_	_	_	50	0.15	1.0

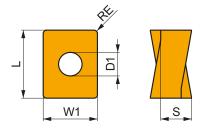
	L	NGU 1	6	
	W1	D1	L	S
	(MM)	(MM)	(MM)	(MM)
1607	13.200	5.70	16.60	7.50

PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

06	KACKSASS	RE		P			M			K			N			S			Н	
Обозначение			VC	f	ap	VC	f	ар	VC	f	ар	VC	f	ap	VC	f	ар	VC	f	ар
		(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)												

Позитивная геометрия для получистовой обработки.


LNGU 160708SR-M	8215	0.8	200	0.18	5.0	_	_	-	190	0.18	5.0	-	-	-	_	-	-	40	0.15	1.0
	M8340	8.0	180	0.18	5.0	_	_	-	170	0.18	5.0	-	_	-	_	-	_	_	-	_
	M9315	8.0	265	0.18	5.0	_	_	-	250	0.18	5.0	-	_	-	_	_	_	50	0.15	1.0
	M9325	0.8	250	0.18	5.0	_	_	_	235	0.18	5.0	-	-	-	_	_	_	50	0.15	1.0

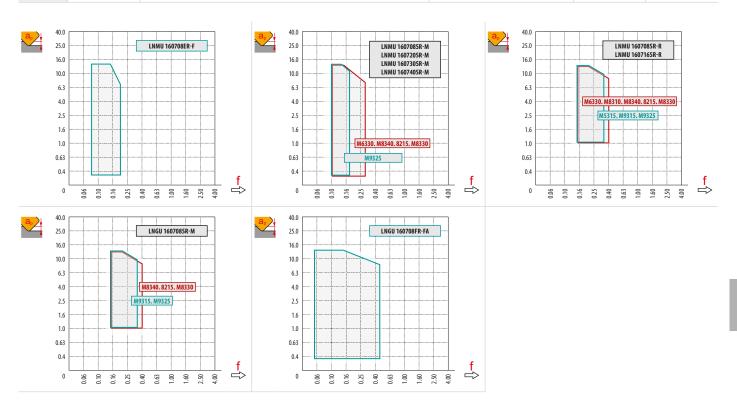
LNGU 16-FA

	W1	D1	L	S
	(MM)	(мм)	(MM)	(мм)
1607	13.200	5.70	16.60	7.50

LNGU 160708FR-FA

HF7

- - - ■ 300 0.30 3.0 - - - - -

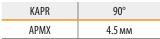

0.0	CANALAS A	RE		Р			M				K			N			S				Н	
Обозначение		(мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VС (м/ми	f ı) (мм/зуб)	ар (мм)	(VC (м/мин)	f (мм/зуб)	ар (мм)
C C	3	32°	Позитив	ная гео	метри	я для чи	товой і	и получ	чис	стовой	обрабо	тки цвет	ГНЫХ СП	лавов.								

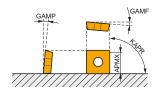
a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

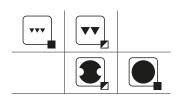
00000000	LNMU 16-F		LNMU	J 16-M		LNMU	J 16-R	LNGU 16-M	LNGU 16-FA
RE	0.8	0.8	2.0	3.0	4.0	0.8	1.6	0.8	0.8
BS	3.30	3.30	2.11	1.12	0.10	3.30	2.50	3.24	3.30

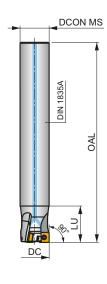
a _p	1.0	6.0	13.0
‡ ⇔f	0.31	0.24	0.13

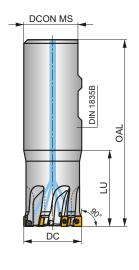
SSO050

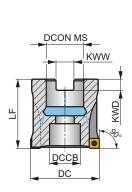

PRAMET

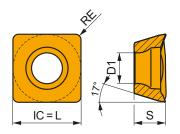



Фреза для обработки уступов с пластинами SOMT 05


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины SOMT 05 с глубиной резания до 4.5 мм имеют 4 режущие кромки. Фреза подходит для широкого применения.



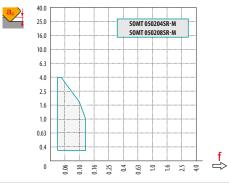




	0	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	KWW	KWD	GAMF	GAMP			max.		S kg		
			(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(°)	(°)							
	1	12A2R018A10-SS0050-C	12	90	10	-	18	_	-	-	-8	8	2	_	58000	✓	0.05	GI327	SQ330
	1	12A2R018A12-SS0050-C	12	90	12	-	18	-	-	-	-8	8	2	-	58000	✓	0.07	GI327	SQ330
	1	16A3R020A14-SS0050-C	16	110	14	-	20	_	-	-	-5	8	3	-	50300	✓	0.12	GI327	SQ330
	1835A 1	16A3R020A16-SS0050-C	16	110	16	_	20	_	_	-	-5	8	3	-	50300	✓	0.15	GI327	SQ330
S.I.		20A4R020A18-SS0050-C	20	125	18	-	20	_	-	-	-5	8	4	✓	45000	✓	0.21	GI327	SQ330
	2	20A4R020A20-SS0050-C	20	125	20	_	20	-	_	-	-5	8	4	✓	45000	✓	0.26	GI327	SQ330
	2	25A5R024A25-SS0050-C	25	140	25	_	24	-	_	-	-5	8	5	✓	40200	✓	0.48	GI327	SQ330
	2	20A4R032B20-SS0050-C	20	83	20	_	32	_	_	_	-5	8	4	✓	45000	✓	0.16	GI327	SQ330
	2 1835B	25A5R042B25-SS0050-C	25	99	25	_	42	_	_	_	-5	8	5	✓	40200	✓	0.31	GI327	SQ330
		32A6R042B32-SS0050-C	32	103	32	_	42	_	_	-	-4.5	8	6	\checkmark	35500	✓	0.54	GI327	SQ330
	3	32A06R-S90S0050-C	32	-	16	12.4	-	32	8.4	5.6	-4.5	8	6	✓	35500	✓	0.10	GI327	SQ332
ISC		40A08R-S90S0050-C	40	_	22	18.1	_	40	10.4	6.3	-4	8	8	✓	31800	✓	0.19	GI327	SQ333

		Nm			X.	10		
SQ330	US 62204-T07P	0.8	M 2.2	4.1	Flag T07P	_	_	-
SQ332	US 62204-T07P	0.8	M 2.2	4.1	_	D-T07P/T09P	FG-15	HS 90835
SQ333	US 62204-T07P	0.8	M 2.2	4.1	_	D-T07P/T09P	FG-15	HS 1030C

SOMT 05 IC D1 L S (MM) (MM) (MM) (MM) 0502 5.570 2.50 5.57 2.63


1 17										•		•	` ' '				•		•					
	25452953255	RE			Р				M				K			N			S				Н	
Обозначение		(мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	()	vc м/мин)	f (мм/зуб)	ар (мм)
	<u> </u>	<u>,05</u> 20°	ZĮ.		S																			
	17°	>	Поз	ИТИВН	ная геог	метри	я д	ля чис	товой і	и полу	чис	товой	обрабо	тки.										
SOMT 050204SR-M	M6330	0.4		255	0.05	2.5		180	0.05	2.5		_	-	-	-	_	-	75	0.04	2.0		_	-	-
	M8330	0.4		290	0.05	2.5		170	0.05	2.5		275	0.05	2.5	-	_	_	70	0.04	2.0		-	_	_
	M8340	0.4		260	0.05	2.5		155	0.05	2.5		245	0.05	2.5	-	_	-	65	0.04	2.0		-	-	-
SOMT 050208SR-M	M6330	0.8		300	0.05	2.5		210	0.05	2.5		-	-	-	-	-	-	85	0.04	2.0		-	-	-
	M8330	0.8		350	0.05	2.5		210	0.05	2.5		330	0.05	2.5	-	-	_	85	0.04	2.0		_	-	_
	M8340	8.0		310	0.05	2.5		185	0.05	2.5		290	0.05	2.5	-	_	-	75	0.04	2.0		-	-	-

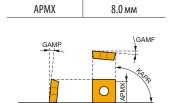
a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	SOM	Г 05-M
RE	0.4	0.8
BS	-	-

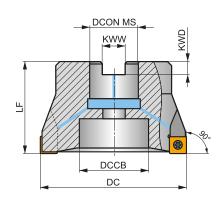
a _p	1.0	2.0	4.0
‡ ⇔f	0.12	0.08	0.03

SSO09

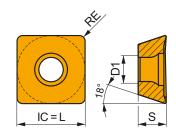
PRAMET



Фреза для обработки уступов с пластинами SOMT 09


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины SOMT 09 с глубиной резания до 8 мм имеют 4 режущие кромки. Фреза подходит для широкого применения.

	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	KWW	KWD	GAMF	GAMP			max.		∫ kg			
		(MM)	(MM)	(мм)	(мм)	(MM)	(MM)	(MM)	(MM)	(°)	(°)								
	20A2R032B20-SS009-C	20	82	20	-	32	_	-	_	-12	6	2	-	23800	✓	0.21	GI146	SQ400	_
DIN 1835B	25A3R042B25-SS009-C	25	98	25	-	42	_	-	_	-12	6	3	-	21300	✓	0.31	GI146	SQ400	_
UNY 1033B	32A4R042B32-SS009-C	32	102	32	-	42	_	-	_	-10	10	4	\checkmark	18800	✓	0.55	GI146	SQ400	_
	40A05R-S90S009-C	40	_	16	14	_	40	8.4	5.6	-9.1	10	5	-	16800	\checkmark	0.29	GI146	SQ402	_
	50A06R-S90S009-C	50	_	22	18	-	40	10.4	6.4	-8.8	10	6	-	15100	\checkmark	0.33	GI146	SQ403	_
ISO 6462 DIN 8030	63A07R-S90S009-C	63	-	22	18	-	40	10.4	6.4	-8.6	10	7	-	13400	✓	0.86	GI146	SQ403	_
ISO 6462 DIN 8030	80A09R-S90S009-C	80	-	27	38	_	50	12.4	7	-8.1	10	9	-	11900	\checkmark	1.03	GI146	SQ401	AC001
	100A10R-S90S009-C	100	_	32	45	_	50	14.4	8	-8.1	10	10	-	10700	\checkmark	1.79	GI146	SQ401	AC002
	125A12R-S90S009-C	125	-	40	56	-	63	16.4	9	-8.1	10	12	-	9500	✓	3.62	GI146	SQ401	AC003



		Nm Nm			10		S	
SQ400	US 3006-T09P	2.0	M 3	6	_	-	Flag T09P	_
SQ401	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	_	-
SQ402	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	_	HS 0830C
S0403	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	_	HS 1030C

AC001	KS 1230	K.FMH27

AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

	S	OMT 0	9	
	IC	D1	L	S
	(MM)	(MM)	(MM)	(MM)
09T3	9.550	3.50	9.55	3.97

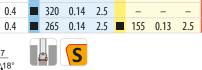
55

50 0.10

65 0.10 2.0

0.10 2.0 2.0

Применение инструм	ента, начальн	ые знач	ения	скорс	сти ре:	вания (Vc)	, пода	чи (f) и	ı глубі	ИНЬ	і резан	ия (ар)). Для д	цоп	олнит	ельных	расче	етов	ВОСП	ользуйт	гесь пр	ОПЛОХ	кени	ем СаІс	ulator.
06	ESENTE	RE			P				M				K				N				S				Н	
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	()	vc м/мин)	f (мм/зуб)	ар (мм)
	0	<u>,12</u> 	4	1	<u>{Û</u> }	S																				
	40°	\	Поз	ЗИТИВІ	ная гео	метрия	я дл	ІЯ ПОЛ	учисто	вой об	бра	ботки.														
SOMT 09T308-M	8215	0.8		275	0.14	2.5		165	0.13	2.5		260	0.14	2.5		_	_	-		65	0.13	2.0		-	-	_
	M5315	0.8		390	0.14	2.5		_	_	-		370	0.14	2.5		_	_	_		-	_	_		-	-	_
	M8330	0.8		270	0.14	2.5		160	0.13	2.5		255	0.14	2.5		_	_	_		65	0.13	2.0		-	-	_
	M8340	0.8		250	0.14	2.5		150	0.13	2.5		235	0.14	2.5		_	-	_		60	0.13	2.0		-	-	_
	M9315	8.0		380	0.14	2.5		-	-	_		360	0.14	2.5		-	-	_		-	-	_		-	_	_
	0	,06 \18°		*	S																					
	14°	7	Ста	бильн	ая поз	итивна	я ге	еомет	рия для	я полу	чи	стовой	обрабо	отки.												
SOMT 09T304-MI	8215	0.4		230	0.14	2.5		135	0.13	2.5		215	0.14	2.5		_	_	-		55	0.10	2.0		-	_	_
	M8310	0.4		255	0.14	2.5		130	0.13	2.5		240	0.14	2.5		-	-	-		-	-	-		-	-	-



M8330

M8340

M9315 M9340 0.4

0.4

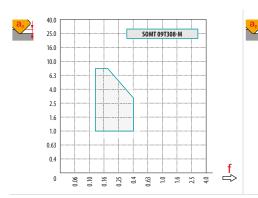
230

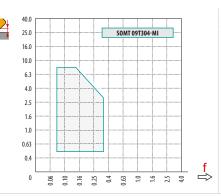
Позитивная геометрия для получистовой обработки.

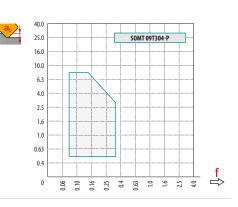
SOMT 09T304-P	M8330	0.4	250	0.14	2.5	150	0.13	2.5	235	0.14	2.5	_	_	-	60	0.10	2.0	-	_	_
	M8340	0.4	230	0.14	2.5	135	0.13	2.5	215	0.14	2.5	_	-	-	55	0.10	2.0	_	_	_
	M9325	0.4	320	0.14	2.5	-	-	_	300	0.14	2.5	_	-	-	-	-	-	_	_	_

300 0.14 2.5

0.14 2.5 135 0.13 2.5 2 215 0.14 2.5


■ 210 0.14 2.5 ■ 125 0.13 2.5 **□** 195 0.14 2.5



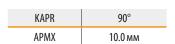


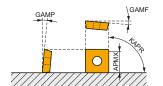
a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(x.v	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

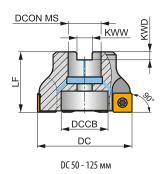
20000000	SOMT 09-M	SOMT 09-MI	SOMT 09-P
RE	0.8	0.4	0.4
BS	0.90	1.30	1.30

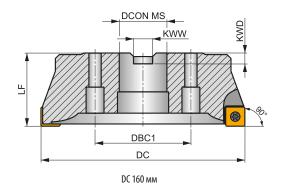
a _p	1.0	4.0	8.0
∯ ⇒f	0.28	0.19	0.09

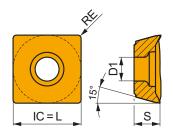
SSD12






Фреза для обработки уступов с пластинами SDMT 12


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины SDMT 12 с глубиной резания до 10 мм имеют 4 режущие кромки. Фреза подходит для широкого применения.

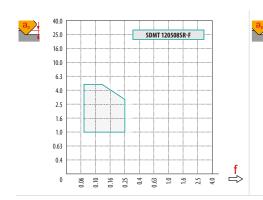

	Обозначение	DC	LF	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		∫ kg			
		(MM)	(MM)	(MM)	(MM)	(мм)	(MM)	(мм)	(°)	(°)								
	50A05R-S90SD12-C	50	40	22	18	-	10.4	6.3	-5	8	5	-	13000	✓	0.34	GI057	SQ413	_
	63A06R-S90SD12-C	63	40	22	18	-	10.4	6.3	-5	8	6	-	11600	✓	0.53	GI057	SQ413	_
ISO 6462 DIN 8030	80A06R-S90SD12-C	80	50	27	38	-	12.4	7	-5	8	6	-	10300	✓	0.92	GI057	SQ411	AC001
ISO 6462 DIN 8030	100A08R-S90SD12-C	100	50	32	45	_	14.4	8	-5	8	8	_	9200	✓	1.69	GI057	SQ411	AC002
	125A09R-S90SD12-C	125	63	40	56	-	16.4	9	-5	8	9	-	8300	✓	3.29	GI057	SQ411	AC003
	160C12R-S90SD12	160	63	40	_	66.7	16.4	9	-5	8	12	_	7300	_	5.74	GI057	SQ411	_

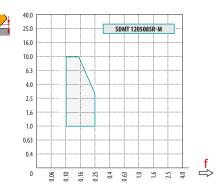
GI057	SDMT 1205

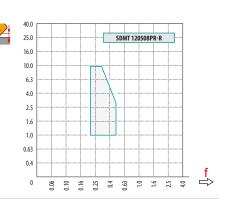
			(°		Nm			10		(a) Jum
SQ411	SSN 100312	MS 3510	HXK 3,5	US 3511-T15	3.0	M 3.5	11	D-T07/T15	FG-15	_
SQ413	_	_	-	US 3511-T15	3.0	M 3.5	11	D-T07/T15	FG-15	HS 1030C

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

SDMT 12 IC D1 L S (MM) (MM) (MM) (MM) (MM) 1205 12.700 4.40 12.70 5.00


•	54/2K/3F4	RE			P				M				K			N			S			Н	
) бозначение				VC	f	ap		VC	f	ар		VC	f	ар	VC	f	ap	VC	f	ap	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	0,0	*	†		S																		
	[†] 0°	25°	Позі	ИТИВН	ная геог	метри	ія дл	тя чис	товой о	брабо	TKV	1.											
5DMT 120508SR-F	M8330	0.8		275	0.10	3.0		165	0.09	3.0		260	0.10	3.0	825	0.12	3.0	65	0.08	2.4	_	-	-
	M8340	8.0		250	0.10	3.0		150	0.09	3.0		235	0.10	3.0	_	-	_	60	0.08	2.4	_	_	_
	0,	1_ 	*		Û																		
			Позі	ИТИВН	ая геоі	иетри	ІЯ ДЛ	тя чис	говой и	полу	чис	товой	обрабо	тки.									
SDMT 120508SR-M	8215	0.8		245	0.16	3.5		145	0.14	3.5		230	0.16	3.5	-	-	-	60	0.11	2.8	_	-	-
	M8330	8.0		240	0.16	3.5		140	0.14	3.5		225	0.16	3.5	_	-	-	60	0.11	2.8	_	_	_
	M8340	8.0		220	0.16	3.5		130	0.14	3.5		205	0.16	3.5	-	-	-	55	0.11	2.8	_	-	-
	M9325	8.0		305	0.16	3.5		-	-	-		285	0.16	3.5	-	-	-	-	-	-	_	-	-
	0,	15 09 20°	*		P																		
	190	120	Позі	ИТИВН	ная геон	метри	ія дл	ія чер	новой (браб	OTKI	Л.											
SDMT 120508PR-R	M8330	0.8		220	0.25	3.5		130	0.23	3.5		205	0.25	3.5	-	-	-	55	0.23	2.8	_	_	-
	M8340	0.8		195	0.25	3.5		115	0.23	3.5		185	0.25	3.5	_	_	-	45	0.23	2.8	_	-	_
	M9315	0.8		280	0.25	3.5		_	_	-		265	0.25	3.5	_	_	-	-	_	-	_	_	-
	M9325	0.8		265	0.25	3.5		_	_	_		250	0.25	3.5	_	_	_	_	_	_	_	_	_



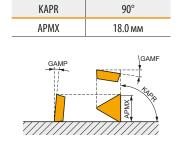


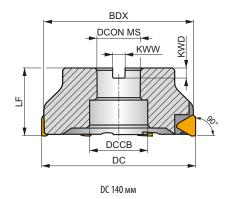
a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒×.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

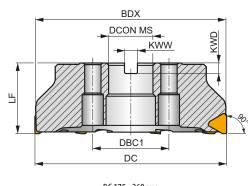
00000000	SDMT 12-F	SDMT 12-M	SDMT 12-R
RE	0.8	0.8	0.8
BS	_	-	-

a _p	1.0	5.0	10.0
∯ ⇒f	0.39	0.25	0.14

FTB27X

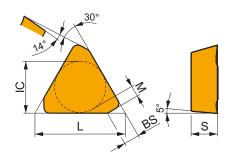



Фреза ROUGH ТВ для обработки уступов с пластинами ТВМR 27


Конструкция фрезы имеет позитивно-негативную геометрию, переменный шаг зубьев. Односторонние пластины ТВМR 27 с глубиной резания до 18 мм имеют 3 режущие кромки. Фреза подходит для широкого применения.

ROUGH TB

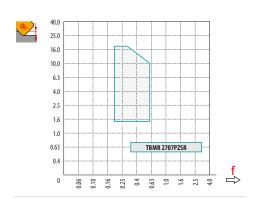
DC 175 - 260 MM


	Обозначение	DC (MM)	BDX (MM)	LF	DCON MS	DCCB	DBC1	KWW	KWD	GAMF	GAMP			max.		S kg			
	140B07R-F90TB27X	140	135.7	63	40	56	_	16.4	9	-9	9	7	✓	-	-	4.75	GI163	SQ421	AC003
ISO 6462 DIN 8030	175C08R-F90TB27X	175	169.6	63	40	_	66.7	16.4	16.4	-9	9	8	\checkmark	-	_	7.59	GI163	SQ424	_
ISO 6462 DIN 8030	210C10R-F90TB27X	210	204.1	63	60	-	101.6	25.7	25.7	-9	9	10	\checkmark	-	-	10.80	GI163	SQ425	-
	260C12R-F90TB27X	260	253.4	63	60	_	101.6	25.7	25.7	-9	9	12	✓	_	_	18.21	GI163	S0425	_

GI163	TBMR 2707PZ

SQ421	LNK 220616	US 6013-T20P	SDR T20P-T	KU TBMR 2707	DS 01Z	KL 04	_
SQ424	LNK 220616	US 6013-T20P	SDR T20P-T	KU TBMR 2707	DS 01Z	KL 04	HS 1240
SQ425	LNK 220616	US 6013-T20P	SDR T20P-T	KU TBMR 2707	DS 01Z	KL 04	HS 1655

AC003	KS 2040	K.FMH40


Применение инструме	ента, начальны	е значе	ния скор	ости ре	зания (Vo	:), пода	ачи (f) и	1 глуби	1НЫ	резан	ия (ар)	. Для д	ополі	нител	льных	расче	2ТОВ	воспо)льзуйт	есь пр	илож	ениег	м Calcı	ulator.
06	15.45.5474.5	RE		P			M				K			ı	N				S			ŀ	1	
Обозначение		(MM)	VC (м/мин	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		vc /мин) (f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		иин) (и	f им/зуб)	ар (мм)
	√ 1 0,2 1		*	ZÚ Z	S																			
	0.		Геометр	ия для	черновой	обраб	отки.																	
TBMR 2707PZSR	M8326	_	1 30	0.20	11.0	_	-	_		120	0.20	11.0		_	_	-		_	-	_	-	-	-	_
	M8346	-	1 10	0.20	11.0	65	0.20	11.0		_	-	-		-	-	-		-	_	-	-	-	-	-

a _e / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	TBMR 27
RE	-
BS	2.70

a _p	1.5	8.0	18.0
∳ ⇒f	0.60	0.39	0.24

DORMER PRAMET

БЫСТРЫЙ ПОИСК

Простой и быстрый поиск по всем нашим публикациям, размещенным в последнее время, доступен в нашем приложении Library. **Simply Reliable.**

ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ

ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ – НАВИГАТОР

ФРЕЗЕРОВАНИЕ ГЛУБОКИХ УСТУПОВ

	J(T)-SAD11E	J(T)-SAD16E	J(T)-SLSN	J(T)-SSAP	J(T)-2416
	90°	90°	90°	90°	90°
	APMX (мм) 37.0 – 56.0	АРМХ (мм) 40.0 — 108.0	APMX (мм) 104.0 – 134.0	APMX (мм) 58.0-95.0	APMX (мм) 40.0 – 63.0
	DC (MM) 25 – 50	DC (MM) 50 – 100	DC (MM) 63 - 80	DC (MM) 50 – 80	DC (MM) 20 – 40
Хвостовик Weldon	DC = 25 – 40 (MM)				
Хвостовик с конусом Морзе	DC = 25 – 40 (MM)				
Конический хвостовик		DC = 50 – 80 (ww)			
Насадная фреза	DC = SO (MM)	DC = 50 - 100 (ww)			
Страница	480	<u> 486</u>	492	496	501
ISO	P M K N S H	P M K N S H	PK	P M K N S H	P M K N
Форма пластины			00	00	-
Тип пластины	AD 11T3	AD 1606	LNET 1606 SN 1305	APE. 150412 SPE. 1204	-
Количество режущих кромок	2	2	2/8	2/4	-
Фрезерование глубоких уступов					
Фрезерование глубоких пазов					
Фрезерование плоскостей					
Плунжерное фрезерование					
70					

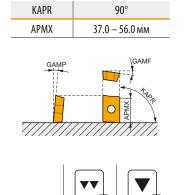
ДЛИННОКРОМОЧНЫЕ ФРЕЗЫ – НАВИГАТОР

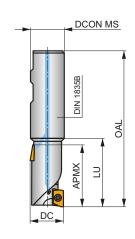
<<<

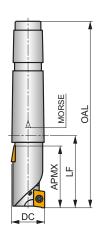
ФРЕЗЕРОВАНИЕ ГЛУБОКИХ УСТУПОВ

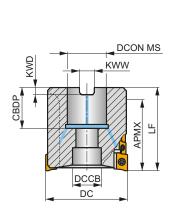
	J(T)-CSD12X			
	90°			
	APMX (мм) 44.1 – 87.3 DC (мм) 40 – 63			
		3		
		DC = 40 – 50 (mm)		
		DC = 50 (mm)		
		DC = 40 – 63 (мм)		
		DC = 50 – 80 (мм)		
	503			
	P M S			
	SD.X 1205			
	4			
	•			
	•			
Ш				
				479

J(T)-SAD11E



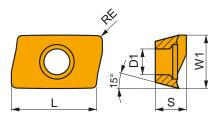



Длиннокромочная фреза HELICAL AD11


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины AD.. 11 с суммарной глубиной резания от 37 мм до 56 мм имеют 2 режущие кромки. Фреза подходит для обработки глубоких пазов и уступов.

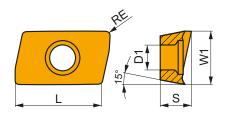
FORCE AD





	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	APMX	CBDP	CZC MS	GAMF	GAMP	NOF	5 X X 3 4 4 1 2		max.		∫ kg		
		(мм)	(MM)	(мм)	(мм)	(мм)	(MM)	(мм)	(MM)		(°)	(°)								
	25J2R50B25-SAD11E38-C	25	106	25	-	50	_	38.00	_	_	-10.5	5	2	8	-	24100	✓	0.32	GI184	SQ210
	32J2R60B32-SAD11E47-C	32	120	32	-	60	_	47.00	_	_	-9	8	2	10	_	21300	✓	0.60	GI184	SQ210
DIN 1835B	40J2R60B40-SAD11E47-C	40	130	40	_	60	_	47.00	_	_	-8.1	11	2	10	-	19100	✓	1.12	GI184	SQ210
BIN 2033B	40J3R70B32-SAD11E56-C	40	130	32	_	70	_	56.00	_	_	-8.1	11	3	18	_	19100	\checkmark	0.76	GI184	SQ210
	40J3R70B40-SAD11E56-C	40	140	40	-	70	_	56.00	_	_	-8.1	11	3	18	-	19100	✓	1.12	GI184	SQ210
	25J2R55E03-SAD11E38-C	25	136	_	-	-	55	38.00	_	3	-10.5	5	2	8	-	24100	\checkmark	0.38	GI184	SQ210
DIN 228A	32J2R65E04-SAD11E47-C	32	167.5	-	-	-	65	47.00	-	4	-9	8	2	10	_	21300	\checkmark	0.72	GI184	SQ210
UIII EEUN)	40J3R75E04-SAD11E56-C	40	177.5	_	_	_	75	56.00	_	4	-8.1	11	3	18	_	19100	\checkmark	0.85	GI184	SQ210
ISO 6462 DIN 8030	50T03R-S90AD11E37-C	50	_	22	18	_	58	37.00	21	-	-7.2	12	3	12	_	17000	✓	0.67	GI184	SQ903

		Nm						(1) James
SQ210	US 2506-T07P	1.2	M 2.5	6.3	-	-	Flag T07P	-
SQ903	US 2506-T07P	1.2	M 2.5	6.3	D-T07P/T09P	FG-15	_	HS 1030C


ADMX 11 W1 D1 L S (MM) (MM) 11T3 2.90 11.00 3.97 6.530

				Р				М			K				N			S			Н	
Обозначение		RE (MM)	VC (M/MV	f	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	V (M/)		f ар /зуб) (мг		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	23°	,06	+		S			, ,,,	. ,						, ,,,			, ,,,			, . ,	
			Позити	вная гес	метри	ІЯ ДЈ	1Я ЧИС	товой о	брабо	тки.												
ADMX 11T304SR-F	8215	0.4	2 4:		2.0		145	0.09		2 23	0 0.			735	0.12	2.0	60	0.08	1.6	-	-	-
	M8310	0.4	27 (0.10	2.0		135	0.09		∠ 25	5 0.			-	-	-	-	-	-	_	-	-
	M8330	0.4	2 40		2.0		140	0.09		2 2				720	0.12	2.0	60	0.08	1.6	_	_	-
	M8340	0.4	220		2.0		130	0.09		20	5 0.	10 2.	0	-	-	_	55	0.08	1.6	_	-	-
IDMV 11T200CD F	M9340	0.4	285		2.0			0.09	2.0	-				-	-	-	70	0.08	1.6	-	-	-
ADMX 11T308SR-F	8215	0.8	290		2.0		170	0.09		27		10 2.			0.12	2.0	70	0.08	1.6	_	_	_
	M8330 M8340	0.8	28.		2.0		170 155	0.09	2.0	 27 24		10 2.		855	0.12	2.0	70	0.08	1.6	_	_	_
	M9340	0.8	■ 260 ■ 340		2.0			0.09	2.0	24	5 0.	10 2.	U	_		_	65 85	0.08	1.6	_		_
	IV1734U	0.0	340	0.10	2.0		200	0.09	2.0					_	_	_	0.0	0.00	1.0	_	_	_
	23%	,09	1	₹Û}	S																	
	7		Позити	вная гес	метри	ія ді	1Я ЧИС	товой и	получ	истов	ой обр	аботки										
ADMX 11T302SR-M	M8330	0.2	1 90	0.15	4.0		110	0.14	4.0	1 8	0 0.	15 4.	0	_	_	_	45	0.12	3.2	_	_	_
	M8340	0.2	17 (0.15	4.0		100	0.14	4.0	1 6	0 0.	15 4.	0	-	-	_	40	0.12	3.2	_	_	_
NDMX 11T304SR-M	8215	0.4	2 0	0.15	4.0		120	0.14	4.0	1 9	0 0.	15 4.	0	_	-	-	50	0.12	3.2	_	-	-
	M8310	0.4	22 0	0.15	4.0		110	0.14	4.0	2 (5 0.	15 4.	0	_	-	-	-	_	-	_	_	-
	M8330	0.4	20:	0.15	4.0		120	0.14	4.0	1 9	0 0.	15 4.	n	_			50	0.12	2.2		_	-
	M8340	0.4	1 85	0.15	4.0		110				٠	IJ T.	U		_	-	50	0.12	3.2			_
	M9325					_	110	0.14	4.0	⊿ 17				-	-	_	45	0.12	3.2	_	-	
		0.4	2 55		4.0		-	-	-	✓ 17✓ 24	5 0.		0	-	- - -	- - -	45 –	0.12	3.2	- -	-	-
	M9340	0.4	23.	0.15	4.0 4.0		- 140	- 0.14	- 4.0	24	5 0. 0 0.	15 4. 15 4. 	0	- -	- - -	- - -	45 - 55	0.12 - 0.12	3.2 - 3.2			
ADMX 11T308SR-M	M9340 8215	0.4	23. 24.	0.15 0.15	4.0 4.0 4.0		-	- 0.14 0.14	-	24 	5 0. 0 0. 0 0.	15 4. 15 4. 15 4.	0	- - -		- - - -	45 –	0.12	3.2	_	-	
ADMX 11T308SR-M	M9340 8215 M5315	0.4 0.8 0.8	23! 24! 33!	0.15 0.15 0.15	4.0 4.0 4.0 4.0		- 140 145 -	- 0.14 0.14 -	- 4.0 4.0 -	24 	5 0. 0 0. 0 0. 5 0.	15 4. 15 4. 15 4. 15 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - - -	- - -	-	45 - 55 60 -	0.12 - 0.12	3.2 - 3.2 3.2 -	- - -	- - -	- - -
NDMX 11T308SR-M	M9340 8215 M5315 M8310	0.4 0.8 0.8 0.8	23. 24. 33. 26.	0.15 0.15 0.15 0.15	4.0 4.0 4.0 4.0 4.0		- 140 145 - 135	- 0.14 0.14 - 0.14	- 4.0 4.0 - 4.0	24 	5 0. 0 0. 0 0. 5 0. 0 0.	15 4. 15 4. 15 4. 15 4. 15 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - - - -	-	-	45 - 55 60 - -	0.12 - 0.12 0.12 - -	3.2 - 3.2 3.2 - -	- - -	- - -	- - -
ADMX 11T308SR-M	M9340 8215 M5315 M8310 M8330	0.4 0.8 0.8 0.8 0.8	23:24:33:26:24:	0.15 0.15 0.15 0.15 0.15 0.15	4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145	- 0.14 0.14 - 0.14 0.14	- 4.0 4.0 - 4.0 4.0	24 23 37 25 25	5 0. 0 0. 0 0. 5 0. 0 0.	15 4. 15 4. 15 4. 15 4. 15 4. 15 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - -	-	45 - 55 60 - - 60	0.12 - 0.12 0.12 0.12	3.2 3.2 3.2 - - 3.2	- - -	- - -	- - -
ADMX 11T308SR-M	M9340 8215 M5315 M8310 M8330 M8340	0.4 0.8 0.8 0.8 0.8	 23: 24: 33: 26: 24: 22: 	0.15 0.15 0.15 0.15 0.15 0.15 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135	- 0.14 0.14 - 0.14	- 4.0 4.0 - 4.0 4.0	24 	5 0. 0 0. 0 0. 5 0. 0 0. 0 0. 5 0.	15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - -	-	45 - 55 60 - -	0.12 - 0.12 0.12 - -	3.2 - 3.2 3.2 - -	- - -	- - -	- - -
ADMX 11T308SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315	0.4 0.8 0.8 0.8 0.8 0.8	23. 24. 23. 33. 26. 24. 22. 33. 33.	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145	- 0.14 0.14 - 0.14 0.14	- 4.0 4.0 - 4.0 4.0	24 22 31 25 25 20 31	5 0. 0 0. 0 0. 5 0. 0 0. 5 0. 0 0.	15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - -	-	45 - 55 60 - - 60	0.12 - 0.12 0.12 0.12	3.2 - 3.2 3.2 - 3.2 3.2 -	- - -	- - -	- - - - -
ADMX 11T308SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8	 ■ 23. ■ 24. ■ 33. ■ 26. ■ 24. ■ 22. ■ 33. ■ 30. 	5 0.15 5 0.15 5 0.15 5 0.15 5 0.15 6 0.15 0 0.15 0 0.15 0 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 -	- 0.14 0.14 - 0.14 0.14 - -	- 4.0 4.0 - 4.0 4.0 - -	23 31 25 23 20 31 28	5 0. 0 0. 0 0. 5 0. 0 0. 0 0. 5 0. 0 0. 5 0.	15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - - - - -	- - - - -	45 - 55 60 - - 60 55 - -	0.12 - 0.12 0.12 - 0.12 0.12 - -	3.2 - 3.2 3.2 - 3.2 3.2 - - -	- - - - - -	- - -	- - - - - -
	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8	■ 233 ■ 244 ■ 333 ■ 266 ■ 244 ■ 220 ■ 330 ■ 300 ■ 275	5 0.15 5 0.15 5 0.15 5 0.15 5 0.15 6 0.15 0 0.15 0 0.15 5 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 - - 165	- 0.14 0.14 - 0.14 0.14 - - - 0.14	- 4.0 4.0 - 4.0 4.0 4.0 - - 4.0	23 31 25 22 23 20 31 28	5 0. 0 0. 0 0. 5 0. 0 0. 5 0. 0 0. 5 0.	15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4.	000000000000000000000000000000000000000	- - - -	- - -	- - - - - -	45 - 55 60 - - 60 55 - - 65	0.12 - 0.12 0.12 - 0.12 0.12 - 0.12 - 0.12	3.2 - 3.2 3.2 - 3.2 3.2 - - 3.2		- - - - - - -	- - - - -
	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	■ 233 ■ 244 ■ 333 ■ 266 ■ 244 ■ 220 ■ 330 ■ 275 ■ 255	5 0.15 5 0.15 5 0.15 5 0.15 5 0.15 6 0.15 0 0.15 0 0.15 5 0.15 5 0.15 5 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 - - 165 150	- 0.14 0.14 - 0.14 0.14 0.14 0.14 0.14	- 4.0 4.0 - 4.0 4.0 4.0 - - 4.0 4.0 4.0	24 23 31 25 23 20 31 20 31 28	5 0. 0 0. 0 0. 5 0. 0 0. 5 0. 0 0. 5 0.	15 4. 15 4.	000000000000000000000000000000000000000	- - - - -	- - - - - -	- - - - -	45 - 55 60 - 60 55 - 65 60	0.12 - 0.12 0.12 - 0.12 0.12 - 0.12 - 0.12 0.12	3.2 - 3.2 3.2 - 3.2 3.2 - - 3.2 3.2 - 3.2 3.2	- - - - - -	- - - - - - -	- - - - - -
ADMX 11T310SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340 M8330 M8340	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8	■ 233 ■ 244 ■ 333 ■ 266 ■ 244 ■ 220 ■ 330 ■ 300 ■ 275	5 0.15 5 0.15 5 0.15 5 0.15 6 0.15 0 0.15 0 0.15 0 0.15 5 0.15 5 0.15 0 0.15 0 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 - - 165 150	-0.14 0.14 -0.14 0.14 0.14 0.14 0.14 0.14	 4.0 4.0 4.0 4.0 4.0 4.0 4.0	24 23 31 25 26 20 31 28 	5 0. 0 0. 0 0. 5 0. 0 0.	15 4. 15 4.	000000000000000000000000000000000000000	- - - - -	- - - - - - - -	- - - - - -	45 - 55 60 - - 60 55 - - 65 60 55	0.12 - 0.12 0.12 - 0.12 0.12 - 0.12 0.12 0.12 0.12	3.2 - 3.2 3.2 - 3.2 3.2 - - 3.2 3.2 3.2 - 3.2 3.2		- - - - - - - - -	- - - - - -
ADMX 11T310SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0	■ 23: ■ 24: ■ 33: ■ 26: ■ 24: ■ 22: ■ 33: ■ 30: ■ 27: ■ 25: ■ 23:	5 0.15 5 0.15 5 0.15 5 0.15 6 0.15 0 0.15 0 0.15 5 0.15 5 0.15 5 0.15 5 0.15 5 0.15 5 0.15 6 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 - - 165 150	- 0.14 0.14 - 0.14 0.14 0.14 0.14 0.14	- 4.0 4.0 - 4.0 4.0 4.0 - - 4.0 4.0 4.0	24 23 31 25 23 20 37 28 28 24 24 24 27 24	5 0. 0 0.	15 4. 15 4.	000000000000000000000000000000000000000	- - - - -	- - - - - - - - -	- - - - - - -	45 - 55 60 - - 60 55 - - 65 60 55 60	0.12 - 0.12 0.12 - 0.12 0.12 - 0.12 - 0.12 0.12	3.2 - 3.2 3.2 - 3.2 3.2 - 3.2 3.2 3.2 3.2 3.2 3.2		- - - - - - - - - -	- - - - - - - -
ADMX 11T310SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340 M8330 M8340 8215	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0	■ 23: ■ 24: ■ 33: ■ 26: ■ 24: ■ 22: ■ 33: ■ 30: ■ 27: ■ 25: ■ 23: ■ 25:	5 0.15 5 0.15 5 0.15 6 0.15 6 0.15 7 0.15 8 0.15 9 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 - - 165 150 135	- 0.14 0.14 - 0.14 0.14 0.14 0.14 0.14 0.14		24 23 31 25 20 31 28 28 24 24 24 24 24	5 0. 0 0.	15 4. 15 4.	000000000000000000000000000000000000000	- - - - - -	- - - - - - - - -	- - - - - - - - -	45 - 55 60 - 60 55 - - 65 60 55 60 60 60 60 60 60 60 60 60 60	0.12 - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 - 3.2 3.2 - 3.2 3.2 - 3.2 3.2 3.2 3.2 3.2 3.2 3.2		- - - - - - - - - -	- - - - - - -
ADMX 11T310SR-M ADMX 11T312SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340 M8330 M8340 8215	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.2	■ 23: ■ 24: ■ 33: ■ 26: ■ 24: ■ 22: ■ 33: ■ 30: ■ 27: ■ 25: ■ 23: ■ 25: ■ 25:	5 0.15 5 0.15 6 0.15 6 0.15 7 0.15 8 0.15 9 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		- 140 145 - 135 145 130 165 150 135 150			24 23 33 29 20 20 37 20 20 20 20 20 20 20 20 20 20 20 20 20	5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	15 4. 15 4.	00 00 00 00 00 00 00 00 00 00 00 00	- - - - - - - -	- - - - - - - - - - -	- - - - - - - - -	45 - 55 60 - - 60 55 - - 65 60 55 60 55 55	0.12 - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 - 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2		- - - - - - - - - - - - - - - - - - -	- - - - -
ADMX 11T310SR-M ADMX 11T312SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340 M8330 M8340 8215 M8330 M8340	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.2 1.2	■ 23: ■ 24: ■ 33: ■ 26: ■ 24: ■ 22: ■ 33: ■ 25: ■ 25: ■ 23: ■ 23:	5 0.15 5 0.15 5 0.15 6 0.15 6 0.15 7 0.15 8 0.15 9 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		-140 145 -135 145 130 165 150 150 150 135	0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14		24 23 33 29 20 20 37 20 20 20 20 20 20 20 20 20 20 20 20 20	5 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0	15 4. 15 4.	00 00 00 00 00 00 00 00 00 00 00 00	- - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - -	45 - 55 60 - - 60 55 - - 65 60 55 60 55 60 55 60 55 60 60 55 60 60 60 60 60 60 60 60 60 60	0.12 0.12 0.12 - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 - 3.2 3.2 - 3.2 3.2 - 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2		- - - - - - - - - - - - - - - - - - -	- - - - - - -
ADMX 11T310SR-M ADMX 11T310SR-M ADMX 11T312SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340 M8330 M8340 8215 M8330 M8340 8215	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.2 1.2 1.2	■ 23: ■ 24: ■ 33: ■ 26: ■ 24: ■ 22: ■ 33: ■ 25: ■ 25: ■ 25: ■ 23: ■ 27: ■ 27: ■ 27: ■ 27: ■ 27: ■ 27: ■ 27: ■ 27: ■ 27:	5 0.15 5 0.15 5 0.15 6 0.15 6 0.15 6 0.15 7 0.15 8 0.15 8 0.15 9 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		140 145 - 135 145 130 - 165 150 150 150 150 160 165 150	0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	24 25 3 3 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	55 0.0 00 0.0	115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4. 115 4.	00 00 00 00 00 00 00 00 00 00 00 00 00	- - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - - - -	45 - 55 60 - - 60 55 - - 65 60 55 60 55 60 55 60 55 60 60 55 60 60 60 60 60 60 60 60 60 60	0.12 0.12 0.12 - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 - 3.2 - 3.2 3.2 - 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2		- - - - - - - - - - - - - - - - - - -	- - - - - - - -
ADMX 11T310SR-M ADMX 11T312SR-M	M9340 8215 M5315 M8310 M8330 M8340 M9315 M9325 M9340 M8330 M8340 8215 M8330 M8340 8215	0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.2 1.2 1.6 1.6	■ 23: ■ 24: ■ 33: ■ 26: ■ 24: ■ 22: ■ 33: ■ 30: ■ 27: ■ 25: ■ 23: ■ 25: ■ 23: ■ 27: ■ 23: ■ 27: ■ 23: ■ 27: ■ 23: ■ 23: ■ 27: ■ 23:	5 0.15 5 0.15 5 0.15 6 0.15 6 0.15 7 0.15 8 0.15 9 0.15	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		140 145 - 135 145 130 - - 165 150 135 150 135 160 165	0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14		24 23 33 25 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20	5 0. 0 0.	15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4. 15 4.	000000000000000000000000000000000000000	- - - - - - - -		- - - - - - - - - - - - -	45 - 55 60 - - 60 55 - - 65 60 60 55 60 65 60 65 60 65 65 60 65 60 60 65 60 60 60 60 60 60 60 60 60 60	0.12 0.12 0.12 - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	3.2 - 3.2 - 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -

Применение инструмен	начальнь	ые знач	ения	скорс	ости ре	зания	(Vc)	, пода	чи (†) и	1 глуб	ИНЬ	і резан	ия (ар)). Для д	ополні	тельнь	ıx pacı	етов	ВОСП	ользуй	гесь п	рило	жени	ieм Cal	culat
	EALVAN HA	RE			Р				M				K			N				S				Н	
Обозначение		(MM)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M/		ар) (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм
	23% (0,09	1	1	źÛ}	S																			
					W																				
			По	ЗИТИВІ	ная гео	метри	я дл	ІЯ ЧИС	товой и	и полу	чис	товой	обрабо	тки.											
DMX 11T320SR-M	M6330	2.0		240	0.15	4.0		170	0.14	4.0		-	_	-	_	-	-		70	0.12	3.2		-	-	-
	M8330 M8340	2.0		280 255	0.15	4.0	H	165 150	0.14	4.0		265 240	0.15	4.0 4.0	-			-	70 60	0.12	3.2		_	-	_
DMX 11T325SR-M	M6330	2.5	Ħ	240	0.15	4.0	H	170	0.14	4.0			0.13	4.0	<u> </u>		_			0.12	3.2		_	_	
	M8340	2.5		255	0.15	4.0	Ē	150	0.14	4.0		240	0.15	4.0	-	_	-		60	0.12	3.2		_	_	_
DMX 11T330SR-M	M6330	3.0		240	0.15	4.0		170	0.14	4.0		-	-	-	_	-	-		70	0.12	3.2		-	-	-
	M8330	3.0	₽	280	0.15	4.0		165	0.14	4.0		265	0.15	4.0	_	_	_			0.12	3.2		-	-	-
	M8340	3.0		255	0.15	4.0		150	0.14	4.0		240	0.15	4.0	_	_	_		60	0.12	3.2		-	-	-
	21°	0,12	Į,	*	P																				
	+		По	ЭИТИРІ	חשם בסט	MATNI	а пг	ומ שברי	тэбипь	LLIV W	CIIO	вий об	ηρήστη	и											
			110.	>vi i vi Di		.acip#	,, д)	.,, 1100	. a Jinjib	. гыл у	-,10	J 1 1 1 0 0	puouin												
DMX 11T308PR-R	8215	8.0		230	0.18	4.0		135	0.16	4.0		215	0.18	4.0	_	_	-		55	0.16	3.2		45	0.15	1.
	M5315	0.8			0.18	4.0		125	- 0.16	-		290	0.18	4.0	_	_	-		-	_	-		60	0.15	1.
	M8310 M8330	0.8	H	250 230	0.18	4.0		125 135	0.16	4.0	H	235	0.18	4.0	-		_		- 55	0.16	3.2		50 45	0.15	1
	M8340	0.8	Ħ	210	0.18			125	0.16	4.0		195	0.18	4.0			_			0.16	3.2		– –	-	٠
	M9315	0.8		310	0.18	4.0	Ī	_	_	_		290	0.18	4.0	_	_	_		_	-	_		60	0.15	1
	M9325	0.8		290	0.18	4.0		-	-	-		275	0.18	4.0	_	-	-		-	-	-		55	0.15	1
DMX 11T316PR-R	8215	1.6		255	0.18	4.0			0.16	4.0		240	0.18	4.0	_	_	-		60	0.16	3.2		50	0.15	1
	M8330	1.6	▐	255	0.18			150	0.16	4.0		240	0.18	4.0	_	_			60	0.16	3.2		50	0.15	1
	M9325	1.6	_	320	0.18	4.0		_	-	-		300	0.18	4.0	-	_	_		_	_	_		60	0.15	1.
	0,1	~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		٥	S																			
	1		_				_								J										
		1	IIO:	ЗИТИВІ	ная гео	метри	я дл	ІЯ ЧИС	товой с	обраб	OTKI	и нерж	авеющ	их стал	ей и ж	аропроч	чных (плав	0B.						
DMX 11T304SR-MF	M6330	0.4		215	0.08	2.5		150	0.07	2.5		-	-	-	_	-	-		60	0.06	2.0		-	-	-
DHV 11T200CD MF	M8340	0.4		220	0.08	2.5		130	0.07	2.5		-	-	-	_	_	_		55	0.06	2.0		_	-	-
DMX 11T308SR-MF	M6330 M8340	0.8	H	255 265	0.08	2.5		180	0.07	2.5		-	_	-	_		_	H	75 65	0.06	2.0		_		-
	M9340	0.8	Ħ	360					0.07		H	_	_	_			_	Ħ		0.06			_	_	
											Ī														
1000	0,1	<u>2</u> /2%		<u>†</u>	c ₃	S																			
03	7	7	По	зитиві	ная гео	метри	я дл	1Я ЧИС	товой и	и полу	чис	товой	обрабо	тки неі	эжавен	ощих ст	алей и	жар	опро	чных сп	лавов	8.			
							·· m			,			oopaoo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	у щ т ст		,,,,цр	opo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
DMX 11T304SR-MM	M6330	0.4		185		2.5			0.13			-	-	-	_	-	-		55	0.11	2.0		-	-	-
	M8340	0.4		195		2.5				2.5		-	-	-	_	_	-		45	0.11	2.0		-	-	-
DMX 11T308SR-MM	M9340	0.4	H			2.5			0.13	2.5		-	-	-	-	_	-		60	0.11	2.0		-	-	-
MIM-UCOACI I VIMA	M6330 M8340	0.8		225 235	0.14	2.5			0.13	2.5		_	_	_	_	_	_	H	65 55	0.11	2.0		_	_	
	M8345	0.8	Ē			2.5			0.13	2.5		-	_	_	-	_	_		45	0.11	2.0		_	_	_
	M9340	0.8		300		2.5			0.13	2.5	ĺ	-	-	-	-	_	-		75	0.11	2.0		_	-	-
DMX 11T312SR-MM	M6330	1.2		235	0.14	2.5		165	0.13	2.5		-	-	-	-	-	-		70	0.11	2.0		-	-	-
	M8340	1.2		245		2.5			0.13	2.5		-	-	-	-	-	-		60	0.11	2.0		-	-	-
	M9340	1.2		315	0.14	2.5		185	0.13	2.5		-	-	-	-	-	-		75	0.11	2.0		-	-	-

применение инструмен	женение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуитесь приложением Calculator. RE Vc f ap Vc																							
06 02 11 2 11 2 11 2 11 2 11 2 11 2 11 2	\$\$\$20ATX	RE			Р				M				K				N			S			Н	
Ооозначение			١	C	f	ар		VC	f	ap		VC	f	ap		VC	f	ар	VC	f	ap	VC	f	ap
		(мм)	(M/	лин)	(мм/зуб)	(MM)	(м	/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	34°		†		o-	F																		
	1		Позит	ИВН	ая геол	иетрия	для	чист	говой и	полу	чи	стовой	обрабо	тки це	зетн	ных спл	павов.							
ADEX 11T304FR-FA	HF7	0.4		-	_	-		_	_	_		_	_	_		210	0.30	5.0	_	_	_	_	_	_
	M0315	0.4		-	_	_		_	_	_		-	_	_		480	0.30	5.0	_	_	_	_	_	_
ADEX 11T308FR-FA	HF7	0.8		-	_	_		_	_	_		-	_	_		240	0.30	5.0	_	_	_	_	_	_
	M0315	0.8		-	_	_		_	_	_		-	_	_		570	0.30	5.0	_	_	_	_	_	_
ADEX 11T312FR-FA	HF7	1.2			_	_		_	_	_		-	_	_		255	0.30	5.0	_	_	_	_	_	_
	M0315	1.2			_	_		_	_	_		-	_	_		600	0.30	5.0	_	_	_	_	_	_
ADEX 11T316FR-FA	HF7	1.6		-	-	-		-	-	-		-	-	-		270	0.18	5.0	-	_	-	-	-	-

a。/ DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	0.89	0.81	0.76	0.73	0.71	0.70	0.67	0.65	0.63	0.62	0.60	0.60	0.60	0.45

a _{e max}		1	2	5		5	7	7.5		10	•	15	2	20
DC	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}
25	0.25	0.40	0.16	0.26	0.12	0.19	0.10	0.15	0.09	0.14	0.07	0.12	0.07	0.11
32	0.28	0.45	0.18	0.29	0.13	0.21	0.11	0.17	0.09	0.15	0.08	0.13	0.07	0.12
40	0.32	0.51	0.20	0.32	0.14	0.23	0.12	0.19	0.10	0.17	0.09	0.14	0.08	0.13
50	0.35	0.57	0.23	0.36	0.16	0.26	0.13	0.21	0.12	0.19	0.10	0.15	0.09	0.14

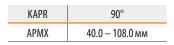
a _{e max}	7	25	3	32	4	10	ij	50
DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}
25	0.08	0.13	_	_	-	_	_	_
32	0.07	0.11	0.08	0.13	_	-	_	-
40	0.07	0.12	0.07	0.11	0.08	0.13	_	-
50	0.08	0.13	0.07	0.12	0.07	0.11	0.08	0.13

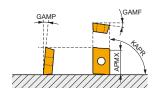
2000000	ADM)	(11-F				AI	OMX 11-	М				ADM	(11-R	ADMX	11-MF	AD	MX 11-I	мм		ADEX	11-FA	
RE	0.4	0.8	0.2	0.4	0.8	1.0	1.2	1.6	2.0	2.5	3.0	0.8	1.6	0.4	0.8	0.4	0.8	1.2	0.4	0.8	1.2	1.6
BS	1.89	1.48	2.09	1.89	1.48	1.27	1.08	0.68	1.61	1.13	0.66	1.48	0.68	1.89	1.48	1.89	1.48	1.08	1.77	1.39	1.0	0.62

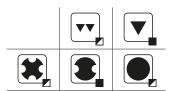
ISO	DC		APMX	a _p
25J2R50B25-SAD11E38-C	25	2	38	34.5
32J2R60B32-SAD11E47-C	32	2	47	43.5
40J2R60B40-SAD11E47-C	40	2	47	43.5
40J3R70B32-SAD11E56-C	40	3	56	52.5
40J3R70B40-SAD11E56-C	40	3	56	52.5
25J2R55E03-SAD11E38-C	25	2	38	34.5
32J2R65E04-SAD11E47-C	32	2	47	43.5
40J3R75E04-SAD11E56-C	40	3	56	52.5
50T03R-S90AD11E37-C	50	3	37	33.5

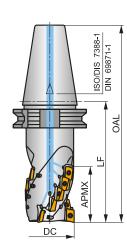
ADMX/ADEX 11	R
ADMX 11T320SR-M	1.0
ADMX 11T325SR-M	1.8
ADMX 11T330SR-M	1.8

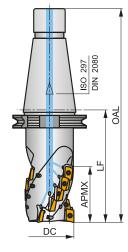
J(T)-SAD16E

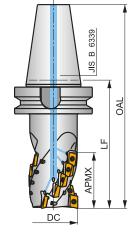


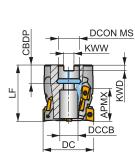


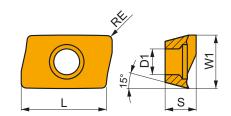

Длиннокромочная фреза HELICAL AD16


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины AD.. 16 с суммарной глубиной резания от 40 мм до 108 мм имеют 2 режущие кромки. Фреза подходит для обработки глубоких пазов и уступов.

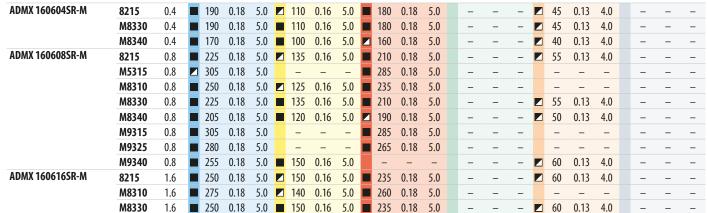

FORCE AD







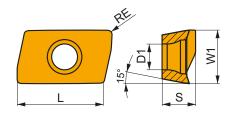
	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	APMX	CBDP	CZC MS	GAMF	GAMP	NOF	5 X X 4 4 1 2 2	(i)	max.		∫ kg	<u></u>	
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		(°)	(°)								
	50J3R100H50-SAD16E54-C	50	202	-	_	-	100	54.00	_	50	-6	12	3	12	_	13200	✓	4.08	GI282	SQ031
	50J3R140H50-SAD16E80-C	50	242	-	-	-	140	80.00	-	50	-6	12	3	18	-	13200	✓	4.38	GI282	SQ031
ISO/DIS 7388-1	63J3R140H50-SAD16E68-C	63	242	_	_	_	140	68.00	_	50	-6	12	3	15	_	11700	✓	5.34	GI282	SQ031
7388-1	63J3R155H50-SAD16E95-C	63	257	_	-	-	155	95.00	_	50	-6	12	3	21	_	11700	✓	5.43	GI282	SQ031
	80J4R165H50-SAD16E108-C	80	257	_	_	_	165	108.00	_	50	-6	12	4	32	\checkmark	10400	\checkmark	7.37	GI282	SQ031
	50J3R140G50-SAD16E80-C	50	267	_	-	_	140	80.00	_	50	-6	12	3	18	-	13200	\checkmark	4.48	GI282	SQ031
ISO 297	63J3R155G50-SAD16E95-C	63	282	_	-	-	155	95.00	_	50	-6	12	3	21	_	11700	\checkmark	5.52	GI282	SQ031
130 237	80J4R165G50-SAD16E108-C	80	292	-	-	-	165	108.00	_	50	-6	12	4	32	\checkmark	10400	✓	7.51	GI282	SQ031
na l	50J3R140X50-SAD16E68-C	50	242	-	-	-	140	68.00	_	50	-6	12	3	15	-	13200	✓	5.28	GI282	SQ031
JIS B 6339	63J3R155X50-SAD16E80-C	63	257	-	-	-	155	80.00	_	50	-6	12	3	18	-	11700	✓	6.19	GI282	SQ031
	80J4R165X50-SAD16E95-C	80	267	_	_	_	165	95.00	_	50	-6	12	4	28	✓	10400	✓	7.84	GI282	SQ031
	50T03R-S90AD16E40-C	50	-	22	18	-	70	40.00	21	_	-6	12	3	9	-	13200	✓	1.11	GI282	SQ913
	63T04R-S90AD16E40-C	63	-	27	22	-	70	40.00	22	-	-6	12	4	12	✓	11700	✓	1.50	GI282	SQ914
	63T04R-S90AD16E68-C	63	-	27	22	-	100	68.00	22	_	-6	12	4	20	\checkmark	11700	\checkmark	1.86	GI282	SQ914
ISO 6462 DIN 8030	80T04R-S90AD16E55-C	80	_	32	30	_	85	55.00	25	_	-6	12	4	16	✓	10400	✓	2.56	GI282	SQ915
	80T04R-S90AD16E80-C	80	-	32	30	-	115	80.00	25	-	-6	12	4	24	\checkmark	10400	\checkmark	3.17	GI282	SQ915
	100T05R-S90AD16E80-C	100	_	40	36	_	120	80.00	30	_	-6	12	5	30	✓	9300	✓	5.73	GI282	S0916



		Nm					
SQ031	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	_
SQ913	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	HS 1030C
SQ914	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	HS 1230C
SQ915	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	HS 1630C
SQ916	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	HS 2040C

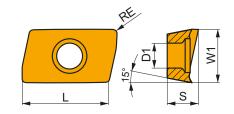
	A	ADMX :	16	
	W1	D1	L	S
	(мм)	(мм)	(MM)	(мм)
1606	9.950	4.50	16.00	6.25




Применение инструме	нта, начальнь	іе значе	ения ско	ости ре	зания ((Vc),	пода	чи (f) и	і глубі	1НЫ	резан	ия (ар)	. Для	доп	олнит	ельных	расче	етов	3 ВОСПО	ользуйт	гесь пр	иложе	нием	Calcu	ılator
25	PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-P	RE		P				M				K				N				S			Н	l	
Обозначение		(MM)	VС (м/ми	f н) (мм/зуб)	ар (мм)	(vc м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/N		f 1/3y6)	ар (мм)
	25° () <u>,1</u>	†		S															,				,	
	1		Позити	зная гео	метрия	я для	я чист	говой с	брабо	TKI	1.														
ADMX 160608SR-F	8215	8.0	2 65	0.15	2.0		155	0.14	2.0		250	0.15	2.0		795	0.18	2.0		65	0.11	1.6	-		-	-
	M8310	8.0	28 5	0.15	2.0		145	0.14	2.0		270	0.15	2.0		_	-	-		_	-	-	-		-	_
	M8330	8.0	260	0.15	2.0		155	0.14	2.0		245	0.15	2.0		780	0.18	2.0		65	0.11	1.6	-		-	_
	M8340	8.0	23 5	0.15	2.0		140	0.14	2.0		220	0.15	2.0		-	-	-		55	0.11	1.6	-		_	-
	M9340	0.8	3 00	0.15	2.0		180	0.14	2.0		_	_	_		_	_	_		75	0.11	1.6	-		_	_
	24°	0,17	Позити	зная гео	S	я для	я чист	говой и	ı полу	чис	товой	обрабо	тки.												

									_												
	M9340	0.8	255	0.18	5.0	150	0.16	5.0		-	-	-	-	-	-	60	0.13	4.0	_	-	_
ADMX 160616SR-M	8215	1.6	250	0.18	5.0	150	0.16	5.0		235	0.18	5.0	_	_	_	60	0.13	4.0	_	_	_
	M8310	1.6	275	0.18	5.0	140	0.16	5.0		260	0.18	5.0	_	_	_	_	_	_	_	_	_
	M8330	1.6	250	0.18	5.0	150	0.16	5.0		235	0.18	5.0	_	_	_	60	0.13	4.0	_	_	_
	M8340	1.6	225	0.18	5.0	135	0.16	5.0	Z	210	0.18	5.0	-	-	-	55	0.13	4.0	_	-	_
	M9325	1.6	310	0.18	5.0	_	_	_		290	0.18	5.0	_	_	_	-	-	_	_	_	_
ADMX 160620SR-M	M6330	2.0	225	0.18	5.0	155	0.16	5.0		-	-	-	-	_	_	65	0.13	4.0	_	_	_
	M8330	2.0	265	0.18	5.0	155	0.16	5.0		250	0.18	5.0	_	_	_	65	0.13	4.0	_	_	_
	M8340	2.0	240	0.18	5.0	140	0.16	5.0		225	0.18	5.0	-	_	-	60	0.13	4.0	_	-	_

06	CHAPOSS	RE			P				M				K			N					S				Н	
Обозначение		()		VC	f	ap		vc	f	ap		vc	f	ap	VC	f		ар		vc	f	ap		vc	f	ap
		(MM)		(м/мин)	(MM/3y6)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/ми	H) (MM/3	y6) (мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM
	24° (0,17	1	1	ŽŲ,	S																				
					N		_																			
			Поз	ВИТИВІ	ная гео	метри	я дл	1Я ЧИС	товой и	1 полу	чис	товой (обрабо	тки.												
DMX 160630SR-M	M8330	3.0		265	0.18	5.0	П	155	0.16	5.0		250	0.18	5.0						65	0.13	4.0				
DMX 1000303N-M	M8340	3.0	Ħ	240	0.18	5.0	H	140	0.16	5.0			0.18	5.0						60	0.13	4.0		_		_
DMX 160632SR-M	M6330	3.2	Ħ	225	0.18	5.0	Ħ	155	0.16	5.0	Ť	_	_	_	_	_				65	0.13	4.0		_	_	_
	M8330	3.2		265	0.18	5.0		155	0.16	5.0		250	0.18	5.0	_	_				65	0.13	4.0		_	_	_
	M8340	3.2		240	0.18	5.0		140	0.16	5.0		225	0.18	5.0	_	-		- I		60	0.13	4.0		-	-	-
	M9325	3.2		325	0.18	5.0		-	-	-		305	0.18	5.0	_	-		-		-	-	-		-	-	-
DMX 160640SR-M	M6330	4.0			0.18			155	0.16	5.0		_	_	-	_					65	0.13	4.0		-	_	-
	M8330	4.0	4	265	0.18	5.0		155	0.16	5.0		250	0.18	5.0	_					65	0.13	4.0		-	-	
DMX 160650SR-M	M8340	4.0		240 265	0.18	5.0		140	0.16	5.0		225	0.18	5.0	_					60	0.13	4.0		-	-	
DMY 10002024-M	M8330 M8340	5.0	H	240	0.18	5.0		155 140	0.16	5.0		250 225	0.18	5.0 5.0						65	0.13	4.0		_	_	
	MOSTO	5.0		270	0.10	5.0		170	0.10	3.0		LLJ	0.10	5.0						00	0.13	7.0				
	21°),22		×	P																					
			Ξ																							
			1103	ВИТИВІ	ная гео	метри	я дл	1Я ПОЛ	учисто	вои и	чер	новои	obpabo	отки.												
DMX 160608PR-R	8215	0.8		205	0.25	6.0		120	0.23	6.0		190	0.25	6.0						50	0.20	4.8		40	0.15	1.0
DMX 1000001 K-K	M5315	0.8		260	0.25	6.0		120	0.23	0.0	H	245	0.25	6.0				_ !	4	JU	0.20	4.0		50	0.15	1.0
	M8310	0.8			0.25			110	0.23	6.0	Ħ	205	0.25	6.0	_	_		_		_		_		40	0.15	1.0
	M8330	0.8		205	0.25	6.0		120	0.23	6.0		190	0.25	6.0	_	_		- I		50	0.20	4.8			0.15	1.0
	M8340	0.8		190	0.25	6.0		110	0.23	6.0		180	0.25	6.0	_	_		- I		45	0.20	4.8		-	-	-
	M9315	0.8		265	0.25	6.0		-	-	-		250	0.25	6.0	_	_		-		-	-	-		50	0.15	1.0
	M9325	0.8		250	0.25	6.0		-	_	-		235	0.25	6.0	_	-		-		-	-	-		50	0.15	1.0
DMX 160616PR-R	M5315	1.6		290	0.25	6.0		-	-	-		275	0.25	6.0	_	_		-		-	-	-		55	0.15	1.0
	M8330 M8340	1.6	H	225 210	0.25	6.0		135	0.23	6.0	H		0.25	6.0	_					55	0.20	4.8			0.15	1.0
	M9315	1.6	H	295	0.25	6.0		125	0.23	0.0		195 280	0.25	6.0				- !		50	0.20	4.8		- 55	0.15	1.0
	M9315	1.6	Н	275	0.25	6.0		_		_	Ħ	260	0.25	6.0				_		_		_		55	0.15	1.0
	,											200	0.25	0.0										33	01.15	
	10,1 \\1	7°\23°			شا	S																				
03	1		Пог	DIATIADI	ная гео	MOTON	а пі	ים ווער	товой с	hnah	TV1/	LUODW	DOIOIII	MV CTO	ioŭ ia viz	nonn	OIIIII.	IV (ПП	ואסנו	np.						
			1103	SMINB	ная гео	метри	и дл	личис	IOBON C	opau	JIKV	і нерж	авеющ	их стал	еи и ж	aponp	ичны	IX CIDI	Iabl	JB.						
DMX 160608SR-MF	M6330	0.8		215	0.08	4.0		150	0.07	4.0		_	_	_	_	_		- 1		60	0.06	3.2		_	_	_
	M8340	0.8		225	0.08	4.0		135	0.07	4.0		_	_	_	_	_		- 1		55		3.2		_	_	_
	M9340	0.8		305		4.0			0.07	4.0		_	_	_	_	_		- 1		75	0.06			_	_	_
	0,17	¹⁰ [°]				S																				
		25°	Поз	RUTURI	ная гео	метпи	я лі	19 UNC	товой и	1 ПОПV	чис	товой	ირიგრი	тки неі	эжавен	них (тапе	йиж	and	าตกกน	іных сп	павоі	2			
		1	110.	,,,,,,,,,	1471100	мстри	,, H,				.,,,	100011	Jopaoo	1101110	J/MaDen	л	·····		upe	,,,po	indix cir	nabol				
DMX 160604SR-MM	M6330	0.4		145	0.18	4.0		105	0.16	4.0		-	-	-	_	_		-		40	0.14	3.2		_	_	-
	M8340	0.4		160	0.18	4.0		95	0.16	4.0		-	-	-	_	_		- 1		40		3.2		-	-	-
DMX 160608SR-MM	M6330	0.8		175	0.18			125	0.16	4.0		-	-	-	-	-		- 1		50	0.14	3.2		-	_	-
	M8340	0.8		190	0.18			110	0.16	4.0		-	-	-	-	-		- I		45	0.14	3.2		-	-	-
	M8345	0.8			0.18	4.0			0.16	4.0		-	-	-	-	-		- 1		35	0.14	3.2		-	-	-
	M9340	0.8		235	0.18			140	0.16	4.0		-	-	-	_	_		-		55	0.14	3.2		_	-	-
DMV 160414CD MAA	M6330	1.6		195	0.18			140	0.16	4.0		-	-	-		-		- !		55	0.14	3.2		_	-	-
ADMX 160616SR-MM		1 4		210	Λ 10	4 A		175	Λ14	10	_									EΛ	0 1 /	2.2				
DMX 160616SR-MM	M8340 M8345	1.6 1.6		210 165	0.18	4.0		125 95	0.16 0.16	4.0		-	-	_	-	_		-		50 40	0.14	3.2		_	_	_



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

применение инструмен	ira, na ianbiibi	c Jila ic		.opo	p5		(,	,,ода	(., .	.,,,,,,,,,		. p = 5 a	(ap)		,	••••	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	put.	 D0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ч-			
0.0	PS-CPS-PS-	RE			Р				M				K				N			S			Н	
Обозначение				VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap	VC	f	ap	VC	f	aj
		(MM)	(N	/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)	(M/MV	н) (мм/з	rб) (мг
	0,14	- 25°	+			S																		
		¥ ²³	Пози	ТИВН	іая геом	иетри	ІЯ Д	пя пол	учисто:	вой об	pa	ботки.												
ADEX 160608SR-FM	8215	8.0		260	0.16	2.0		155	0.14	2.0		245	0.16	2.0		-	-	-	65	0.11	1.6	_	_	_
	M8330	0.8		255	0.16	2.0		150	0.14	2.0		240	0.16	2.0		_	_	_	60	0.11	1.6	_	-	_
	M8340	0.8		235	0.16	2.0		140	0.14	2.0	Z	220	0.16	2.0		_	_	_	55	0.11	1.6	_	_	_

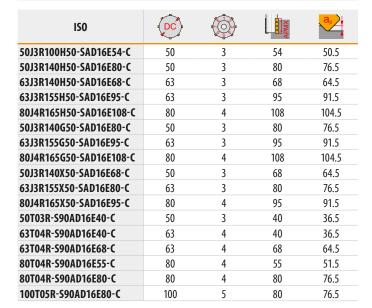
	ΑI	DEX 16	-FA	
	W1	D1	L	S
	(MM)	(MM)	(MM)	(MM)
1606	9.950	4.50	16.00	6.17

PRAMET

	PEC PAC SE	RE		- 1	P			M				K				N			S				Н	
Обозначение			١	'C	f	ap	vc	f	ар		VC	f	ар		VC	f	ap	VC	f	ap		VC	f	ар
		(MM)	(M/I	иин) (і	мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	- 1	(м/мин)	(мм/зуб)	(MM)
	27°		†			F																		
	*		Позит	ивна	я геол	иетрия	для чис	товой и	и получ	ІИС	товой	обрабо	тки цв	етн	ІЫХ СПЛ	павов.								
ADEX 160604FR-FA	HF7	0.4		-	_	-	_	-	-		_	_	-		195	0.28	6.0	-	_	-		-	-	_
	M0315	0.4	-	-	_	-	_	_	-		-	_	-		480	0.28	6.0	-	_	_		_	-	_
ADEX 160608FR-FA	HF7	8.0	-	-	_	-	_	_	-		-	_	_		240	0.28	6.0	_	_	_		_	_	_
	M0315	8.0	-	-	_	-	_	_	-		-	_	-		570	0.28	6.0	_	_	_		_	_	_
ADEX 160616FR-FA	HF7	1.6	-	-	_	-	_	_	-		-	_	-		255	0.28	6.0	_	_	_		_	_	_
	M0315	1.6	-	-	_	- 1	-	-	-		-	_	_		630	0.28	6.0	-	-	_		_	-	_
ADEX 160630FR-FA	HF7	3.0	-	-	_	-	_	-	_		-	_	_		270	0.28	6.0	_	_	_		_	_	_

a _e /DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	0.89	0.81	0.76	0.73	0.71	0.70	0.66	0.65	0.63	0.62	0.60	0.60	0.60	0.45

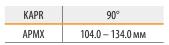
a _{emax}		1	2	2.5		5	7	7.5	•	10		15	2	20
DC	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max}
50	0.57	0.71	0.36	0.45	0.26	0.32	0.21	0.27	0.19	0.23	0.15	0.19	0.14	0.17
63	0.64	0.80	0.40	0.51	0.29	0.36	0.24	0.30	0.21 0.26		0.17	0.21	0.15	0.19
80	0.72	0.90	0.45	0.57	0.32	0.40	0.27	0.33	0.23 0.29		0.19	0.24	0.17	0.21
100	0.80	1.00	0.51	0.64	0.36	0.45	0.30	0.37	0.26	0.32	0.21	0.27	0.19	0.23
a _{emax}	2	25	3	32	4	10	!	50	63		8	30	1	00
	f.	f	f.											

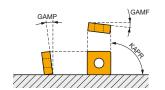

a _{e max}	7	25		32	4	40		50	(63	8	30	1	00
DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}
50	0.13	0.16	0.12	0.14	0.11	0.14	0.13	0.16	-	-	-	-	-	-
63	0.14	0.17	0.12	0.16	0.12	0.15	0.11	0.14	0.13	0.16	-	-	-	-
80	0.15	0.19	0.14	0.17	0.13	0.16	0.12	0.15	0.11	0.14	0.13	0.16	-	-
100	0.17	0.21	0.15	0.19	0.14	0.17	0.13	0.16	0.12	0.15	0.11	0.14	0.13	0.16

0000000	ADMX 16-F	ADEX 16-FM				ADMX	(16-M				ADM)	(16-R
RE	0.8	0.8	0.4	0.8	1.6	2.0	3.0	3.2	4.0	5.0	0.8	1.6
BS	2.99	2.18	3.39	2.99	1.62	1.23	0.28	0.09	2.69	1.52	2.99	1.62

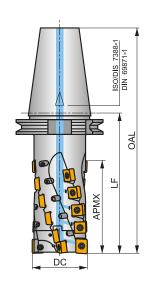
00000000	ADMX 16-MF		ADMX 16-MM			ADEX	16-FA	
RE	0.8	0.4	0.8	1.6	0.4	0.8	1.6	3.0
BS	2.99	3.39	2.99	1.62	2.84	2.44	1.65	0.69

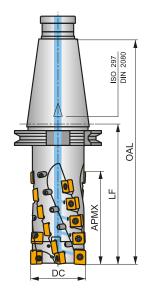
ADMX/ADEX 16	R
ADMX 160630SR-M	2.5
ADMX 160632SR-M	2.5
ADMX 160640SR-M	4.0
ADMX 160650SR-M	4.5

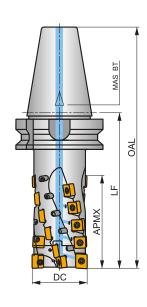


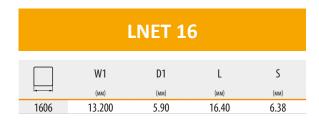


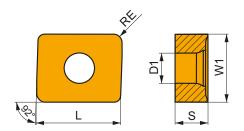

Длиннокромочная фреза ROUGH SN


Конструкция фрезы имеет двойную негативную геометрию. Двухсторонние пластины LNET 16 и SN.. 13 с суммарной глубиной резания от 104 мм до 134 мм имеют 4 и 8 режущих кромок. Фреза подходит для обработки глубоких пазов и уступов.


ROUGH SN







	Обозначение	DC	OAL	APMX	LF	GAMF	GAMP	CZC MS	NOF		(SN)		max.		kg		
		(MM)	(MM)	(MM)	(MM)	(°)	(°)										
	63J2R155H50-SLSN104-C	63	257	104.00	155	-9	-10	50	4	2	20	_	8500	✓	5.03	GI209	SQ934
ISO/DIS 7388-1	80J2R190H50-SLSN134-C	80	292	134.00	190	-9	-10	50	4	2	26	_	7500	\checkmark	7.45	GI209	SQ935
	63J2R155G50-SLSN104-C	63	282	104.00	155	-9	-10	50	4	2	20	_	8500	\checkmark	5.20	GI209	SQ934
ISO 297	80J2R190G50-SLSN134-C	80	317	134.00	190	-9	-10	50	4	2	26	_	7500	\checkmark	7.40	GI209	SQ935
	63J2R175X50-SLSN104-C	63	277	104.00	175	-9	-10	50	4	2	20	-	8500	\checkmark	6.10	GI209	SQ934
JIS B 6339	80J2R210X50-SLSN134-C	80	312	134.00	210	-9	-10	50	4	2	26	_	7500	\checkmark	8.50	GI209	SQ935

		(1) James	(Nm			
SQ934	EH6326-SL-C	HS 1230	HXK 10	US 45012-T20P	5.0	M 5	12	SDR T20P-T
SQ935	EH8036-SL-C	HS 1640	HXK 14	US 45012-T20P	5.0	M 5	12	SDR T20P-T



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

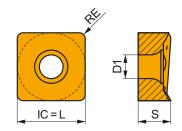
r r	, ,				•	// -11-	. ,	. , .	F	٠.	7 · 1 F 1 I						,				
06	CHARLES	RE		Р			M			K		- 1	N			S				Н	
Обозначение		(MM)	VC (м/ми	f н) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)		иин) (мм,		ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
		0,15	£Û }	*	S																
			Позити	зная гео	метрия	для пол	учисто	зой обр	аботки												
LNET 160616SR-M	M8330	1.6	1 10	0.15	15.0	-	-	-	100	0.15	15.0	_	_	-	-		-	-	_	_	_
	M8340	1.6	1 05	0.15	15.0	_	_	-	2 95	0.15	15.0	_	_	-	-		-	-	_	-	_
61	\$	0,12	*	*	S																
			Позити	зная гес	метрия	для чер	новой (обрабо	тки.												
LNET 160616SR-R	M8330	1.6	1 00	0.15	15.0	-	_	-	95	0.15	15.0	_	-	-	-		-	- 1	-	-	_
	M8340	1.6	95	0.15	15.0	_	_	_	2 90	0.15	15.0	_	_	_	-		_	_	_	_	_

	SN	GX 13	
	IC	D1	\$
1305	(MM) 13.200	(MM) 5.90	(MM) 5.96

26	PRAMARI	RE			P			M				K			N				S			Н	
Обозначение				VC	f	ар	VC	f	ap		VC	f	ap	VC	f	ap	,	C	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(M/	иин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	0,12	<u> </u>	Z	Û	*	S																	
	<i>></i> ,	26°	По	ЗИТИВ	ная геог	метрия	для пол	іучисто	вой об	pa	ботки.												
SNGX 130512SN-M	M8330	1.2		105	0.15	12.0	_	_	-		95	0.15	12.0	-	_	-		-	_	-	-	_	_
	M8340	1.2		105	0.15	12.0	_	-	_	Z	95	0.15	12.0	_	-	-		-	-	_	-	-	_

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

90


0.15 12.0

	9	SNET 1	3	
	IC	D1	L	S
	(мм)	(мм)	(MM)	(мм)
1305	13.200	5.90	13.20	6.33

M8340

0.15 12.0

PRAMET

Обозначение	PGARDA	RE		Р			M			K			N			S			Н	
Орозначение		(мм)	VC (M/MU		ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M		ар) (мм)	VC ((f) (мм/зуб)	ар (мм)
	8°	28°	Позити	S вная гео	метрия ,	для чис	товой и	і получ	истовой	обрабо	тки.									
SNET 130512SR-M	M8330	1.2	1 05		12.0	-	-	_	95	0.15	12.0	-	-	-	-	-	-	_	-	-
	M8340	1.2	105	0.15	12.0	_	_	-	9 5	0.15	12.0	_	_	-	-	_	-	_	-	_

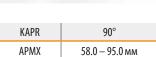
a _e / DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00

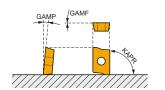
a _{e max}	,	1	2	5		5	7	7. 5		10	1	15	2	20
DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}
63	0.64	1.75	0.40	1.11	0.29	0.79	0.24	0.65	0.21	0.57	0.17	0.47	0.15	0.41
80	0.72	1.97	0.45	1.25	0.32	0.89	0.27	0.73	0.23	0.64	0.19	0.53	0.17	0.46

a _{e max}	2	25	3	32	4	40	Ş	50	(53	8	80
DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max} ⇒
63	0.14	0.38	0.12	0.34	0.12	0.32	0.11	0.30	0.13	0.35	-	-
80	0.15	0.42	0.14	0.38	0.13	0.35	0.12	0.32	0.11	0.30	0.13	0.35

00000000	LNET 16-M	LNET 16-R	SNGX 13-M	SNGX 13-R	SNET 13-M
RE	1.6	1.6	1.2	1.2	1.2
BS	_	_	_	_	_

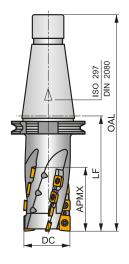
ISO	DC		APMX	a _p
63J2R155H50-SLSN104-C	63	2+2	104	101.2
80J2R190H50-SLSN134-C	80	2+2	134	131.2
63J2R155G50-SLSN104-C	63	2+2	104	101.2
80J2R190G50-SLSN134-C	80	2+2	134	131.2
63J2R175X50-SLSN104-C	63	2+2	104	101.2
80J2R210X50-SLSN134-C	80	2+2	134	131.2

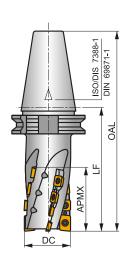


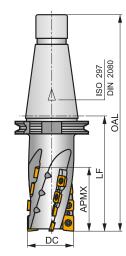


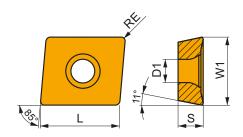


Длиннокромочная фреза


Конструкция фрезы имеет нейтрально-позитивную геометрию. Односторонние пластины AP.. 15 и SP.. 12 с суммарной глубиной резания от 58 мм до 95 мм имеют 2 и 4 режущие кромки. Фреза подходит для обработки глубоких пазов и уступов.



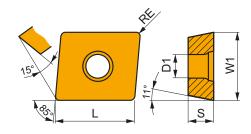




	Обозначение	DC	OAL	APMX	LF	GAMF	GAMP	CZC MS	NOF	AP.	SP)		max.		kg		
		(MM)	(мм)	(MM)	(MM)	(°)	(°)										
	50J4R110H50-SSAP37+21	50	212	58.00	110	0	7	50	4	2	12	_	9500	-	3.65	GI128	SQ942
ISO/DIS 7388-1	50J4R128H50-SSAP55+21	50	230	76.00	128	0	7	50	4	2	16	_	9500	-	3.80	GI128	SQ942
7388-1	63J4R150H50-SSAP74+21	63	252	95.00	150	0	7	50	4	2	20	_	8500	-	4.50	GI128	SQ943
	50J4R106X50-SSAP37+21	50	233	58.00	106	0	7	50	4	2	12	_	9500	_	3.50	GI128	SQ942
ISO 297	50J4R124X50-SSAP55+21	50	251	76.00	124	0	7	50	4	2	16	_	9500	_	4.43	GI128	SQ942
150 297	63J4R146X50-SSAP74+21	63	273	95.00	146	0	7	50	4	2	20	_	8500	_	4.75	GI128	SQ943
	50J4R110H50-SSAP58-A	50	212	58.00	110	0	7	50	4	2	12	_	9500	-	3.50	GI128	SQ941
	50J4R128H50-SSAP76-A	50	230	76.00	128	0	7	50	4	2	16	_	9500	_	3.80	GI128	SQ941
ISO/DIS 7388-1	63J4R150H50-SSAP95-A	63	252	95.00	150	0	7	50	4	2	20	_	8500	_	4.50	GI128	SQ941
	80J6R155H50-SSAP95-A	80	257	95.00	155	0	7	50	6	3	30	_	7500	_	6.30	GI128	SQ941
	50J4R106X50-SSAP58-A	50	233	58.00	106	0	7	50	4	2	12	_	9500	_	3.70	GI128	SQ941
	50J4R124X50-SSAP76-A	50	251	76.00	124	0	7	50	4	2	16	_	9500	_	3.80	GI128	SQ941
ISO 297	63J4R146X50-SSAP95-A	63	273	95.00	146	0	7	50	4	2	20	_	8500	-	4.50	GI128	SQ941
	80J6R151X50-SSAP95-A	80	275	95.00	151	0	7	50	6	3	30	_	7500	_	6.20	GI128	SQ941

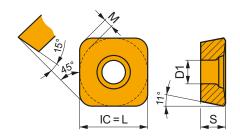
GI128	APE. 1504	SPE. 1204

			(Nm			
SQ941	_	_	_	US 4511-T20	5.0	M 4.5	11	SDR T20-T
SQ942	P50X21	SR 25	HXK 6	US 4511-T20	5.0	M 4.5	11	SDR T20-T
SQ943	P63X21	SR 26	HXK 8	US 4511-T20	5.0	M 4.5	11	SDR T20-T



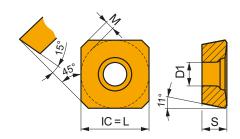
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	RE	Р	М	K	N	S	Н
Обозначение	(MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)
	10°	· E					
		Позитивная геометри:	я для чистовой и полу	чистовой обработки.			
APET 150412EN	M8330 1.2	225 0.20 12.0	1 135 0.18 12.0	210 0.20 12.) – – <u>I</u>	55 0.14 9.6	
	0,15	S S					
		Позитивная геометри:	я для получистовой и	черновой обработки.			
APET 150412SN	M8330 1.2	215 0.25 12.0	125 0.23 12.0	200 0.25 12.) – – – P	50 0.25 9.6	
	M8340 1.2	1 90 0.25 12.0	110 0.23 12.0	180 0.25 12.0)	45 0.25 9.6	


		APEV	V 15		
	W1	D1	L	М	S
ll	(MM)	(MM)	(MM)	(MM)	(MM)
1504	12.700	5.50	15.90	4	4.76

PRAMET

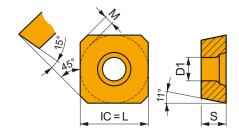
	THE PARTICLE	RE		Р			M			K				N			S			Н	
Обозначение		(мм)	vc (м/мин	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M		ар 6) (мм)	(1	vс м/мин)	f (мм/зуб)	ар (мм)	vc 'мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	Q		+	E																	
			Геометр	ия с неі	і́тральн	ым пер	едним у	углом д	І ЛЯ ЧИС	товой і	и получи	TOB(ой об	работн	КИ.						
APEW 150412ER	M8330	1.2	2 00	0.20	12.0	_	-	-	1 9	0.20	12.0		-	_	_	_	_	_	40	0.15	1.0
	15°0,	2_	*	S																	
			Геометр	ия с неі	і́тральн	ым пер	едним у	углом д	іля пол	учисто	вой и чер	нов	вой об	іработ	ки.						
APEW 150412SR	M8330	1.2	2 00	0.20	12.0	_	_	-	1 9	0.20	12.0		_	_	_	_	_	_	40	0.15	1.0
	M8340	1.2	180	0.20	12.0	_	_	_	1 7	0.20	12.0		_	_	_	_	_	_	-	_	-
																					49



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	14.54.74.14.14.14.14.14.14.14.14.14.14.14.14.14	RE			P			M				K			N			S			Н	
Обозначение				VC	f	ар	VC	f	ар		VC	f	ар	VC	f	ар	VC	f	ap	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(мм)	(м/мин) (мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	/ - 0,	<u>15</u> √10°	ļ	*	S																	
	15°		По	ЗИТИВН	ная геог	метрия	для че	рновой	обрабо	TK	КИ.											
SPET 120408S	M8330	0.8		215	0.20	12.0	1 25	0.18	12.0		200	0.20	12.0	_	_	_	50	0.18	9.6	_	_	_
	M8340	0.8		190	0.20	12.0	1 10	0.18	12.0	Z	180	0.20	12.0	_	_	_	45	0.18	9.6	_	_	_

SPET 12 AD IC D1 L M S (MM) (MM) (MM) (MM) (MM) (MM) 1204 12.700 5.50 12.70 2 4.76


PRAMET

06	ESECNAL.	RE		Р			M			K				N			S			Н	
Обозначение		(MM)	VC (м/мин	f ı) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		/C мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	VС (м/ми	f н) (мм/зуб)	ар (мм)
		0°	†	E																	
	7		Позитив	вная гес	метрия	я для чис	товой і	и получ	истовой	обрабо	ЭТКИ.										
SPET 1204ADEN	M8330	_	2 45	0.20	12.0	1 45	0.18	12.0	230	0.20	12.0		-	_	_	60	0.14	9.6	-	-	-
	M8340	_	220	0.20	12.0	1 30	0.18	12.0	2 05	0.20	12.0	-	-	_	_	55	0.14	9.6	-	-	_
	, - 0, -	<u>15</u> ∖10°	*	S																	
	15°		Позитив	вная гес	метрия	я для чер	новой	обрабо	тки.												
SPET 1204ADSN	M8330	_	2 45	0.20	12.0	1 45	0.18	12.0	230	0.20	12.0	-	-	-	_	60	0.14	9.6	_	_	-
	M8340		220	0.20	12.0	1 30	0.18	12.0	205	0.20	12.0					55	0.14	9.6			

SPEW 12 AD

	IC	D1	L	М	S
	(мм)	(MM)	(мм)	(MM)	(мм)
1204	12.700	5.50	12.70	2	4.76

	PSEAN SHA	RE		Р			M				K				N			S			Н	
Обозначение		(мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	Q_		+	E																		
			Геометри	ія с ней	ітральны	ым пере	едним у	/глом ,	для	чисто	вой и г	толучи	CTOE	вой об	бработі	КИ.						
SPEW 1204ADEN	M8330	_	220	0.20	12.0	-	_	_		205	0.20	12.0		_	_	-	_	_	_	40	0.15	1.0
	M8340	_	200	0.20	12.0	_	-	_		190	0.20	12.0		-	-	-	-	-	-	-	-	_
	, - (0,15	*	S																		
	20°		Геометри	ія с ней	ітральны	ым пере	едним у	/глом ,	для	черно	овой об	бработк	ΚИ.									
SPEW 1204ADSN	M8330	-	Z 220	0.20	12.0	_	-	_		205	0.20	12.0		-	-	-	-	-	-	40	0.15	1.0
	M8340	_	200	0.20	12.0	_	_	-		190	0.20	12.0		-	_	-	-	_	-	-	_	_

a。 DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	0.89	0.81	0.76	0.73	0.71	0.70	0.67	0.65	0.63	0.62	0.60	0.60	0.60	0.45

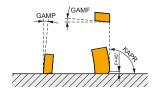
a _{emax}		1	2	2.5		5	7	7.5	•	10		15	2	20
DC	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}
50	0.50	0.71	0.32	0.45	0.23	0.32	0.19	0.27	0.16	0.23	0.14	0.19	0.12	0.17
63	0.56	0.80	0.35	0.51	0.25	0.36	0.21	0.30	0.18	0.26	0.15	0.21	0.13	0.19
80	0.63	0.90	0.40	0.57	0.28	0.40	0.23	0.33	0.20	0.29	0.17	0.24	0.15	0.21

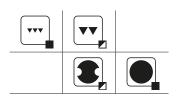
a _{e max}	2	25		32	4	10	5	50	(53	8	30
DC	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$
50	0.11	0.16	0.10	0.14	0.10	0.14	0.11	0.16	_	-	_	-
63	0.12	0.17	0.11	0.16	0.10	0.15	0.10	0.14	0.11	0.16	_	_
80	0.13	0.19	0.12	0.17	0.11	0.16	0.10	0.15	0.10	0.14	0.11	0.16

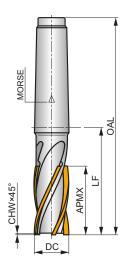
00000000	APET 15	APEW 15	SPET 12	SPET 12AD	SPEW 12AD
RE	1.2	1.2	0.8	_	-
BS	-	-	-	_	-

ISO	DC		APMX	a _p
50J4R110H50-SSAP37+21	50	2+2	58	55.6
50J4R128H50-SSAP55+21	50	2+2	76	73.6
63J4R150H50-SSAP74+21	63	2+2	95	92.6
50J4R106X50-SSAP37+21	50	2+2	58	55.6
50J4R124X50-SSAP55+21	50	2+2	76	73.6
63J4R146X50-SSAP74+21	63	2+2	95	92.6
50J4R110H50-SSAP58-A	50	2+2	58	55.6
50J4R128H50-SSAP76-A	50	2+2	76	73.6
63J4R150H50-SSAP95-A	63	2+2	95	92.6
80J6R155H50-SSAP95-A	80	3+3	95	92.6
50J4R106X50-SSAP58-A	50	2+2	58	55.6
50J4R124X50-SSAP76-A	50	2+2	76	73.6
63J4R146X50-SSAP95-A	63	2+2	95	92.6
80J6R151X50-SSAP95-A	80	3+3	95	92.6

J(T)-2416






Длиннокромочная фреза с напайными режущими кромками из твердого сплава

Конструкция фрезы имеет 4 или 6 режущих кромок с максимальной глубиной резания от 40 мм до 63 мм, хвостовик с конусом Морзе. Фреза подходит для обработки глубоких пазов и уступов.

KAPR	90°
APMX	40.0 — 63.0 мм

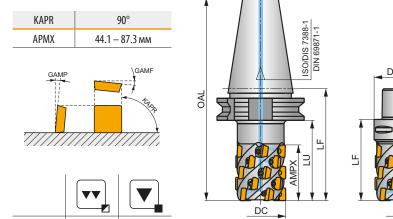
	Обозначение	DC (_{MM})	OAL (MM)	APMX	LF (MM)	CHW (MM)	CZC MS	NOF		max.		S kg		
	2416 – 20R-E3-P	20	146	40.00	65	0.5	3	4	_	_	_	0.37	_	_
	2416 – 25R-E3-P	25	160	50.00	79	0.5	3	4	_	_	_	0.40	_	_
DIN 228A	2416 – 32R-E4-P	32	180	50.00	78	0.5	4	4	_	_	_	0.80	_	_
	2416 – 40R-E4-P	40	200	63.00	98	0.8	4	6	_	_	_	1.19	_	_

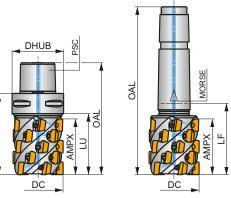
ISO		f_{\min}	f_{max}	P30
	•	0.03	0.08	149
Р	8	0.03	0.07	133
	*	0.03	0.06	115
		0.03	0.08	88
M	8	0.03	0.07	79
	*	0.03	0.06	70
		0.03	0.08	142
K	8	0.03	0.07	126
	*	0.03	0.06	110
		0.03	0.08	374
N	8	0.03	0.07	333
	*	0.03	0.06	290

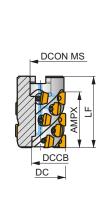
a。 DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒×.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

ISO	DC		APMX	a _p
2416-20R-E3-P	20	4	40	40
2416-25R-E3-P	25	4	50	50
2416-32R-E4-P	32	4	50	50
2416-40R-E4-P	40	6	63	63

a _{emax}	0.5		1		2		3		4		5		8	
DC	f _{min} ⇔	f_{max}	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}
20	0.14	0.25	0.10	0.18	0.07	0.13	0.06	0.11	0.05	0.09	0.05	0.08	0.04	0.07
25	0.16	0.28	0.11	0.20	0.08	0.14	0.07	0.12	0.06	0.10	0.05	0.09	0.04	0.08
32	0.18	0.32	0.13	0.23	0.09	0.16	0.07	0.13	0.07	0.12	0.06	0.10	0.05	0.08
40	0.20	0.36	0.14	0.25	0.10	0.18	0.08	0.15	0.07	0.13	0.07	0.12	0.05	0.09
a _{emax}	10		10 12		16		20		25		32		40	
DC	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}
20	0.04	0.06	0.03	0.06	0.03	0.06	0.04	0.06	_	_	_	_	_	_
25	0.04	0.07	0.04	0.06	0.03	0.06	0.03	0.06	0.04	0.06	_	_	_	_
32	0.04	0.08	0.04	0.07	0.04	0.06	0.03	0.06	0.03	0.06	0.04	0.06	_	_
40	0.05	0.08	0.04	0.08	0.04	0.07	0.04	0.06	0.03	0.06	0.03	0.06	0.04	0.06

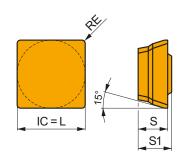





Длиннокромочная фреза MULTISIDE SD

Конструкция фрезы имеет позитивно-негативную геометрию. Односторонние пластины SD.. 12 с суммарной глубиной резания от 44.1 мм до 87.3 мм имеют 4 режущие кромки. Фреза подходит для обработки глубоких пазов и уступов.

MULTISIDE SD

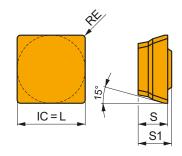


	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	APMX	GAMF	GAMP	CZC MS	NOF	5 X X 4 4 2		max.		∫ kg		
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(°)	(°)									
	40J4R090H40-CSD12X44	40	158.4	_	_	70	90	44.10	-5	8	40	4	16	-	4000	✓	1.16	GI271	SQ091
ISO/DIS 7388-1	50J5R100H50-CSD12X55	50	201.7	-	_	80	100	54.90	-5	8	50	5	25	-	3200	✓	4.20	GI271	SQ091
7388-1	63J6R110H50-CSD12X66	63	211.7	-	-	90	110	65.70	-5	8	50	6	36	-	2500	✓	4.90	GI271	SQ091
	40J4R080XC5-CSD12X44	40	110	-	_	59	80	44.10	-5	8	C5	4	16	_	4000	\checkmark	1.06	GI271	SQ091
PSC	50J5R080XC5-CSD12X55	50	110	-	-	59	80	54.90	-5	8	C5	5	25	-	3200	✓	1.24	GI271	SQ091
DIN 228A	50J5R065E04-CSD12X55	50	167.5	-	_	-	65	54.90	-5	8	4	5	25	-	3200	✓	1.34	GI271	SQ091
	50T05R-C90SD12X55	50	-	22	18	-	78	54.90	-5	8	-	5	25	_	3200	✓	0.95	GI271	SQ923
ISO 6462	63T06R-C90SD12X66	63	-	27	22	_	90	65.70	-5	8	_	6	36	-	2500	\checkmark	1.72	GI271	SQ924
DIN 8030	80T08R-C90SD12X88	80	-	40	36	-	115	87.30	-5	8	_	8	64	-	2000	✓	3.20	GI271	SQ925

		Nm Nm			10		
SQ091	US 63511D-T15P	3.0	M 3.5	11	D-T08P/T15P	FG-15	_
SQ923	US 63511D-T15P	3.0	M 3.5	11	D-T08P/T15P	FG-15	HSD 1070
SQ924	US 63511D-T15P	3.0	M 3.5	11	D-T08P/T15P	FG-15	HS 1280
SQ925	US 63511D-T15P	3.0	M 3.5	11	D-T08P/T15P	FG-15	HS 20100

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

0.0	escesses RE	Р	M	K	N	S	Н
Обозначение	KE (MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)
	15°, 0.15	***					(, , , , , , , , , , , , , , , , , , ,



Позитивная геометрия для чистовой и получистовой обработки.

SDGX 120508EN-FM	M8330	0.8	22	0 0.1	12.0	130	0.14	12.0					_		EE	0.11	9.6			
SDGK 120300EN TW	MOSSA	0.0		U U.I.	12.0	130	0.14	12.0	_		-				ככ	0.11	9.0		_	_
	M8345	0.8	15	5 0.15	12.0	90	0.14	12.0	_	_	_	_	_	_	35	0.11	9.6	_	_	_

	S	DMX 1	2	
	IC	L	S	S 1
	(MM)	(мм)	(MM)	(MM)
1205	12.700	12.70	5.56	6.35

PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

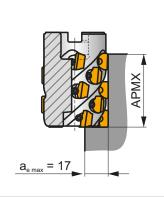
06	RE		Р		٨	M			K			N				S			Н	
Обозначение		VC	f	ар	VC	f	ар	VC	f	ар	VC	f	ap	٧	C	f	ap	VC	f	ap
	(MM)	(м/ми	н) (мм/зуб)	(мм)	(м/мин) (м	мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)	(M/I	лин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)

Позитивная геометрия для чистовой и получистовой обработки.

SDMX 120508EN-M	M8330	0.8	220	0.15	12.0	130	0.14	12.0	_	_	_	_	_	_	55	0.11	9.6	_	_	_
	M8345	0.8	155	0.15	12.0	90	0.14	12.0	_	_	_	_	_	_	35	0.11	9.6	_	-	_

a。/ DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	0.89	0.81	0.76	0.73	0.71	0.70	0.66	0.65	0.63	0.62	0.60	0.60	0.60	0.45

a _{emax}		1	2	2.5		5	7	7.5		10		15	2	20
DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max} →	f _{min} ⇔	f _{max}
40	0.16	0.32	0.10	0.20	0.07	0.14	0.06	0.12	0.05	0.10	0.04	0.09	0.04	0.08
50	0.18	0.35	0.11	0.23	0.08	0.16	0.07	0.13	0.06	0.12	0.05	0.10	0.04	0.09
63	0.20	0.40	0.13	0.25	0.09	0.18	0.07	0.15	0.06	0.13	0.05	0.11	0.05	0.09
80	0.22	0.45	0.14	0.28	0.10	0.20	0.08	0.17	0.07	0.14	0.06	0.12	0.05	0.10


a _{emax}	2	25	3	32	4	10	Š	50	(53	8	30
DC	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	f _{max}
40	0.04	0.07	0.03	0.07	0.04	0.08	_	_	_	_	_	_
50	0.04	0.08	0.04	0.07	0.03	0.07	0.04	0.08	_	_	_	_
63	0.04	0.09	0.04	0.08	0.04	0.07	0.03	0.07	0.04	0.08	_	-
80	0.05	0.09	0.04	0.09	0.04	0.08	0.04	0.07	0.03	0.07	0.04	0.08


0000000	SDGX 12-FM	SDMX 12-M
RE	0.8	0.8
BS	2.99	2.99

ISO	DC		APMX	a _p
40J4R090H40-CSD12X44	40	4	44.1	42.5
50J5R100H50-CSD12X55	50	5	54.9	53.3
63J6R110H50-CSD12X66	63	6	65.7	64.1
80J8R130H50-CSD12X88	80	8	87.3	85.7
40J4R080XC5-CSD12X44	40	4	44.1	42.5
50J5R080XC5-CSD12X55	50	5	54.9	53.3
63J6R095XC6-CSD12X66	63	6	65.7	64.1
50J5R065E04-CSD12X55	50	5	54.9	53.3
50T05R-C90SD12X55	50	5	54.9	53.3
63T06R-C90SD12X66	63	6	65.7	64.1
80T08R-C90SD12X88	80	8	87.3	85.7

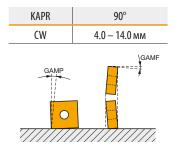
ДИСКОВЫЕ ФРЕЗЫ

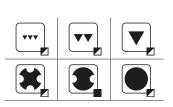
ДИСКОВЫЕ ФРЕЗЫ – НАВИГАТОР

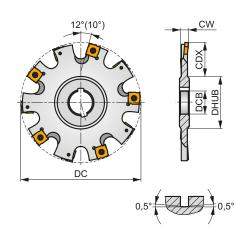
ФРЕЗЕРОВАНИЕ ПАЗОВ

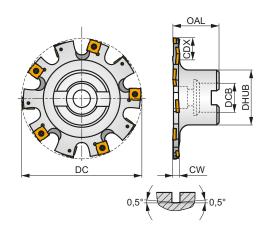
	S90SN	S90CN(XN)		
	90°	90°		
	APMX (мм) 4.0 – 14.0			
	DC (MM) 80 – 200		5	
Дисковая фреза		DC=80-200 (мм)		
Насадная дисковая фреза		DC = 63 – 160 (MM)	(min) 202 CZ,	
Страница	508	 514		
ISO	P M K	P M K		
Форма пластины	90	Q		
Тип пластины	SNHQ 11 SNHQ 12	CNHQ 1005 XNHQ 1205 XNHQ 1606		
Количество режущих кромок	4	2		-
Фрезерование глубоких пазов		•		
Фрезерование глубоких уступов				
Фрезерование плоскостей				
Фрезерование обратных уступов				

S90SN





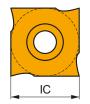


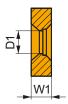

Дисковая фреза

Фреза с трехсторонней позитивно-негативной геометрией. Двухсторонние пластины SNHQ 11, 12 имеют 4 режущие кромки. Фреза подходит для обработки плоскостей, уступов и пазов с шириной 4...14 мм.

	Обозначение	DC	OAL	DCB	DHUB	CDX	CW	X	GAMF	GAMP			max.		∫ kg			
		(мм)	(MM)	(MM)	(MM)	(мм)	(MM)		(°)	(°)								
	80F8N-S90SN11N4	80	-	27	42	16	4.00	-	2.5	-0.5	8	-	12300	-	0.23	GI151	DI011	_
	80F8N-S90SN11N5	80	_	27	42	16	5.00	_	2.5	-0.5	8	-	12300	-	0.22	GI152	DI019	
	80F8N-S90SN12N6	80	-	27	42	16	6.00	_	2.5	-0.5	8	-	8400	_	0.25	GI153	DI012	
	80F8N-S90SN12N8	80	-	27	42	16	8.00	_	2.5	-0.5	8	-	8400	-	0.28	GI157	DI013	_
	100G10N-S90SN12N6	100	-	32	48	24	6.00	-	2.5	-0.5	10	-	7500	-	0.43	GI153	DI012	_
	100G10N-S90SN12N8	100	_	32	48	24	8.00	_	2.5	-0.5	10	-	7500	_	0.42	GI157	DI013	
	100G10N-S90SN12N10	100	-	32	48	24	10.00	_	2.5	-0.5	10	-	7500	_	0.46	GI154	DI014	
	100G10N-S90SN12N12	100	-	32	48	24	12.00	-	2.5	-0.5	10	-	7500	-	0.66	GI158	DI015	
	125H12N-S90SN12N6	125	-	40	58	31	6.00	-	2.5	-0.5	12	-	6700	-	0.62	GI153	DI012	
	125H12N-S90SN12N8	125	-	40	58	31	8.00	_	2.5	-0.5	12	-	6700	_	0.73	GI157	DI013	
	125H12N-S90SN12N10	125	-	40	58	31	10.00	_	2.5	-0.5	12	_	6700	_	0.66	GI154	DI014	
ISO 6462 DIN 8030	125H12N-S90SN12N12	125	-	40	58	31	12.00	_	2.5	-0.5	12	-	6700	-	0.76	GI158	DI015	_
	160H16N-S90SN12N6	160	-	40	58	43	6.00	_	2.5	-0.5	16	-	5900	-	0.86	GI153	DI012	_
	160H16N-S90SN12N8	160	_	40	58	43	8.00	_	2.5	-0.5	16	-	5900	-	1.10	GI157	DI013	
	160H16N-S90SN12N10	160	_	40	58	43	10.00	_	2.5	-0.5	16	-	5900	-	1.14	GI154	DI014	
	160H16N-S90SN12N12	160	-	40	58	43	12.00	-	2.5	-0.5	16	-	5900	-	1.30	GI158	DI015	_
	160H15N-S90SN12N14	160	-	40	58	43	14.00	-	2.5	-0.5	15	-	5900	-	1.40	GI158	DI015	_
	200J18N-S90SN12N6	200	_	50	72	62	6.00	-	2.5	-0.5	18	-	5300	-	1.40	GI153	DI012	
	200J18N-S90SN12N8	200	_	50	72	62	8.00	_	2.5	-0.5	18	-	5300	-	1.78	GI157	DI013	
	200J18N-S90SN12N10	200	-	50	72	62	10.00	-	2.5	-0.5	18	-	5300	-	1.89	GI154	DI014	_
	200J18N-S90SN12N12	200	-	50	72	62	12.00	-	2.5	-0.5	18	-	5300	-	2.23	GI158	DI015	_
	200J18N-S90SN12N14	200	-	50	72	62	14.00	_	2.5	-0.5	18	_	5300	_	2.67	GI158	DI015	_
	63A03R-S90SN11N4	63	40	16	34	10.5	4.00	3	2.5	-0.5	6	-	13900	_	0.39	GI151	DI021	_
B-120	63A03R-S90SN11N5	63	40	16	34	10.5	5.00	3	2.5	-0.5	6	-	13900	-	0.36	GI152	DI021	-
ISO 6462 DIN 8030	63A03R-S90SN12N6	63	40	16	34	10.5	6.00	3	2.5	-0.5	6	-	9500	-	0.37	GI153	DI022	-
DIN 6030	80A04R-S90SN11N5	80	40	22	40	17.5	5.00	4	2.5	-0.5	8	-	12300	-	0.48	GI152	DI023	
	80A04R-S90SN12N6	80	40	22	40	17.5	6.00	4	2.5	-0.5	8	_	8400	_	0.50	GI153	DI024	

	Обозначение	DC (MM)	OAL (MM)	DCB	DHUB	CDX (MM)	CW	X 1	GAMF	GAMP			max.		∫ kg			
D-120	100A05R-S90SN12N6	100	50	27	48	23.5	6.00	5	2.5	-0.5	10	-	7500	-	0.86	GI153	DI025	_
ISO 6462 DIN 8030	125B06R-S90SN12N6	125	50	40	56	24	6.00	6	2.5	-0.5	12	-	6700	-	1.20	GI153	DI012	AC003
DIN 8030	160B08R-S90SN12N10	160	50	40	70	41	10.00	8	2.5	-0.5	16	-	5900	-	2.03	GI154	DI014	_


GI151	SNHQ 1102
GI152	SNHQ 1103
GI153	SNHQ 1203
GI154	SNHQ 1205
GI157	SNHQ 1204
GI158	SNHQ 1207


		Nm			10		
DI011	US 3504-T09P	3.0	M 3.5	4	D-T07P/T09P	FG-15	_
DI012	US 70	5.0	M 4	5	D-T07/T15	FG-15	_
DI013	US 71	5.0	M 4	7	D-T07/T15	FG-15	_
DI014	US 72	5.0	M 4	9	D-T07/T15	FG-15	_
DI015	US 73	5.0	M 4	11	D-T07/T15	FG-15	_
DI019	US 3505-T09P	3.0	M 3.5	5	D-T07P/T09P	FG-15	HS 0830
DI021	US 3504-T09P	3.0	M 3.5	4	D-T07P/T09P	FG-15	HS 0830
DI022	US 70	5.0	M 4	5	D-T07/T15	FG-15	HS 0830
DI023	US 3505-T09P	3.0	M 3.5	5	D-T07P/T09P	FG-15	HS 1030
DI024	US 70	5.0	M 4	5	D-T07/T15	FG-15	HS 1030
DI025	US 70	5.0	M 4	5	D-T07/T15	FG-15	HS 1230

AC003	KS 2040	K.FMH40

SNHQ AZ

	IC	D1	W1
-	(MM)	(MM)	(MM)
1102	11.000	4.30	2.300
1103	11.000	4.30	2.700
1203	12.700	5.00	3.200
1204	12.700	5.00	4.500
1205	12.700	5.00	5.400
1207	12.700	5.00	7.000

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

06	RE		Р				M			K			- 1	N				S			Н	
Обозначение		vc	f	ap		VC	f	ap	VC	f	ap		VC	f	ар	١	c	f	ар	VC	f	ap
	(MM)	(м/мин)	(мм/зуб)	(MM)	(A	м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	((м/мин)	(мм/зуб)	(MM)	(M/I	лин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)

Специальная геометрия для фрезерования пазов.

SNHQ 1203AZEN	8215	_	415	0.10	_	245	0.10	_	390	0.10	-	_	_	-	-	_	-	_	-	-	_
	M8340	_	370	0.10	_	220	0.10	-	350	0.10	-	_	_	-	-	_	-	_	-	-	_
SNHQ 1204AZEN	8215	_	405	0.10	_	240	0.10	-	380	0.10	-	_	_	-	_	-	-	_	-	-	_
	M8340	_	355	0.10	-	210	0.10	-	335	0.10	-	_	_	-	-	-	-	_	-	-	_
SNHQ 1205AZEN	8215	_	390	0.10	_	230	0.10	-	370	0.10	-	_	_	-	-	_	-	_	-	-	_
	M8340	_	345	0.10	_	205	0.10	-	325	0.10	-	_	_	-	-	_	-	_	-	-	_
SNHQ 1207AZEN	8215	_	380	0.10	_	225	0.10	-	360	0.10	-	_	_	-	_	-	-	_	-	-	_
	M8340	_	335	0.10	-	200	0.10	-	315	0.10	-	_	_	-	-	-	-	_	-	-	_

Специальная геометрия для фрезерования пазов.

SNHQ 1102AZTN	M8330	_	365	0.20	_	215	0.18	_	345	0.20	-	-	-	_	-	_	_	-	_	-	-
	M8340	_	335	0.20	-	200	0.18	-	315	0.20	-	-	-	_	-	_	-	-	_	-	_
SNHQ 1103AZTN	M8330	-	345	0.20	-	205	0.18	-	325	0.20	-	-	-	_	-	_	-	-	-	-	_
	M8340	_	315	0.20	_	185	0.18	_	295	0.20	_	-		_	_	_	_	_	_	_	_

Специальная геометрия для фрезерования пазов.

SNHQ 1203AZTN	M8330	_	345	0.20	_	205	0.18	-	325	0.20	-	_	_	-	-	_	-	_	-	-	_
	M8340	_	315	0.20	_	185	0.18	-	295	0.20	-	_	_	-	-	_	-	_	-	-	_
SNHQ 1204AZTN	M8330	-	335	0.20	-	200	0.20	-	315	0.20	-	_	_	-	-	_	-	_	-	-	_
	M8340	_	300	0.20	_	180	0.20	-	285	0.20	-	_	_	-	-	_	-	_	-	-	_
SNHQ 1205AZTN	M8330	-	330	0.20	_	195	0.20	-	310	0.20	-	_	_	-	-	_	-	_	-	-	_
	M8340	-	295	0.20	_	175	0.20	-	280	0.20	-	_	_	-	-	_	-	_	-	-	_
SNHQ 1207AZTN	M8330	-	320	0.20	_	190	0.20	-	300	0.20	-	_	_	-	-	_	-	_	-		_
	M8340	_	290	0.20	_	170	0.20	_	275	0.20	_	_	_	-	_	_	-	_	_		_

PRAMET

SNHQ 120515TRL

SNHQ 120705TRL

SNHQ 120710TRL

SNHQ 120715TRL

M8340

M8340

M8340

M8340

1.5

0.5

1.0

1.5

0.20

0.20

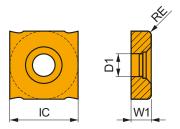
165 0.20

125 0.20

155 0.20

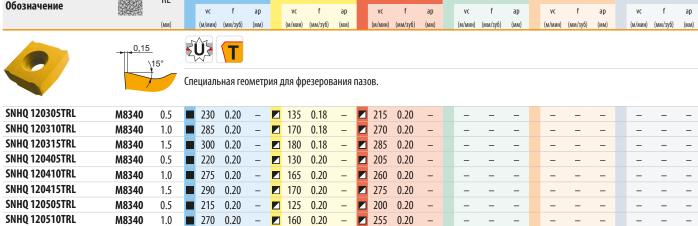
165

0.20


280

210 0.20

265 0.20


275

П

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

06	RE		P			M			K			N				S			Н	
Обозначение		VC	f	ap	٧	f	ap	VC	f	ap	VC	f	ap		VC	f	ap	VC	f	ар
	(MM)	(м/мин)	(мм/зуб)	(MM)	(M/I	ин) (мм/зуб	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(1	/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)

195

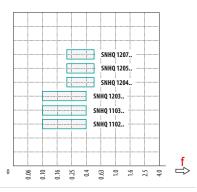
265 0.20

250 0.20

260

0.20

0.20



a。 DC	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	1.00
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00

0000000	SNHQ AZEN	SNHQ AZTN	SNHQ 12TRL
RE	-	-	0.5 – 1.5
BS	-	_	-

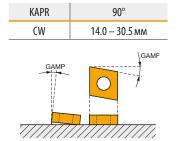
	DC		O	a _{emax}
	80	4	16	16
	100	5	24	24
	125	6	31	31
	160	5	43	43
	200	9	62	62
	63	3	10.5	63
	80	4	17.5	80
	100	5	23.5	100
	125	6	24	125
ı	160	8	41	160

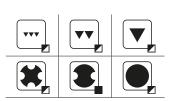
	a _e		5		10	1	15	2	20	25		
	DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	$\overset{f_{max}}{\Longrightarrow}$	f _{min} ⇔	f _{max}	f _{min} ⇔	f_{max}	
	80	0.28	0.36	0.20	0.26	0.17	0.21	-	-	-	_	
	100	0.32	0.41	0.23	0.29	0.19	0.24	0.16	0.21	-	_	
	125	0.35	0.45	0.25	0.32	0.21	0.27	0.18	0.23	0.16	0.21	
	160	0.40	0.51	0.28	0.36	0.23	0.30	0.20	0.26	0.18	0.23	
	200	0.44	0.57	0.32	0.41	0.26	0.33	0.23	0.29	0.20	0.26	
	63	0.25	0.32	0.18	0.23	0.15	0.19	0.13	0.17	0.12	0.15	
	80	0.28	0.36	0.20	0.26	0.17	0.21	0.15	0.19	0.13	0.17	
	100	0.32	0.41	0.23	0.29	0.19	0.24	0.16	0.21	0.15	0.19	
	125	0.35	0.45	0.25	0.32	0.21	0.27	0.18	0.23	0.16	0.21	
'	160	0.40	0.51	0.28	0.36	0.23	0.30	0.20	0.26	0.18	0.23	

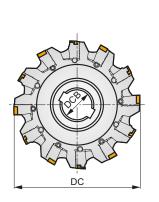
a _e	:	32		40	į	50	(53	80		
DC	f _{min} ⇔	f _{max} →	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max}	
80	_	_	-	_	_	-	-	-	-	-	
100	_	-	_	-	_	-	-	-	_	-	
125	_	_	_	_	_	_	_	-	_	-	
160	0.16	0.21	0.15	0.19	_	_	-	_	_	-	
200	0.18	0.23	0.16	0.21	0.15	0.19	_	_	_	-	
63	0.11	0.14	0.10	0.13	0.10	0.12	0.10	0.11	_	_	
80	0.12	0.15	0.11	0.14	0.10	0.13	0.10	0.12	0.10	0.11	
100	0.13	0.17	0.12	0.15	0.11	0.14	0.10	0.13	0.10	0.12	
125	0.15	0.19	0.13	0.17	0.12	0.15	0.11	0.14	0.10	0.13	
160	0.16	0.21	0.15	0.19	0.13	0.17	0.12	0.16	0.11	0.14	

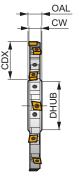
	a _e	1	00	1	25	160		
	DC	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	
	80	-	_	-	_	-	-	
	100	_	_	_	_	_	-	
	125	_	-	_	-	-	-	
	160	_	-	_	-	-	-	
	200	_	_	_	_	_	_	
	63	_	-	_	-	_	-	
	80	_	-	_	-	_	-	
d	100	0.10	0.11	_	_	_	_	
	125	0.10	0.12	0.10	0.11	_	-	
1	160	0.10	0.13	0.10	0.12	0.10	0.11	

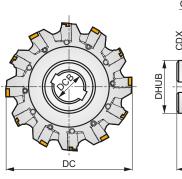
S90CN(XN)

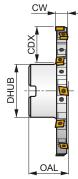


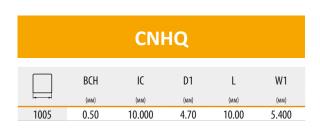


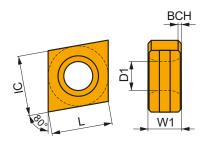



Дисковая фреза с регулируемой шириной


Фреза с трехсторонней позитивно-негативной геометрией и регулируемой шириной резания. Двухсторонние пластины CNHQ 10 и XNHQ 12, 16 имеют 4 режущие кромки. Фреза подходит для обработки плоскостей, уступов и пазов с шириной 14...30.5 мм.



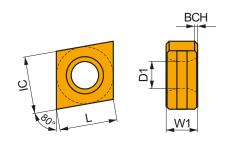



	Обозначение	DC	OAL	DCB	DHUB	CDX	CW	GAMF	GAMP	1 X			max.		S kg			
		(мм)	(мм)	(мм)	(MM)	(MM)	(мм)	(°)	(°)									
	125H04N-S90CN10N18	125	18	40	56	34	14.0 – 18.5	-10	4	4	8	-	7800	_	1.50	GI195	DI051	_
	160H06N-S90CN10N18	160	18	40	56	50	14.0 – 18.5	-8	4	6	12	_	6900	-	1.80	GI195	DI052	_
	160H05N-S90XN12N24	160	24	40	56	50	19.0 - 24.3	-8	5	5	10	_	5200	-	2.50	GI196	DI056	_
	200J07N-S90CN10N18	200	18	50	71	60	14.0 – 18.5	-8	4	7	14	_	6100	-	2.85	GI195	DI053	_
	200J06N-S90XN12N24	200	24	50	71	60	19.0 - 24.3	-8	5	6	12	-	4700	-	3.60	GI196	DI057	_
	200J06N-S90XN16N30	200	30	50	71	60	24.5 – 30.5	-9	5	6	12	-	4000	-	6.00	GI197	DI060	_
ISO 6462 DIN 8030	250J09N-S90CN10N18	250	18	50	71	85	14.0 – 18.5	-8	4	9	18	-	5500	-	5.30	GI195	DI054	_
	250J08N-S90XN12N24	250	24	50	71	85	19.0 – 24.3	-8	5	8	16	-	4200	-	7.50	GI196	DI058	-
	250J08N-S90XN16N30	250	30	50	71	85	24.5 – 30.5	-8	5	8	16	_	3600	_	8.00	GI197	DI061	_
	315J12N-S90CN10N18	315	18	50	71	110	14.0 – 18.5	-8	4	12	24	_	4900	_	7.80	GI195	DI055	_
	315J10N-S90XN12N24	315	24	50	71	110	19.0 – 24.3	-8	5	10	20	_	3700	_	11.00	GI196	DI059	_
	315K10N-S90XN16N30	315	30	60	85	110	24.5 – 30.5	-8	5	10	20	_	3200	_	13.00	GI197	DI062	_
	125B04R-S90CN10N18	125	50	40	70	25	14.0 - 18.5	-10	4	4	8	_	7800	_	1.65	GI195	DI071	AC003
	160B06R-S90CN10N18	160	50	40	70	44	14.0 – 18.5	-8	5	6	12	_	6900	_	2.55	GI195	DI072	_
ISO 6462 DIN 8030	160B05R-S90XN12N24	160	50	40	70	44	19.0 – 24.3	-8	5	5	10	_	5200	_	2.90	GI196	DI074	_
	200C06R-S90XN12N24	200	50	40	90	52	19.0 – 24.3	-8	5	6	12	_	6100	_	4.70	GI196	DI075	_
	200C06R-S90XN16N30	200	50	60	130	34	24.5 – 30.5	-9	5	6	12	_	4700	-	5.95	GI197	DI076	_
ISO 6462 DIN 8030	200C07R-S90CN10N18	200	50	40	90	52	14.0 – 18.5	-8	4	7	14	_	6100	-	4.05	GI195	DI073	_

GI195	CNHQ 1005
GI196	XNHQ 1205
GI197	XNHQ 1606

		C.				Po		Po		Nm)			Po	(0
DI051	125H04N-S-14 - 08	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDRT20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	_
DI052	160H06N-S-14 - 12	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDRT20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	-
DI053	200J07N-S-14 - 14	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDRT20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	-
DI054	250J09N-S-14 - 18	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDR T20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	-
DI055	315J12N-S-14 – 24	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDR T20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	_
DI056	160H05N-S-19 – 10	KL-1924-XN12	KR-1924-XN12	KS 617M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	HXK 4
DI057	200J06N-S-19 – 12	KL-1924-XN12	KR-1924-XN12	KS 617M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	HXK 4
DI058	250J08N-S-19 – 16	KL-1924-XN12	KR-1924-XN12	KS 617M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	HXK 4
DI059	315J10N-S-19 – 20	KL-1924-XN12	KR-1924-XN12	KS 617M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDRT15P	HXK 4
DI060	200J06N-S-25 - 12	KL-2530-XN16	KR-2530-XN16	KS 623M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	HXK 4
DI061	250J08N-S-25 – 16	KL-2530-XN16	KR-2530-XN16	KS 623M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	HXK 4
DI062	315K10N-S-25 – 20	KL-2530-XN16	KR-2530-XN16	KS 623M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	HXK 4
DI071	125B04R-S-14 - 08	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDR T20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	_
DI072	160B06R-S-14 - 12	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDRT20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	_
DI073	200C07R-S-14 - 14	KL-1418-CN10	KR-1418-CN10	KS 613F	DS 6018F	SDRT20	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	-
DI074	160B05R-S-19 – 10	KL-1924-XN12	KR-1924-XN12	KS 617M	DS 6500	-	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	HXK 4
DI075	200C06R-S-19 – 12	KL-1924-XN12	KR-1924-XN12	KS 617M	DS 6500	_	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	HXK 4
DI076	200C06R-S-25 - 12	KL-2530-XN16	KR-2530-XN16	KS 623M	DS 6500	_	SS 6005-T09P	SDR T09	US 4011-T15P	3.5	M 4	10.6	SDR T15P	HXK 4

AC003	KS 2040	K.FMH40



Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

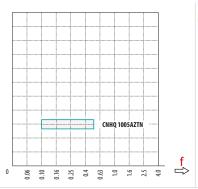
	174CHCN2541	RE	P			M		K		N		S				Н					
Обозначение			VC		ap	VC	f	ap	VC	f	ap	VC	f	ap	V		ap		VC	f	ap
		(MM)	(M/MI	ін) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин	(мм/зуб)	(MM)	(M/N	ин) (мм/зуб	i) (MM)	()	м/мин)	(мм/зуб)	(MM)
	15° 0,1		₹Ŭ3	T																	
		Специа	льная ге	ометри	я для ф	резеров	вания г	1 3 30B B T	яжелых	услови	ях.										
CNHQ 1005AZTN	M8330	-	3 1	0.15	-	1 85	0.14	_	290	0.15	-	_	-	-	-	_	-		-	-	-
	M8340	_	28	0.15	- I	1 65	0.14	-	2 65	0.15	-	_	_	_	-	-	-		_	_	_

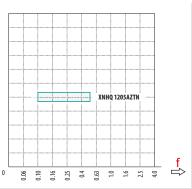
	XNHQ											
	BCH	IC (mm)	D1	L (mm)	W1							
1205 1606	0.50 0.50	10.000 12.000	4.70 5.90	12.70 16.00	5.400 6.400							

PRAMET

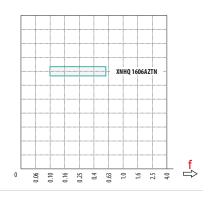
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	PRESE	RE		Р				M				K			N			9	S			Н	
Обозначение			vc	f	ap		VC	f	ap		VC	f	ap	VC	f	ap	V		f	ap	VC	f	ap
		(мм) 0,10	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(M/h	ин) (л	мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	15°		Специал	ьная ге	ометр	ия д	іля фр	езеров	ания	паз	30B.												
XNHQ 1205AZTN	M8330	-	310	0.15	_		185	0.14	_		290	0.15	-	_	_	_	-		_	_	_	_	_
	M8340	-	275	0.15	_		165	0.14	_	Z	260	0.15	-	_	_	_	-		_	_	_	-	-
XNHQ 1606AZTN	M8330	-	300	0.15	-		180	0.14	-		285	0.15	-	_	-	_	-		-	-	-	-	-
	M8340	_	270	0.15	-		160	0.14	-		255	0.15	-	_	-	-	-		-	-	-	-	-




a, DC	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	1.00
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00

00000000	CNHQ 10	XNHQ 12	XNHQ 16
RE	-	_	-
BS	_	-	_



	DC		COD	a _{e max}
	125	4	34	34
	160	6	50	50
	200	7	60	60
'	250	9	85	85
	315	12	110	110
	125	4	25	125
	160	6	44	160
	200	7	52	200

	a _e		5	1	10	:	15	2	20	2	25
	DC	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max}	f _{min} ⇔	f _{max} →
	125	0.35	0.45	0.25	0.32	0.21	0.27	0.18	0.23	0.16	0.21
	160	0.40	0.51	0.28	0.36	0.23	0.30	0.20	0.26	0.18	0.23
	200	0.44	0.57	0.32	0.41	0.26	0.33	0.23	0.29	0.20	0.26
'	250	0.50	0.64	0.35	0.45	0.29	0.37	0.25	0.32	0.23	0.29
	315	0.56	0.72	0.39	0.51	0.32	0.42	0.28	0.36	0.25	0.32
	125	0.35	0.45	0.25	0.32	0.21	0.27	0.18	0.23	0.16	0.21
	160	0.40	0.51	0.28	0.36	0.23	0.30	0.20	0.26	0.18	0.23
	200	0.44	0.57	0.32	0.41	0.26	0.33	0.23	0.29	0.20	0.26

	a _e	\$	32	4	10	į	50	(53	8	30
	DC	f _{min} ⇔	f_{max}	f _{min} ⇔	f_{max}	f _{min} ⇔	$\overset{f_{max}}{\Longrightarrow}$	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f_{max}
	125	0.15	0.19	_	-	_	-	_	-	_	_
	160	0.16	0.21	0.15	0.19	_	_	_	-	-	_
	200	0.18	0.23	0.16	0.21	0.15	0.19	_	-	_	_
'	250	0.20	0.26	0.18	0.23	0.16	0.21	0.15	0.19	0.13	0.17
	315	0.22	0.29	0.20	0.26	0.18	0.23	0.16	0.21	0.15	0.19
	125	0.15	0.19	0.13	0.17	0.12	0.15	0.11	0.14	0.10	0.13
	160	0.16	0.21	0.15	0.19	0.13	0.17	0.12	0.16	0.11	0.14
	200	0.18	0.23	0.16	0.21	0.15	0.19	0.13	0.17	0.12	0.15

	a _e	1	00	1	25	1	60	2	00
	DC	f _{min} ⇔	f _{max} ⇒	f _{min} ⇔	f _{max}	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	f_{max}
	125	-	-	-	-	_	-	_	_
	160	_	-	_	-	_	-	_	_
	200	_	_	_	_	_	-	_	_
'	250	_	-	_	-	_	-	_	-
	315	0.13	0.17	_	-	-	-	_	_
	125	0.10	0.12	0.10	0.11	-	-	-	_
	160	0.10	0.13	0.10	0.12	0.10	0.11	_	_
	200	0.11	0.14	0.10	0.13	0.10	0.12	0.10	0.11

КОПИРОВАЛЬНОЕ ФРЕЗЕРОВАНИЕ

>>>

		SRC1	0	SR	C12	SRC	16	SI	RC20	SR	D05
		_			-	_	•		-		-
		APMX (mm)	5.0	АРМХ (мм)	6.0	АРМХ (мм)	8.0	APMX (MM)	10.0	APMX (мм)	1.5
		DCX (MM)	25 – 66	DCX (MM)	40 – 100	DCX(mm)	63 – 160	DCX (MM)	80 – 160	DCX(MM)	10 – 15
Цилиндрический хво	стовик		DCX = 25 – 32 (mm)								
Хвостовик Weldon											
Сменная головка с резьбовым хвостови	ком	Ā	DCX = 25-42 (MM)								
Насадная фреза			DCX = 40 – 66 (mm)	0				Ó			
Страница		<u> </u>	24	Q	528	Ω.	532	E	<u></u> 536	Q	540
ISO		P M K	S H	P M K	S H	P M K	S H	P M	S H	P K	Н
Форма пластины		6)			G			0		0
Тип пластины		RC 10T	3	RC	1204	RC 10	606	R	C 2006	RD	0501
Количество режущих	кромок	_			_	_	-		_		_
Копировальное фрезерование				ı			•			l	
Фрезерование плоскостей										l	
Фрезерование с винтовой интерполяцией							ı				
Фрезерование с засверливанием							1				
Врезание под углом				I			1			İ	
Фрезерование неглубоких пазов											
Фрезерование глубоких уступов											
Фрезерование скруглений											
Плунжерное фрезерование											
520											

<<<				копи	ИРОВАЛ	ьное (DPE3EP	ОВАНИ	E			>>>
	SRDO	7	SRD	10	SRD	12	SRI	D16	L2-S	ZP	К3-	-CXP
	— АРМХ (мм)	2.0	АРМХ (мм)	2.5	APMX (мм)	3.0	APMX(mm)	4.0	APMX (мм)	8.9 – 44.7	АРМХ (мм)	8.0-16.0
	DCX (MM)	15 – 25	DCX(mm)	20 – 52	DCX (MM)	24 – 80	DCX (MM)	32 – 100	DCX (MM)	10 – 50	DCX (MM)	16 – 32
										DCX = 10 – 32 (mm)		DCX = 16 – 32 (MM)
		DCX = 15 (MM)		DCX = 20 (MM)						DCX = 12 – 50 (MM)		DCX = 16 - 25 (mw)
	=	Œ		(¥		<u>Σ</u>						
		DCX = 15 - 25 (MM)		DCX = 20 - 42 (mm)		DCX = 24 - 42 (MM)		DCX = 32 (MM)		DCX = 10 - 32 (MM)		DCX = 16 – 32 (MM)
			69	DCX = 42 – 52 (MM)		DCX = 50 – 80 (MM)	9	DCX = 52 - 100 (MM)				
	<u> </u>		<u> </u>		9:			560				573
	P M K N	S H	P M K	N S H	P M K	N S H	P M K	N S H	P M K	S H	P M K	S H
	RD 070	2	RD 10	03	RD 12	2T3	RD 1	1604	ZP)	:	ХР
	_		_		_		-	_	2			1
						I						
•												
						1						
THE												

<<<

КОПИРОВАЛЬНОЕ ФРЕЗЕРОВАНИЕ

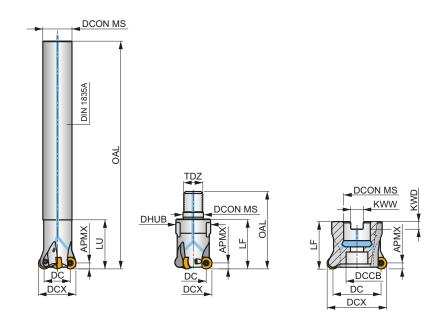
	K2-S	RC	K2-S	LC	К2-Р	PH	SVC2	2C	SWN	104C
	_		90°	1	_		90°		90° (93°)
	APMX (MM)	0.6 – 3.2	APMX (мм)	1.0 – 3.0	APMX (MM)	0.3 - 4.0	АРМХ (мм)	3.0 (16.0)	APMX (MM)	0.5 (2.0)
	DCX (MM)	8 – 20	DCX (MM)	12 – 20	DCX (MM)	8 – 32	DC (MM)	32 – 80	DC (мм)	20 – 35
Цилиндрический хвостовик		DCX = 8 - 20 (MM)				DCX = 8 – 32 (MM)		DC = 32 – 40 (mm)	A	DC = 20 – 32 (MM)
Хвостовик Weldon										
Сменная головка с резьбовым хвостовиком	Ü	DCX = 8 – 20 (мм)			•	DCX = 16 – 20 (MM)		DC = 32 – 40 (MM)		DC = 20 – 35 (MM)
Насадная фреза								DC = 50 - 80 (mm)		
Страница	<u> </u> 5	77	<u> </u>	36	<u></u> 5	90	1 60)2		605
ISO	P M K	н	P M K	н	P M K	S H	1	N	P K	н
Форма пластины	0	7	Q	•	00		Ø		6	
Тип пластины	RC LC		LC		PPH PPH PPH	F	VCGT 220	530	WN	0403
Количество режущих кромок	2		2		2		2		6	5
Копировальное фрезерование										
Фрезерование плоскостей										
Фрезерование с винтовой интерполяцией										
Фрезерование с засверливанием										
Врезание под углом										
Фрезерование неглубоких пазов										
Фрезерование глубоких уступов										
Фрезерование скруглений										
Плунжерное фрезерование										

<<<

КОПИРОВАЛЬНОЕ ФРЕЗЕРОВАНИЕ

SCNO	05C			
90° (9				
АРМХ (мм)	0.5 (1.0)			
DC (мм)	12 – 20			
	(MM)			
	DC = 12 - 20 (mm)			
14	DC = 1			
	(MM)			
	DC = 12 - 20 (mm)			
40	DC = ,			
m				
P K	008 H			
A				
0				
CN 0	502			
4				
	l			
	ı			
	ı			
	_			
	ı			
				52

PRAMET



6 P	
1	

APMX		5.0 мм
GAMP	0	GAMF

Копировальная фреза с пластинами RCMT 10

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RCMT 10 с глубиной резания до 5 мм имеют до 8 режущих кромок. Фреза подходит для широкого применения.

	Обозначение	DCX	DC	OAL	DCON MS	DHUB	DCCB	LU	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		S kg	
		(мм)	(MM)	(мм)	(мм)	(MM)	(MM)	(мм)	(мм)		(мм)	(MM)	(°)	(°)						
	25E2R034A20-SRC10-C	25	15	170	20	_	-	34	-	-	-	-	-3	-7	2	-	20900	✓	0.36	GI328 C0010
	25E3R034A20-SRC10-C	25	15	170	20	_	_	34	_	_	_	_	-3	-7	3	-	20900	✓	0.36	GI328 C0010
DIN 1835A	32E3R042A25-SRC10-C	32	22	200	25	_	_	42	-	_	_	_	-2.6	-7	4	_	18500	✓	0.67	GI328 C0010
	32E4R042A25-SRC10-C	32	22	200	25	_	-	42	-	-	-	-	-2.6	-7	3	-	18500	✓	0.66	GI328 C0010
	25E2R032M12-SRC10-C	25	15	54	12.5	21	-	-	32	M12	-	-	-3	-7	2	-	20900	✓	0.11	GI328 C0010
	25E3R032M12-SRC10-C	25	15	54	12.5	21	_	_	32	M12	_	_	-3	-7	3	_	20900	✓	0.08	GI328 C0010
	32E3R042M16-SRC10-C	32	22	65	17	29	_	_	42	M16	_	_	-2.6	-7	3	_	18500	✓	0.22	GI328 C0010
MODULAR	32E4R042M16-SRC10-C	32	22	65	17	29	-	-	42	M16	-	-	-2.6	-7	4	-	18500	✓	0.21	GI328 C0010
	35E4R042M16-SRC10-C	35	25	65	17	29	_	-	42	M16	_	-	-2.4	-7	4	_	17700	\checkmark	0.20	GI328 C0010
	42E4R042M16-SRC10-C	42	32	65	17	29	_	_	42	M16	-	-	-2.1	-7	4	_	16100	\checkmark	0.22	GI328 C0010
	42E5R042M16-SRC10-C	42	32	65	17	29	_	_	42	M16	_	_	-2.1	-7	5	_	16100	✓	0.21	GI328 C0010
	40A05R-SMORC10-C	40	30	-	16	-	14	-	40	-	8.4	5.6	-2.2	-7	5	-	16500	\checkmark	0.16	GI328 C0012
	50A05R-SM0RC10-C	50	40	-	22	_	18	-	40	-	10.4	6.3	-2	-7	5	_	14800	\checkmark	0.28	GI328 C0013
	50A06R-SMORC10-C	50	40	_	22	_	18	_	40	_	10.4	6.3	-2	-7	6	_	14800	✓	0.24	GI328 C0013
71-120	52A05R-SMORC10-C	52	42	-	22	_	18	_	40	_	10.4	6.3	-2	-7	5	_	14500	✓	0.29	GI328 C0013
ISO 6462 DIN 8030	52A06R-SMORC10-C	52	42	-	22	-	18	-	40	-	10.4	6.3	-2	-7	6	-	14500	✓	0.28	GI328 C0013
DIN 8030	63A06R-SMORC10-C	63	53	-	22	_	18	-	40	-	10.4	6.3	-1.8	-7	6	_	13200	\checkmark	0.46	GI328 C0013
	63A07R-SMORC10-C	63	53	_	22	_	18	_	40	_	10.4	6.3	-1.8	-7	7	_	13200	\checkmark	0.46	GI328 C0013
	66A06R-SMORC10-C	66	56	_	27	_	22	_	50	_	12.4	7	-1.4	-7	6	_	12800	✓	0.58	GI328 CO014
	66A07R-SMORC10-C	66	56	-	27	-	22	_	50	-	12.4	7	-1.4	-7	7	_	12800	✓	0.57	GI328 C0014

9	
GI328	RCMT 10T3MO

		Nm				(1) June
C0010	US 63509-T10P	3.0	M 3.5	9	Flag T10P	-
C0012	US 63509-T10P	3.0	M 3.5	9	Flag T10P	HS 0830C
C0013	US 63509-T10P	3.0	M 3.5	9	Flag T10P	HS 1030C
C0014	US 63509-T10P	3.0	M 3.5	9	Flag T10P	HS 1230C

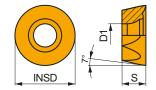
	RCMT 10													
	INSD	D1	S											
I+I	(мм)	(MM)	(мм)											
10T3	10.0	3.90	3.97											

M8310

M8330

M8340

M9325


345 0.17 1.0

310 0.17 1.0

285 0.17 1.0

395 0.17 1.0

PRAMET

		RE		Р			M			K			N				S			Н	
Обозначение		ILL	VC	f	ap	VC	f	ар	VC	f	ap	VC	f	ap		VC	f	ap	٧	c f	ap
		(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин) (мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(M/N	лин) (мм/зуб	б) (мм)
8230	20°	0,08	†	HFC	S																
	Ì		Позитив	ная гео	метри	я для чи	стовой (обработ	гки.												
RCMT 10T3MOSN-F	M6330	_	340	0.10	1.0	240	0.09	1.0	_	_	-	-	_	_		100	0.08	0.8	-		_
	M8310	_	445	0.10	1.0	225	0.09	1.0	-	-	-	_	-	_		_	-	_	-		_
	M8330	_	395	0.10	1.0	235	0.09	1.0	-	-	-	_	_	_		95	0.08	0.8	-		_
	20°	0,1 20°		(Ú)	HFC	S															
PANNY !	,		Позитив	ная гео	метри	я для по	лучисто	вои обр	аботки.												
RCMT 10T3MOSN-M	M6330	_	3 10	0.12	1.0	220		1.0	_	-	-	-	-	-		90	0.11	0.8	-		_
	M8310	_	400	0.12	1.0	200	0.11	1.0	380	0.12	1.0	-	_	-		-	-	-	-		
	M8330	_	360	0.12	1.0	215		1.0	340	0.12	1.0	-	_	_		90	0.11	0.8	_		
	M8340 M8345	_	330 260	0.12	1.0	✓ 195✓ 155	0.11	1.0	310	0.12	1.0	-	-	_	H	80	0.11	0.8	_	_	
	M9325		465	0.12	1.0	100	0.11	1.0	440	0.12	1.0			_	H	65	0.11	0.0			
	M9340		425	0.12		Z 255	0.11	1.0	_	-	-	_	_	_		105	0.11	0.8			_
-		0 <u>,15</u> √12°	*	HFC	S		0.11	1.0								103	0.11	0.0			
			Позитив	ная гео	метри	я для че	рновой	обрабо	тки.												
										0.17									_		1.0

 ■ 325
 0.17
 1.0

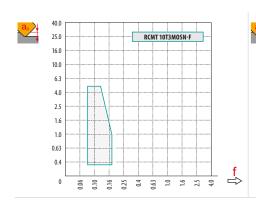
 ■ 290
 0.17
 1.0

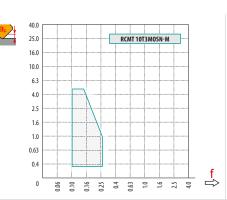
 ■ 270
 0.17
 1.0

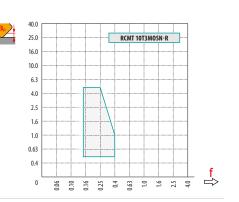
375 0.17 1.0

▼ 75 0.17 0.8 **▼** 60 0.15 1.0

- Z 75 0.15 1.0


70 0.17 0.8

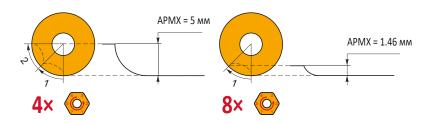




a _e /DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒ x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

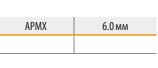
0000000	RCMT 10-F	RCMT 10-M	RCMT 10-R
RE	5.0	5.0	5.0
BS	_	_	_

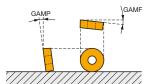
DCX	a _p	0.00	0.15	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00
25		15.00	17.43	18.41	19.36	20.27	21.00	21.61	22.14	23.00	23.66	24.17	24.80	25.00
32		22.00	24.43	25.41	26.36	27.27	28.00	28.61	29.14	30.00	30.66	31.17	31.80	32.00
35		25.00	27.43	28.41	29.36	30.27	31.00	31.61	32.14	33.00	33.66	34.17	34.80	35.00
40		30.00	32.43	33.41	34.36	35.27	36.00	36.61	37.14	38.00	38.66	39.17	39.80	40.00
42	DEF	32.00	34.43	35.41	36.36	37.27	38.00	38.61	39.14	40.00	40.66	41.17	41.80	42.00
50		40.00	42.43	43.41	44.36	45.27	46.00	46.61	47.14	48.00	48.66	49.17	49.80	50.00
52		42.00	44.43	45.41	46.36	47.27	48.00	48.61	49.14	50.00	50.66	51.17	51.80	52.00
63		53.00	55.43	56.41	57.36	58.27	59.00	59.61	60.14	61.00	61.66	62.17	62.80	63.00
66		56.00	58.43	59.41	60.36	61.27	62.00	62.61	63.14	64.00	64.66	65.17	65.80	66.00
	a _p	_	0.15	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00
	‡ ⇔f	_	0.90	0.64	0.50	0.41	0.35	0.32	0.29	0.25	0.23	0.21	0.19	0.17

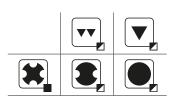


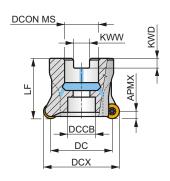
DCX	DMIN	DMAX	DMIN Ø	SMAX DMAX
25	32.0	50.0	3.0	3.0
32	45.0	64.0	3.0	3.0
35	51.0	70.0	3.0	3.0
40	61.0	80.0	3.0	3.0
42	65.0	84.0	3.0	3.0
50	81.0	100.0	3.0	3.0
52	85.0	104.0	3.0	3.0
63	107.0	126.0	3.0	3.0
66	113.0	132.0	3.0	3.0

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
35		0.648	0.837	1.183	1.449	1.673	2.049	2.366	2.646	2.898	3.347	3.742
40	₩SFE	0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
42	FE	0.710	0.917	1.296	1.587	1.833	2.245	2.592	2.898	3.175	3.666	4.099
50		0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
52		0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
RE	μm	3	5	10	15	20	30	40	50	60	80	100
5.0	FE	0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000








Копировальная фреза с пластинами RCMT 12

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RCMT 12 с глубиной резания до 6 мм имеют до 12 режущих кромок. Фреза подходит для широкого применения.

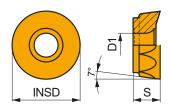
	Обозначение	DCX	DC	DCON MS	DCCB	LF	KWW	KWD	GAMF	GAMP			max.		∫ kg			
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(°)	(°)								
	40A03R-SMORC12-C	40	28	16	12	40	8.4	5.6	-2.1	-7	3	-	14800	✓	0.29	GI279	C0022	-
	50A04R-SMORC12-C	50	38	22	18	40	10.4	6.3	-2	-7	4	-	13200	✓	0.39	GI279	C0023	-
D-02	52A05R-SMORC12-C	52	40	22	18	40	10.4	6.3	-2	-7	5	-	12900	✓	0.36	GI279	C0023	-
ISO 6462 DIN 8030	63A05R-SMORC12-C	63	51	22	30	40	10.4	6.3	-2	-7	5	-	11800	✓	0.51	GI279	C0023	-
DIN 8030	66A06R-SMORC12-C	66	54	27	22	50	12.4	7	-1.5	-7	6	-	11400	✓	0.67	GI279	C0024	-
	80A05R-SMORC12-C	80	68	27	37	50	12.4	7	-1.7	-7	5	-	10400	✓	1.10	GI279	C0024	-
	100A06R-SMORC12-C	100	88	32	45	50	14.4	8	-1.8	-7	6	_	9300	✓	1.83	GI279	C0021	AC002

<u></u>	
GI279	RCMT 1204MO

		Nm			10		(1) The state of t
C0021	US 63509-T15P	3.0	M 3.5	10	D-T08P/T15P	FG-15	_
C0022	US 63509-T15P	3.0	M 3.5	10	D-T08P/T15P	FG-15	HS 90835
C0023	US 63509-T15P	3.0	M 3.5	10	D-T08P/T15P	FG-15	HS 1030C
C0024	US 63509-T15P	3.0	M 3.5	10	D-T08P/T15P	FG-15	HS 1230C

AC002	KS 1635	K.FMH32

RCMT 1204MOSN-R


M8345

M9315

190 0.35

315 0.35

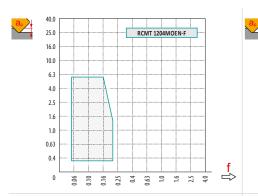
1.5

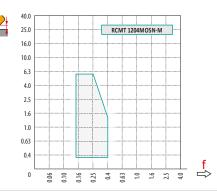
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator. P M K S RE Обозначение ap ар 20° Позитивная геометрия для чистовой обработки. RCMT 1204M0EN-F 8215 390 0.10 1.5 🔼 230 0.09 1.5 95 0.07 1.2 M8310 420 0.10 1.5 🗷 210 0.09 1.5 M8330 380 0.10 1.5 **225** 0.09 1.5 **2** 95 0.07 1.2 Позитивная геометрия для получистовой обработки. RCMT 1204MOSN-M M6330 265 0.20 1.5 🗷 185 0.18 1.5 0.16 1.2 75 M8310 335 0.20 1.5 170 0.18 1.5 315 0.20 1.5 M8330 305 0.20 1.5 🖊 180 0.18 1.5 285 0.20 1.5 75 0.16 1.2 M8345 225 0.20 0.18 1.5 55 0.16 1.2 1.5 🔼 135 M9325 380 0.20 1.5 360 0.20 1.5 M9340 345 0.20 1.5 🔼 205 0.18 1.5 **85** 0.16 1.2 0,8 Позитивная геометрия для черновой обработки. RCMT 1204M0EN-R M8310 280 0.30 1.5 🗷 140 0.27 1.5 🔳 265 0.30 1.5 M8330 260 0.30 1.5 🖊 155 0.27 1.5 🔳 245 0.30 **6**5 0.24 1.2 🗷 50 0.15 1.0 0,2 Позитивная геометрия для черновой обработки.

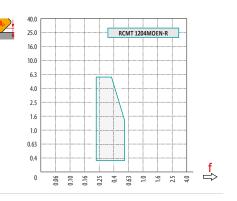
295 0.35

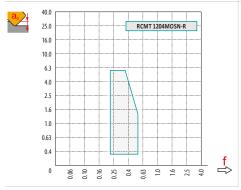
1.5

0.25 1.2


60 0.15 1.0

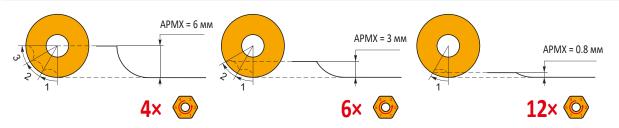




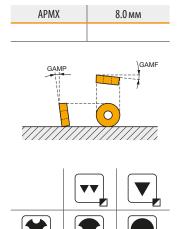

a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒×.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

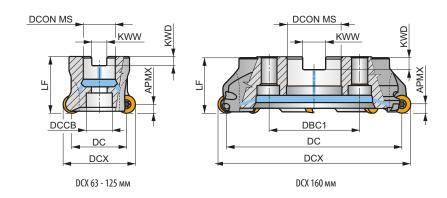
00000000	RCMT 12-F	RCMT 12-M	RCMT 12 EN-R	RCMT 12 SN-R
RE	6.0	6.0	6.0	6.0
BS	-	-	_	_

DCX	a _p	0.00	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00
40		28.0	31.7	32.8	33.8	34.6	35.3	35.9	36.9	37.7	38.4	39.3	39.8	40.0
50		38.0	41.7	42.8	43.8	44.6	45.3	45.9	46.9	47.7	48.4	49.3	49.8	50.0
52		40.0	43.7	44.8	45.8	46.6	47.3	47.9	48.9	49.7	50.4	51.3	51.8	52.0
63	(DEF)	51.0	54.7	55.8	56.8	57.6	58.3	58.9	59.9	60.7	61.4	62.3	62.8	63.0
66		54.0	57.7	58.8	59.8	60.6	61.3	61.9	62.9	63.7	64.4	65.3	65.8	66.0
80		68.0	71.7	72.8	73.8	74.6	75.3	75.9	76.9	77.7	78.4	79.3	79.8	80.0
100		88.0	91.7	92.8	93.8	94.6	95.3	95.9	96.9	97.7	98.4	99.3	99.8	100.0
	a _p	_	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00
	∳ ⇔f	_	0.95	0.74	0.61	0.53	0.47	0.43	0.38	0.34	0.31	0.28	0.25	0.24


DC	DMIN	DMAX	DMIN 🕢	DMAX O
40	56.0	80.0	6.0	6.0
50	76.0	100.0	6.0	6.0
52	80.0	104.0	6.0	6.0
63	102.0	126.0	6.0	6.0
66	108.0	132.0	6.0	6.0
80	136.0	160.0	6.0	6.0
100	176.0	200.0	6.0	6.0

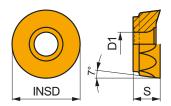
DC	μm	3	5	10	15	20	30	40	50	60	80	100
40		0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
50		0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
52	IVIS FE	0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
63	F	0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
100		1.095	1.414	2.000	2.449	2.828	3.464	4.000	4.472	4.899	5.657	6.325
RE	μm	3	5	10	15	20	30	40	50	60	80	100
6.0	FE	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191





Копировальная фреза с пластинами RCMT 16

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RCMT 16 с глубиной резания до 8 мм имеют до 8 режущих кромок. Фреза подходит для широкого применения.

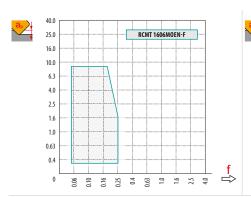

	Обозначение	DCX	DC	DCON MS	DCCB	DBC1	LF	KWW	KWD	GAMF	GAMP			max.		∫ kg			
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(мм)	(MM)	(°)	(°)								
	63A04R-SMORC16-C	63	47	22	18	-	50	10.4	6.3	-2.6	-7	4	_	9700	\checkmark	0.61	GI280	C0033	-
	66A05R-SMORC16-C	66	50	27	22	-	50	12.4	7	-2.5	-7	5	_	9200	\checkmark	0.60	GI280	C0030	_
ISO 6462 DIN 8030	80A05R-SMORC16-C	80	64	27	37	-	50	12.4	7	-1.7	-7	5	-	8600	✓	0.88	GI280	C0030	_
ISO 6462 DIN 8030	100A06R-SMORC16-C	100	84	32	45	-	50	14.4	8	-1.7	-7	6	_	7700	✓	1.33	GI280	C0031	AC002
	125A07R-SMORC16-C	125	109	40	36	-	63	16.4	9	-1.2	-7	7	-	6500	✓	3.07	GI280	C0032	_
	160C08R-SMORC16-C	160	144	40	-	66.7	63	16.4	9	-0.9	-7	8	-	5400	✓	5.68	GI280	C0034	_

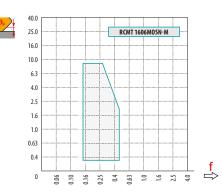
GI280	RCMT 1606MO.

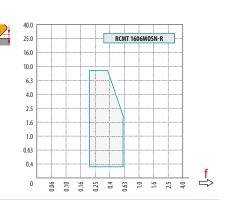
		Nm				(1) Marie		(1) Marin	$\langle \circ \rangle$
C0030	US 65014-T20P	5.0	M 5	14	SDR T20P-T	HS 1230C	-	_	-
C0031	US 65014-T20P	5.0	M 5	14	SDR T20P-T	_	_	_	_
C0032	US 65014-T20P	5.0	M 5	14	SDR T20P-T	HSD 2040	_	_	_
C0033	US 65014-T20P	5.0	M 5	14	SDR T20P-T	HS 1030C	_	_	_
C0034	US 65014-T20P	5.0	M 5	14	SDR T20P-T	HS 1240C	CAC 160C	HSD 0825C	HXK 5

AC002	KS 1635	K.FMH32

	RCI	MT 16	
	INSD	D1	S
	(MM)	(мм)	(MM)
1606	16.0	5.50	6.35


Применение инструме	нта, начальнь	е знач	ения скорс	сти ре	кинь	(vc), 110 <u>/</u>	цачи (I <i>)</i>	итлуои	ны реза	ния (ар	,. для до	лиолнит	ельны	Срасч	elor	ВОСП	ользуит	есь пр	иложен	ием сан	cuiato
	PHERICAPH	RE		P			M			K			N				S			Н	
Обозначение			vc	f	ap	VC	f	ap	VC	f	ар	VC	f	ap		VC	f	ap	VC	f	ap
		(MM)	(м/мин)	(мм/зуб)	(MM)	(м/ми	н) (мм/зуб)	(MM)	(м/мин) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин) (мм/зуб)	(MM)
6			†	HFC	E																
	[†] 20°		Позитиві	ная гео	метри	я для чи	стовой	обрабо	тки.												
RCMT 1606M0EN-F	M8310	_	4 10	0.10	2.0	2 05	0.09	2.0	-	_	-	_	_	-		_	_	_	_	-	-
	M8330	-	370	0.10	2.0	220	0.09	2.0	_	-	-	-	-	-		90	0.07	1.6	_	-	-
Ellina.	0,13			HFC	S																
emil	[†] 20°		Позитиві	ная гео	метри	я для по	лучисто	вой об	работки												
RCMT 1606MOSN-M	M6330	_	255	0.20	2.0	1 80	0.18	2.0	_	-	-	_	-	-		75	0.16	1.6	_	-	-
	M8330	_	300	0.20	2.0	1 80			285	0.20	2.0	_	-	-		75	0.16	1.6	_	_	-
	M8345	-	215	0.20	2.0	1 25	0.18	2.0	_	-	-	_	-	-		50	0.16	1.6	_	_	-
	M9325	_	370	0.20	2.0	_	_	_	350	0.20	2.0	_	-	-		-	_	-	_	-	-
	M9340	_	335	0.20	2.0	2 00	0.18	2.0	_	-	-	_	-	_		80	0.16	1.6	_	_	-
	1,1	<u>}</u> 0°	*	HFC	P																
	¹ 20°		Позитиві	ная гео	метри	я для че	рновой	обрабо	тки.												
RCMT 1606MOSN-R	M8310	_	250	0.40	2.0	_	-	-	235	0.40	2.0	_	_	-		_	_	-	50	0.15	1.0
	M8330	-	2 40	0.40	2.0	_	-	-	225	0.40	2.0	-	-	-		60	0.28	1.6	4 5	0.15	1.0
	M8345	_	175	0.40	2.0	_	-	-	_	-	-	-	-	-		40	0.28	1.6	-	-	-
	M9325		280	0.40	2.0				265	0.40	2.0								5 5	0.15	1.0



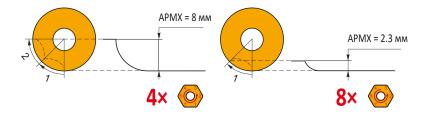


a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒×.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒×.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

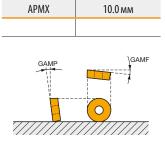
000000	RCMT 16-F	RCMT 16-M	RCMT 16-R
RE	8.0	8.0	8.0
BS	-	_	_

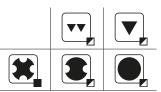
DCX	a _p	0.00	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00
63		47.0	51.3	52.6	53.8	54.7	55.6	56.3	57.6	58.6	59.5	60.9	61.8	62.5	62.9	63.0
66		50.0	54.3	55.6	56.8	57.8	58.6	59.3	60.6	61.6	62.5	63.9	64.8	65.5	65.9	66.0
80	DEF	64.0	68.3	69.6	70.8	71.7	72.6	73.3	74.6	75.6	76.5	77.9	78.8	79.5	79.9	80.0
100	UEF.	84.0	88.3	89.6	90.8	91.7	92.6	93.3	94.6	95.6	96.5	97.9	98.8	99.5	99.9	100.0
125		109.0	113.3	114.6	115.8	116.7	117.6	118.3	119.6	120.6	121.5	122.9	123.8	124.5	124.9	125.0
160		144.0	148.3	149.6	150.8	151.7	152.6	153.3	154.6	155.6	156.5	157.9	158.8	159.5	159.9	160.0
	a _p	-	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00
	‡ ⇔f	_	1.10	0.85	0.70	0.61	0.54	0.50	0.43	0.39	0.36	0.31	0.28	0.26	0.25	0.24

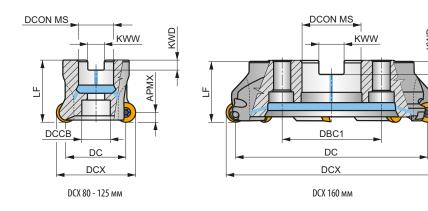
RPMX	APMX/I
7.0	8.0/67
6.5	8.0/71
5.0	8.0/93
4.0	6.8/100
	7.0 6.5 5.0


DC	DMIN	DMAX	DMIN Ø	DMAX DMAX
63	94.0	126.0	8.0	8.0
66	100.0	132.0	8.0	8.0
80	128.0	160.0	8.0	8.0
100	168.0	200.0	8.0	8.0

DC	μm	3	5	10	15	20	30	40	50	60	80	100
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
80	FE	0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
100		1.095	1.414	2.000	2.449	2.828	3.464	4.000	4.472	4.899	5.657	6.325
125		1.225	1.581	2.236	2.739	3.162	3.873	4.472	5.000	5.477	6.325	7.071
160		1.386	1.789	2.530	3.098	3.578	4.382	5.060	5.657	6.197	7.155	8.000
RE	μm	3	5	10	15	20	30	40	50	60	80	100
8.0	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530

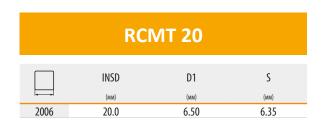


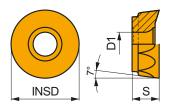




Копировальная фреза с пластинами RCMT 20

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RCMT 20 с глубиной резания до 10 мм имеют до 8 режущих кромок. Фреза подходит для широкого применения.




	Обозначение	DCX	DC	DCON MS	DCCB	DBC1	LF	KWW	KWD	GAMF	GAMP			max.		S kg			
	80A04R-SMORC20-C	80	60	27	28	-	50	12.4	7	-2.7	-7	4	-	8500	✓	0.96	GI281	C0040	_
ISO 6462 DIN 8030	100A05R-SMORC20-C	100	80	32	45	-	50	14.4	8	-1.7	-7	5	_	7600	\checkmark	1.26	GI281	C0041	AC002
ISO 6462 DIN 8030	125A06R-SMORC20-C	125	105	40	36	-	63	16.4	9	-1	-7	6	-	6500	✓	2.96	GI281	C0042	-
	160C07R-SM0RC20-C	160	140	40	_	66.7	63	16.4	9	-0.9	-7	7	_	5400	✓	5.44	GI281	C0046	_

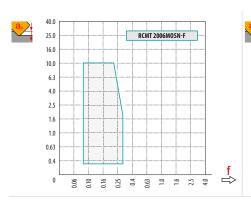
GI281	RCMT 2006MO

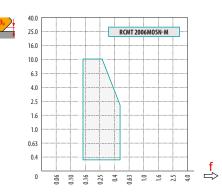
		Nm			S	(a) The same of th			(
C0040	US 66015-T25P	7.5	M 6	15	SDR T25P-T	HS 1230C	-	_	-
C0041	US 66015-T25P	7.5	M 6	15	SDR T25P-T	_	_	_	_
C0042	US 66015-T25P	7.5	M 6	15	SDR T25P-T	HSD 2040	_	_	_
C0046	US 66015-T25P	7.5	M 6	15	SDR T25P-T	HS 1240C	CAC 160C	HSD 0825C	HXK 5

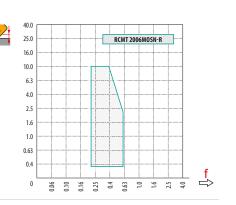
AC002	KS 1635	K.FMH32

Применение инструмен	та, начальнь	іе знач	ения скор	ости ре	зания	(Vс), п	одачи	и (f) и	глубин	ны резан	іия (ар)	. Для до	пол	ните	льных	расче	eTOE	восп	ользуй [.]	тесь пр	иложен	ием Cal	lculato
Обозначение	CHARGES	RE	Р			M		K		N				S			Н						
ОООЗНАЧЕНИЕ		(MM)	VC (м/мин	f) (мм/зуб)	ар (мм)		vс мин) (м	f мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vc ′мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)
-6-		,25	HFC	S																			
	¹ 20°		Позитив	ная гео	метри	я для	чисто	вой о	бработ	ки.													
RCMT 2006MOSN-F	M8330	-	320	0.15	3.0	1	90 (0.14	3.0	-	-	-		-	-	-		80	0.11	2.4	_	-	-
Edition of the same	0,22	<u>}</u> 20°		HFC	S																		
Euro V	20°		Позитив	ная гео	метри	я для	получ	ИСТОЕ	вой обр	аботки.													
RCMT 2006MOSN-M	M6330	_	225	0.30	3.0	1	55 (0.27	3.0	-	_	-		_	_	-		65	0.21	2.4	_	_	-
	M8330	_	255	0.30	3.0	1	50 (0.27	3.0	240	0.30	3.0		-	-	-		60	0.21	2.4	_	-	_
	M8345	_	1 90	0.30	3.0	1	10 (0.27	3.0	-	-	-		-	_	-		45	0.21	2.4	_	_	_
	M9315	-	3 30	0.30	3.0		-	-	-	310	0.30	3.0		-	-	-		-	-	-	_	-	-
	M9325	-	3 15	0.30	3.0		-	-	-	295	0.30	3.0		-	-	-		-	-	_	_	-	-
	M9340	-	275	0.30	3.0	2 1	65 (0.27	3.0	-	-	-		_	-	-		65	0.21	2.4	-	_	_

Позитивная геометрия для черновой обработки.


RCMT 2006MOSN-R	M8330	_	225	0.45	3.0	-	-	-	2	10	0.45	3.0	_	_	-	55	0.32	2.4	45	0.15	1.0
	M8345	_	165	0.45	3.0	_	-	-		_	_	_	_	_	-	40	0.32	2.4	_	_	_
	M9325	_	260	0.45	3.0	_	-	-						_			_			0.15	1.0



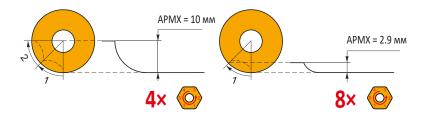


a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

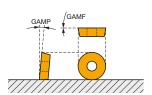
00000000	RCMT 20-F	RCMT 20-M	RCMT 20-R
RE	10.0	10.0	10.0
BS	_	_	_

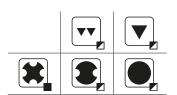
DCX	a _p	0.00	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
80		60.0	64.9	66.2	67.6	68.7	69.7	70.5	72.0	73.2	74.3	76.0	77.3	78.3	79.1	79.6	79.9	80.0
100	DEF	80.0	84.9	86.2	87.6	88.7	89.7	90.5	92.0	93.2	94.3	96.0	97.3	98.3	99.1	99.6	99.9	100.0
125	V	105.0	109.9	111.2	112.6	113.7	114.7	115.5	117.0	118.2	119.3	121.0	122.3	123.3	124.1	124.6	124.9	125.0
160		140.0	144.9	146.2	147.6	148.7	149.7	150.5	152.0	153.2	154.3	156.0	157.3	158.3	159.1	159.6	159.9	160.0
	a _p	-	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
	‡ ⇒f	_	1.23	0.95	0.78	0.68	0.61	0.55	0.48	0.43	0.40	0.35	0.31	0.29	0.27	0.26	0.25	0.24

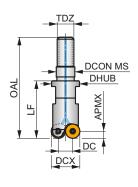
DCX	RPMX	APMX/I
80	7.0	10.0/83
100	5.0	8.6/100


DCX	DMIN	DMAX	DMIN Ø	DMAX DMAX
80	120.0	160.0	10.0	10.0
100	160.0	200.0	10.0	10.0

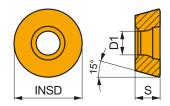
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
100	FE	1.095	1.414	2.000	2.449	2.828	3.464	4.000	4.472	4.899	5.657	6.325
125		1.225	1.581	2.236	2.739	3.162	3.873	4.472	5.000	5.477	6.325	7.071
160		1.386	1.789	2.530	3.098	3.578	4.382	5.060	5.657	6.197	7.155	8.000
RE	μm	3	5	10	15	20	30	40	50	60	80	100
10.0	FE	0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828



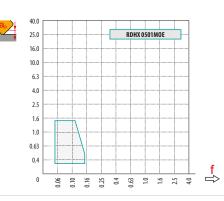



Копировальная фреза с пластинами RDHX 05

Конструкция фрезы имеет двойную позитивную или нейтрально-позитивную геометрию, внутренний подвод СОЖ. Односторонние пластины RDHX 05 с глубиной резания до 1.5 мм. Фреза подходит для широкого применения.


	Обозначение	DCX	DC	DHUB	OAL	LF	DCON MS	TDZ	GAMF	GAMP			max.		kg		
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		()	(°)							
	10E2R020M06-SRD05-CF	10	5	9.8	35	20	6.5	M6	5	3	2	-	89300	\checkmark	0.01	GI117	CO352
MODULAR	12E3R020M06-SRD05-CF	12	7	10	35	20	6.5	M6	0	3	3	-	81500	\checkmark	0.01	GI117	C0352
SDOLAN	15E4R020M08-SRD05-CF	15	10	13.5	38	20	8.5	M8	0	3	4	_	72900	✓	0.02	GI117	C0352

		Nm			×
C0352	US 62003B-T06P	0.9	M 2	3	Flag T06P


'	17				. ,, -11	. ,	. , .		٠, ١	7.11				1		/					
24	PKPKXP3	RE	Р			M			K			ı	N			S			1	Н	
Обозначение			vc f	ap	VC	f	ap	VC	f	ар		VC	f	ap	VC	f	ap		VC	f	ар
		(MM)	(м/мин) (мм/зуб) (MM)	(м/мин) (мм/зуб)	(мм)	(м/м	ін) (мм/зуб)) (мм)	()	м/мин) ((мм/зуб)	(MM)	(м/ми	н) (мм/зуб)	(мм)	(N	и/мин)	(мм/зуб)	(MM)
			HFC E																		
			Геометрия с не		ным пер	едним у	/глом д				ки.										
RDHX 0501M0E	M8310	_	400 0.10	0.5	_	_	-	38	0.10	0.5		-	-	-	_	_	-		80	0.15	1.0

a _e /DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	RDHX 05
RE	2.5
BS	-

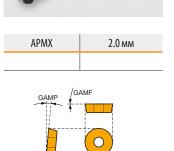
DCX	a _p	0.00	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50
10		5.0	7.4	8.0	8.6	9.0	9.3	9.6	9.9	10.0
12	DEF	7.0	9.4	10.0	10.6	11.0	11.3	11.6	11.9	12.0
15		10.0	12.4	13.0	13.6	14.0	14.3	14.6	14.9	15.0
	a _p	_	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50
	‡ ⇒f	_	0.25	0.19	0.16	0.14	0.13	0.12	0.10	0.09

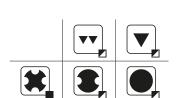
DCX	RPMX	APMX/I
10	15.0	1.3/11
12	11.0	1.3/14
15	7.0	1.3/22

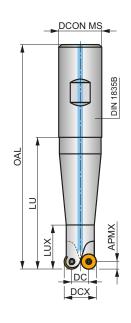
DCX	DMIN	DMAX	SMAX DMIN	DMAX O
10	12.0	20.0	1.2	1.2
12	16.0	24.0	1.2	1.2
15	22.0	30.0	1.2	1.2

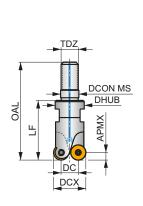
1	$\overline{}$
١,	\sim
П	\sim
П	
L	.)

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
10	₩SFE	0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
12	FE	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
15		0.424	0.548	0.775	0.949	1.095	1.342	1.549	1.732	1.897	2.191	2.449
RE	μm	3	5	10	15	20	30	40	50	60	80	100
2.5	OFE	0.245	0.316	0.447	0.548	0.632	0.775	0.894	1.000	1.095	1.265	1.414

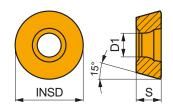



PRAMET




Копировальная фреза с пластинами RD.. 07

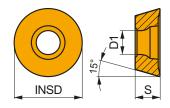
Конструкция фрезы имеет нейтрально-позитивную или нейтрально-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RD.. 07 с глубиной резания до 2 мм. Фреза подходит для широкого применения.



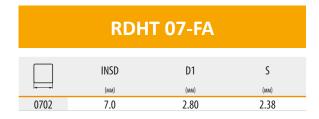
	Обозначение	DCX	DC	OAL	DCON MS	DHUB	LU	LUX	LF	TDZ	GAMF	GAMP			max.		S kg		
		(MM)	(MM)	(мм)	(мм)	(мм)	(MM)	(MM)	(MM)		(°)	(°)							
	15E2R040B16-SRD07-CF	15	8	88	16	_	40	20	_	-	1	0	2	_	44200	✓	0.10	GI118	C0354
	15E2R060B16-SRD07-CF	15	8	108	16	-	60	20	_	-	1	0	2	_	44200	✓	0.13	GI118	C0354
DIN 1835B	15E2R080B20-SRD07-CF	15	8	130	20	-	80	22	_	-	1	0	2	_	44200	✓	0.22	GI118	C0354
DIN 1033B	15E2R100B20-SRD07-CF	15	8	150	20	_	100	22	_	_	1	0	2	_	44200	✓	0.25	GI118	CO354
	15E2R120B25-SRD07-CF	15	8	176	25	-	120	22	_	-	1	0	2	_	44200	✓	0.43	GI118	CO354
	15E2R028M08-SRD07-CF	15	8	46	8.5	13.5	-	-	28	M8	1	0	2	_	44200	✓	0.03	GI118	CO354
	15E3R028M08-SRD07-CF	15	8	46	10.5	13.5	_	_	28	M8	2	0	3	-	44200	✓	0.03	GI118	CO354
MODULAR	20E4R028M10-SRD07-CF	20	13	47	12.5	18	_	_	28	M10	-8	0	4	_	38200	✓	0.05	GI118	C0354
	25E5R028M12-SRD07-CF	25	18	50	12.5	21	_	_	28	M12	-2	0	5	_	34200	✓	0.08	GI118	C0354

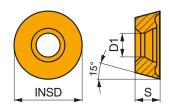
	8	Nm			×.
C0354	US 42505-T07P	1.2	M 2.5	5	Flag T07P

| INSD | D1 | S | | (MM) | (MM

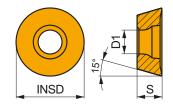


Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.


	PROMISE	RE			Р				M				K				N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc 'мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M		ар б) (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	, -	0,12	1		HFC	T																		
	20°		Гес	метри	я с ней	тральн	іым п	epe	дним у	/глом	ДЛЯ	я чисто	вой об	работк	ки.									
RDHX 0702MOT	M4303	-		370	0.15	0.5		_	_	_		350	0.15	0.5		-	_	_	-	-	-	70	0.15	1.0
	M8310	_		360	0.15	0.5		_	_	_		340	0.15	0.5		-	_	_	-	-	_	70	0.15	1.0
	M8325	_		275	0.15	0.5		_	_	_		-	_	_		_	_	_	-	_	_	_	_	_
RDHX 07T1M0T	M8310	_		360	0.15	0.5		_	_	_		340	0.15	0.5		_	_	_	-	_	_	70	0.15	1.0
	M8325	-		275	0.15	0.5		-	-	-		-	_	_		-	-	-	_	-	-	-	-	_


	RD	GT 07	
	INSD	D1	S
	(MM)	(MM)	(MM)
0702	7.0	2.80	2.38

•	PRAKSPE	RE			Р				М				K			N			S			н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
0	0.08	15,9°	\(\)		HFC	T	_		товой с		TKI												
RDGT 0702MOT	M8310	_		400	0.15	0.5		200	0.14	0.5		380	0.15	0.5	_	_	-	-	_	-	_	_	_
	M8325	-		305	0.15	0.5		145	0.14	0.5		_	_	_	_	-	-	-	-	-	-	-	_
	M8345	_		270	0.15	0.5		160	0.14	0.5		-	_	_	_	_	_	65	0.12	0.4	_	_	_

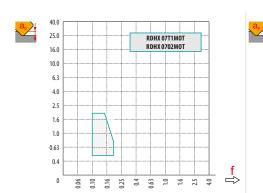


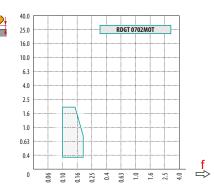
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

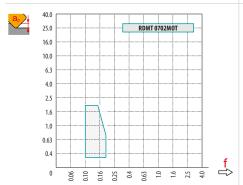
Обозначение	RE	Р	M	K N	S	Н
Орозначение	(MM)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap vc f a (м/мин) (мм/зуб) (мм) (м/мин) (мм/зуб) (м	· ·	vc f ар (м/мин) (мм/зуб) (мм)
	\15,9°	HFC F				
		Позитивная геометри	я для чистовой и получ	истовой обработки цветных сплавов.		
RDHT 0702MO-FA	HF7 –			_	5 – – –	

	RDI	MT 07	
	INSD	D1	S
\square	(MM)	(MM)	(MM)
0702	7.0	2.80	2.38

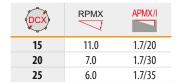
PRAMET


Обозначение	PK-MARY	RE		Р			M			K			N			S			Н	
Обозначение		(MM)	VC (м/мин	f) (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	VС (м/ми		ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,1	14°\	HFC	S																
	20°	>	Геометр	ия для ч	чистово	й обраб	отки.													
RDMT 0702MOT	M8325	_	305	0.15	0.5 I	1 45	0.14	0.5	-	-	-	-	-	-	_	-	-	-	_	-




a。/ DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

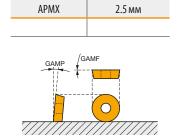
00000000	RDHX 07	RDGT 07	RDHT 07-FA
RE	3.5	3.5	3.5
BS	_	-	_

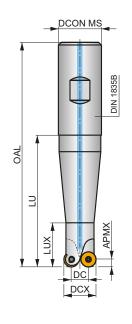


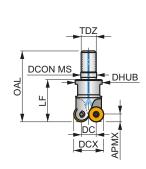
DCX	a _p	0.00	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50
15		8.0	10.8	11.6	12.3	12.9	13.4	13.7	14.3	14.7	14.9	15.0
20	(DEF)	13.0	15.8	16.6	17.3	17.9	18.4	18.7	19.3	19.7	19.9	20.0
25		18.0	20.8	21.6	22.3	22.9	23.4	23.7	24.3	24.7	24.9	25.0
	a _p	0.00	0.30	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50
	∳ ⇒f	_	0.29	0.23	0.19	0.16	0.15	0.13	0.12	0.11	0.10	0.09

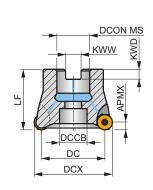
DCX	DMIN	DMAX	SMAX DMIN	SMAX DMAX
15	17.0	30.0	0.4	1.7
20	28.0	40.0	1.7	1.7
25	38.0	50.0	1.7	1.7

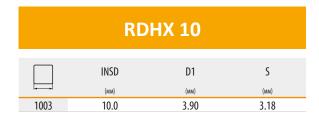
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
15	MS FE	0.424	0.548	0.775	0.949	1.095	1.342	1.549	1.732	1.897	2.191	2.449
20	FE	0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
RE	μm	3	5	10	15	20	30	40	50	60	80	100
3.5	FE	0.290	0.374	0.529	0.648	0.748	0.917	1.058	1.183	1.296	1.497	1.673

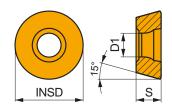

PRAMET


Копировальная фреза с пластинами RD.. 10


Конструкция фрезы имеет нейтральную, двойную позитивную или нейтрально-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RD.. 10 с глубиной резания до 2.5 мм. Фреза подходит для широкого применения.



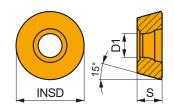




	Обозначение	DCX	DC	OAL	DCON MS	DHUB	DCCB	LU	LUX	LF	TDZ	KWW	KWD	GAMF	GAMP		(i)	max.		∫ kg	
		(мм)	(MM)	(MM)	(MM)	(мм)	(мм)	(MM)	(MM)	(MM)		(ww)	(MM)	(°)	(°)						
	20E2R040B20-SRD10-CF	20	10	90	20	-	-	40	20	-	_	-	-	-2	0	2	-	30800	\checkmark	0.17	GI119 CO356
	20E2R060B20-SRD10-CF	20	10	110	20	-	_	60	22	-	_	-	-	-2	0	2	-	30800	✓	0.20	GI119 CO356
DIN 1835B	20E2R080B25-SRD10-CF	20	10	136	25	-	-	80	25	-	-	-	-	-2	0	2	-	30800	✓	0.36	GI119 CO356
BIN 20330	20E2R100B25-SRD10-CF	20	10	156	25	-	_	100	25	-	_	_	-	-2	0	2	_	30800	✓	0.41	GI119 CO356
	20E2R120B25-SRD10-CF	20	10	176	25	-	-	120	25	-	-	-	-	-2	0	2	-	30800	✓	0.46	GI119 CO356
	20E2R028M10-SRD10-CF	20	10	47	10.5	18	_	_	_	28	M10	_	_	-2	0	2	_	30800	✓	0.07	GI119 CO356
	25E2R032M12-SRD10-CF	25	15	54	12.5	21	-	-	_	32	M12	_	-	0.5	0.5	2	_	27500	✓	0.08	GI119 CO356
	25E3R032M12-SRD10-CF	25	15	54	12.5	21	-	_	_	32	M12	_	-	0.5	0.5	3	_	27500	✓	0.08	GI119 CO356
	30E4R042M16-SRD10-CF	30	20	65	17	29	_	_	_	42	M16	_	_	0	0	4	_	25100	✓	0.18	GI119 CO356
MODULAR	32E4R042M16-SRD10-CF	32	22	65	17	29	_	_	_	42	M16	_	_	0	0	4	_	24300	✓	0.19	GI119 CO356
	35E5R042M16-SRD10-CF	35	25	65	17	29	-	-	_	42	M16	-	-	0	0	5	_	23200	✓	0.20	GI119 CO356
	42E4R042M16-SRD10-CF	42	32	65	17	29	_	_	-	42	M16	_	-	0	0	4	_	21200	✓	0.24	GI119 CO356
	42E5R042M16-SRD10-CF	42	32	65	17	29	-	_	-	42	M16	-	-	0	0	5	_	21200	✓	0.24	GI119 CO356
	42A05R-SMORD10-CF	42	32	-	16	-	14	_	-	40	-	8.4	8.4	0	0	5	-	21200	✓	0.20	GI119 CO358
ISO 6462 DIN 8030	52A07R-SMORD10-CF	52	42	_	22	_	18	_	_	40	-	10.4	10.4	0	0	7	_	19100	✓	0.28	GI119 CO360

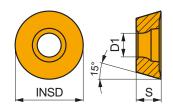
GI119	RD. 1003M0T	RDHT 1003MO-FA

		Nm			X.		
C0356	US 63507-T15P	3.0	M 3.5	7	Flag T15P	_	_
C0358	US 63507-T15P	3.0	M 3.5	7	D-T08P/T15P	FG-15	HS 0830C
C0360	US 63507-T15P	3.0	M 3.5	7	D-T08P/T15P	FG-15	HS 1030C

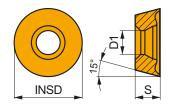


Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

•	17							•			, , ,					•			,					
	2500000	RE		P			M				K				N			S				ı	Н	
Обозначение			vc	f	ap	VC	f	ар		VC	f	ap		VC	f	ар	V	f		ap		VC	f	ар
		(MM)	(м/ми) (мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(M/N	ин) (мм/з	уб)	(MM)	(м,	/мин)	(мм/зуб)	(мм)
	↓ 	0,15	*	HFC	T																			
	20°		Геометр	ия с ней	і́тральн	ым пер	едним у	глом д	ιля	І ЧИСТО	вой обр	оаботки	1.											
RDHX 1003MOT	M4303	_	3 40	0.15	1.0	_	_	-		320	0.15	1.0		_	-	-	-	_		- 1		65	0.15	1.0
	M8310	_	335	0.15	1.0	_	_	-		315	0.15	1.0		_	-	-	-	_		-		65	0.15	1.0
	M8325	_	250	0.15	1.0	_	_	-		_	_	-		_	-	-	-	_		-		_	_	_
	M8330	_	3 05	0.15	1.0	_	-	-		285	0.15	1.0		-	-	-	-	_		-		50	0.15	1.0
	M8345	_	225	0.15	1.0	_	_	-		_	_	-		_	_	-	-	_		-		_	_	_

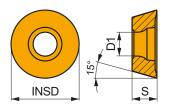

	RDI	MX 10	
	INSD	D1	S
	(MM)	(MM)	(MM)
1003	10.0	3.90	3.18

	PGZMJPG	RE			P			M				K				N				S			Н	
Обозначение				VC	f	ap	VC	f	ар		VC	f	ap		VC	f	ар		VC	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	()	и/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	20°	0,12	[en	×	HFC	Тральн	ым пепе	ZUDINW /	/FROM I	ппо	g ии <i>с</i> то	вой об	nahotki	и										
RDMX 1003MOT	M8310	_		335	0.15	1.0		-дпин) -	-	—	315	0.15	1.0	/I.	-	-	-		_	_	_	65	0.15	1.0
	M8325	-		250	0.15	1.0	_	-	-		-	-	-		-	-	-		-	-	-	-	-	_
	M8345	-		225	0.15	1.0	_	-	-		-	_	_		-	-	-		_	-	_	_	-	_

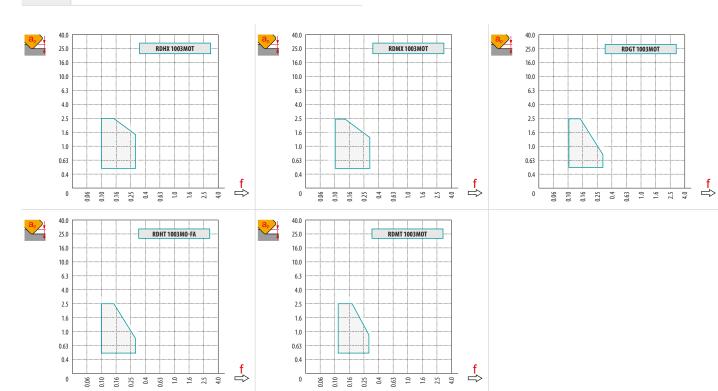


•	1245545	RE			Р				M				K			N			S				Н	
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(N	vc /мин)	f (мм/зуб)	ар (мм)
	0,10	17,5°	1	1 2 =	HFC	T																		
	20°		Поз	ВИТИВН	ная гео	метри	я дл	ІЯ ЧИС	товой с	брабо	TKI	1.												
RDGT 1003MOT	M6330	-		290	0.15	1.0		205	0.14	1.0		-	-	-	-	_	_	85	0.12	0.8		-	_	-
	M8310	_		375	0.15	1.0		190	0.14	1.0		355	0.15	1.0	_	_	_	_	_	_		_	_	_
	M8325	_		280	0.15	1.0		130	0.14	1.0		-	_	-	_	_	_	_	_	_		-	_	_
	M8345	_		250	0.15	1.0	ш	150	0.14	1.0		-	_	-	_	_	-	60	0.12	8.0		_	_	_

	RDH	T 10-FA	
	INSD	D1	S
	(MM)	(мм)	(MM)
1003	10.0	3.90	3.18


PRAMET

	RE	P	М	K	N	S	Н
Обозначение	KE (MM)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)
	17,5°	+ HFC F					
		Позитивная геометри	я для чистовой и получ	истовой обработки цве	етных сплавов.		
RDHT 1003MO-FA	HF7 –				390 0.18 1.0		


	PROMORE	RE		Р			M			K			N			S		ı	Н	
Обозначение		(мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	vc /мин) (f мм/зуб)	ар (мм)
	0,1	15°\	HFC	S																
RDMT 1003M0T	M8325		Геометри ■ 280	ия для ч 0.15		ой обраб Z 130		1.0	_	_	_	_	_	_			_	_	_	_
	M8345	_	250	0.15		✓ 150✓ 150		1.0	-	_	_	_	_	-	_	_	_	_	_	_

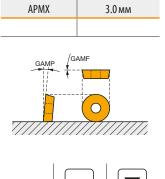
a _e /DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
(⊚) ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

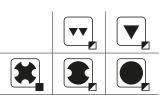
0000000	RDHX 10	RDMX 10	RDGT 10	RDHT 10-FA
RE	5.0	5.0	5.0	5.0
BS	_	_	_	_

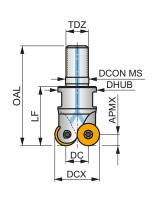
DCX	a _p	0.00	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50	4.00	5.00
20		10.0	14.4	15.3	16.0	16.6	17.1	18.0	18.7	19.2	19.5	19.8	20.0
25		15.0	19.4	20.3	21.0	21.6	22.1	23.0	23.7	24.2	24.5	24.8	25.0
30		20.0	24.4	25.3	26.0	26.6	27.1	28.0	28.7	29.2	29.5	29.8	30.0
32	(DEF)	22.0	26.4	27.3	28.0	28.6	29.1	30.0	30.7	31.2	31.5	31.8	32.0
35		25.0	29.4	30.3	31.0	31.6	32.1	33.0	33.7	34.2	34.5	34.8	35.0
42		32.0	36.4	37.3	38.0	38.6	39.1	40.0	40.7	41.2	41.5	41.8	42.0
52		42.0	46.4	47.3	48.0	48.6	49.1	50.0	50.7	51.2	51.5	51.8	52.0
	a _p	0.00	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50	4.00	5.00
	∳ ⇔f	_	0.54	0.44	0.39	0.35	0.32	0.28	0.25	0.23	0.22	0.21	0.19

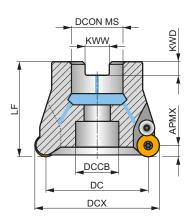
DCX	DMIN	DMAX	MIN Ø	SMAX DMAX
20	22.0	40.0	2.5	2.5
25	32.0	50.0	2.5	2.5
30	42.0	60.0	2.5	2.5
32	46.0	64.0	2.5	2.5
35	52.0	70.0	2.5	2.5
42	66.0	84.0	2.5	2.5
52	86.0	104.0	2.5	2.5

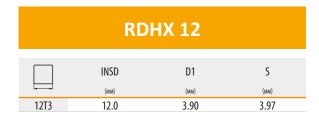
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
30	WS FE	0.600	0.775	1.095	1.342	1.549	1.897	2.191	2.449	2.683	3.098	3.464
32	F	0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
35		0.648	0.837	1.183	1.449	1.673	2.049	2.366	2.646	2.898	3.347	3.742
42		0.710	0.917	1.296	1.587	1.833	2.245	2.592	2.898	3.175	3.666	4.099
52		0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
RE	μm	3	5	10	15	20	30	40	50	60	80	100
5.0	FE	0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000

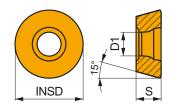





Копировальная фреза с пластинами RD.. 12


Конструкция фрезы имеет нейтральную, двойную позитивную или нейтрально-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RD.. 12 с глубиной резания до 3 мм. Фреза подходит для широкого применения.

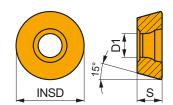




	Обозначение	DCX	DC	OAL	DCON MS	DHUB	DCCB	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		S kg		
		(MM)	(MM)	(MM)	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)	(°)	(°)							
	24E2R032M12-SRD12-CF	24	12	54	12.5	21	-	32	M12	_	_	-3	0	2	_	21900	\checkmark	0.07	GI120	CO362
	35E3R042M16-SCRD12-CF	35	23	65	17	29	_	42	M16	_	_	0	0	3	_	18100	\checkmark	0.19	GI120	C0364
MODULAR	35E4R042M16-SRD12-CF	35	23	65	17	29	-	42	M16	_	_	0	0	4	_	18100	✓	0.20	GI120	CO362
Modelin	42E4R042M16-SCRD12-CF	42	30	65	17	29	_	42	M16	_	_	0	0	4	_	16600	\checkmark	0.21	GI120	C0364
	42E5R042M16-SRD12-CF	42	30	65	17	29	_	42	M16	_	_	0	0	5	_	16600	\checkmark	0.22	GI120	CO366
	50A05R-SCMORD12-CF	50	38	_	22	-	18	50	_	10.4	10.4	2	7	5	_	15200	✓	0.29	GI120	C0366
ISO 6462 DIN 8030	52A05R-SCMORD12-CF	52	40	_	22	-	18	50	-	10.4	10.4	2	7	5	-	14900	\checkmark	0.32	GI120	CO366
ISO 6462 DIN 8030	66A06R-SCMORD12-CF	66	54	-	27	_	22	50	_	12.4	12.4	2	7	6	_	13200	✓	0.54	GI120	CO370
	80A07R-SCMORD12-CF	80	68	-	27	_	38	52	-	12.4	12.4	2	7	7	-	12000	✓	0.89	GI120	CO372

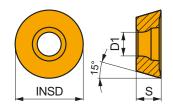
GI120	RD 12T3MOT	RDHT 12T3MO-FA

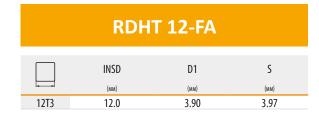
		Nm			10		×	91	
C0362	US 3508-T15P	3.5	M 3.5	8	_	_	Flag T15P	_	_
C0364	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	HS 1230C	_	_
C0366	US 3508-T15P	3.5	M 3.5	8	D-T08P/T15P	FG-15	_	CS12P	HS 1030C
C0370	US 3508-T15P	3.5	M 3.5	8	D-T08P/T15P	FG-15	_	CS12P	HS 1230C
C0372	US 3508-T15P	3.5	M 3.5	8	D-T08P/T15P	FG-15	-	CS12P	_



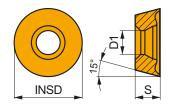
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

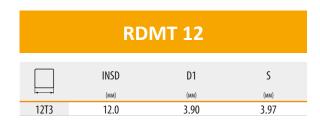
			1 1 1 1 1 1 1 1 1 1 1						•						•							
	PRONORS	RE		P			M				K				N			S			Н	
Обозначение			VC	f	ap	vc	f	ар		VC	f	ap		VC	f	ap	VC	f	ap	VC	f	ap
		(мм)	(м/ми	н) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	((м/мин)	(мм/зуб)	(мм)	(м/м	ін) (мм/зуб) (мм)	(м/мин)	(мм/зуб)	(мм)
	<i>ţ</i>	0,15	*	HFC	T																	
	20°		Геометр	оия с ней	і́тральн	ым пер	едним у	глом д	ιля	І ЧИСТО	вой обр	оаботки	1.									
RDHX 12T3MOT	M4303	_	3 00	0.20	1.5	_	_	-		285	0.20	1.5		_	-	-	-	_	_	60	0.15	1.0
	M8310	_	3 00	0.20	1.5	_	_	-		285	0.20	1.5		_	_	-	-	_	_	60	0.15	1.0
	M8325	-	22 5	0.20	1.5	_	-	-		_	-	-		-	-	-	-	_	_	-	-	-
	M8330	_	Z 270	0.20	1.5	_	-	-		255	0.20	1.5		-	-	-	-	-	-	50	0.15	1.0
	M8345	_	2 00	0.20	1.5	_	_	-		_	_	-		_	_	_	_	_	_	_	_	_

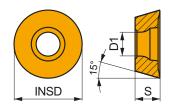

	RDI		
	INSD	D1	S
	(MM)	(MM)	(MM)
12T3	12.0	3.90	3.97



	PSPART	RE			P			M				K				N				S			Н	
Обозначение				VC	f	ap	vc	f	ар		VC	f	ap		VC	f	ар		VC	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(N	ı/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	20°	0,15	Гео	*	₩НFC я с ней	Т	ым пере	едним у	/глом ,	для	я чисто	вой обр	работкі	и.										
RDMX 12T3MOT	M8310	_		300	0.20	1.5	_	_	_		285	0.20	1.5		_	_	_		_	_	_	60	0.15	1.0
	M8325	-		225	0.20	1.5	_	-	-		_	_	-		-	-	-		-	-	-	-	-	-
	M8345	_		200	0.20	1.5	_	-	-		-	_	-		-	_	-		_	-	-	-	_	_

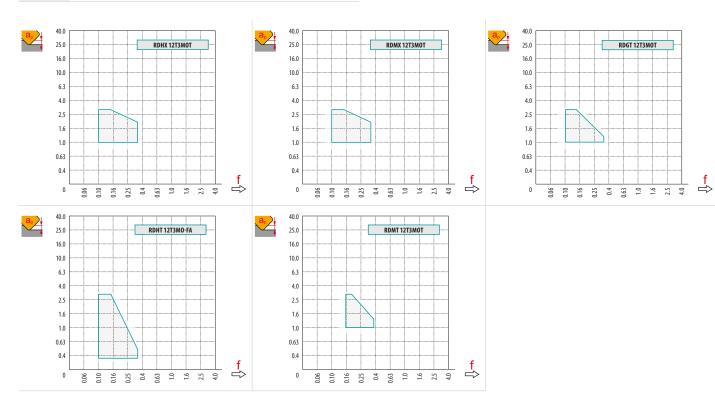



•	F45243	RE		Р			M			K			N		S			Н	
Обозначение		(мм)	VC (м/ми	f н) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M)		ар (мм)	vc f и/мин) (мм/з	ар /б) (мм)	(M	vc f /мин) (мм/зуб	ар) (мм)
	0,12	10,2°		HFC	T														
	20°		Позити	зная гео	метрия	для чис	товой (бработ	ки.										
RDGT 12T3MOT	M6330	_	260	0.20	1.5	1 85	0.18	1.5	-	_	-	_	-	_	75 0.1	4 1.2			_
	M8310	-	330	0.20	1.5	1 65	0.18	1.5	310	0.20	1.5	_	-	_		_			_
	M8325	_	250	0.20	1.5	120	0.18	1.5	_	_	_	_	_	_		_			_
	M8345	_	225	0.20	1.5	135	0.18	1.5	-	_	-	_	_	_	55 0.1	4 1.2			_
	M9340	_	340	0.20	1.5	200	0.18	1.5							85 0.1	4 1.2			



PRAMET

0.0	VACASA.	RE		Р			M			K			N			S			Н	
Обозначение		(MM)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M		ар) (мм)	V (M/N	с f ин) (мм/зуб)	ар (мм)
	10,),2°	+	HFC	F															
	7		Позитиві	ная гео	метрия	для чис	товой и	и получ	истовой	обрабо	тки цве	тных сп	лавов.							
RDHT 12T3MO-FA	HF7	_	_	-	-	_	-	-	_	-	- 1	360	0.24	1.5	_	-	-	-		-


	PS/MINN	RE			Р			M			K			N			S				Н	
Обозначение		(мм)	()	vc ı/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	vc мин)	f (мм/зуб)	ар (мм)	,	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,15	16°\	HF	_ (S																	
	20°	7	Геом	етрия	я для ч	истово	ой обраб	ботки.														
RDMT 12T3MOT	M8325	_		250	0.20	1.5	1 20	0.18	1.5	_	-	_	_	-	-	-	-	-		-	-	_
	M8345	-		225	0.20	1.5	1 135	0.18	1.5	_	_	_	-	-	-	-	_	-		-	-	_

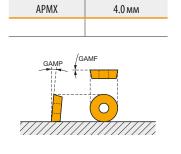
a _e /	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒ x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

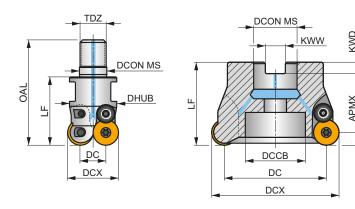
2000000	RDHX 12	RDMX 12	RDGT 12	RDHT 12-FA
RE	6.0	6.0	6.0	6.0
a _p	_	-	_	_

DCX	a _p	0.00	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00
24		12.0	16.8	17.8	18.6	19.3	19.9	20.9	21.7	22.4	22.9	23.3	23.8	24.0
35		23.0	27.8	28.8	29.6	30.3	30.9	31.9	32.7	33.4	33.9	34.3	34.8	35.0
42		30.0	34.8	35.8	36.6	37.3	37.9	38.9	39.7	40.4	40.9	41.3	41.8	42.0
50	(DEF)	38.0	42.8	43.8	44.6	45.3	45.9	46.9	47.7	48.4	48.9	49.3	49.8	50.0
52		40.0	44.8	45.8	46.6	47.3	47.9	48.9	49.7	50.4	50.9	51.3	51.8	52.0
66		54.0	58.8	59.8	60.6	61.3	61.9	62.9	63.7	64.4	64.9	65.3	65.8	66.0
80		68.0	72.8	73.8	74.6	75.3	75.9	76.9	77.7	78.4	78.9	79.3	79.8	80.0
	a _p	0.00	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00
	∳ ⇔f	_	0.49	0.40	0.35	0.32	0.29	0.25	0.23	0.21	0.20	0.18	0.17	0.16

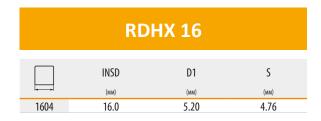
DCX	DMIN	DMAX	MIN Ø	SMAX DMAX
24	26.0	48.0	3.0	3.0
35	46.0	70.0	3.0	3.0
42	62.0	84.0	3.0	3.0
50	78.0	100.0	2.8	2.8
52	82.0	104.0	2.8	2.8
66	110.0	132.0	2.8	2.8
80	136.0	160.0	2.8	2.8

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
24		0.537	0.693	0.980	1.200	1.386	1.697	1.960	2.191	2.400	2.771	3.098
35		0.648	0.837	1.183	1.449	1.673	2.049	2.366	2.646	2.898	3.347	3.742
42	IVIS FE	0.710	0.917	1.296	1.587	1.833	2.245	2.592	2.898	3.175	3.666	4.099
50	F	0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
52		0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
RE	μm	3	5	10	15	20	30	40	50	60	80	100
6.0	FE	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191


PRAMET


Копировальная фреза с пластинами RD.. 16

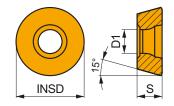
Конструкция фрезы имеет нейтрально-позитивную или нейтрально-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины RD.. 16 с глубиной резания до 4 мм. Фреза подходит для широкого применения.



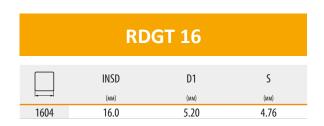
	Обозначение	DCX	DC	OAL	DCON MS	DHUB	DCCB	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		S kg	<u></u>	
		(мм)	(мм)	(MM)	(мм)	(мм)	(MM)	(мм)		(мм)	(мм)	(°)	(°)							
MODULAR	32E2R042M16-SCRD16-CF	32	16	65	17	29	_	42	M16	_	-	-2	0	2	_	12600	✓	0.16	GI121	C0374
	52A04R-SCMORD16-CF	52	36	-	22	-	16.5	50	-	10.4	10.4	0	7	4	_	9900	✓	0.28	GI121	C0376
ISO 6462 DIN 8030	66A05R-SCMORD16-CF	66	50	-	27	-	22	50	-	12.4	12.4	0	7	5	-	8800	✓	0.61	GI121	C0378
ISO 6462 DIN 8030	80A06R-SCMORD16-CF	80	64	-	27	_	38	52	_	12.4	12.4	0	7	6	-	8000	\checkmark	0.75	GI121	C0380
	100A07R-SCMORD16-CF	100	84	_	32	_	45	52	_	14.4	14.4	0	7	7	_	7100	✓	1.41	GI121	C0380

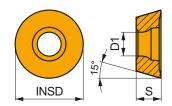
GI121	RD 1604M0T	RDHT 1604MO-FA

		Nm						
C0374	US 64510-T20P	4.5	M 4.5	10	_	Flag T20P	CS16P	-
C0376	US 64510-T20P	4.5	M 4.5	10	SDR T20P-T	_	CS16P	HS 1030C
C0378	US 64510-T20P	4.5	M 4.5	10	SDR T20P-T	_	CS16P	HS 1230C
C0380	US 64510-T20P	4.5	M 4.5	10	SDR T20P-T	_	CS16P	_

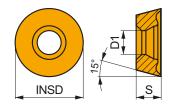


Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

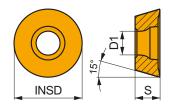

	PSCMCPS	RE			Р			Λ	M				K				N				S			Н	
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/N		f мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	()	vс 1/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	, - <u> </u>	0,20			HFC	T																			
	20°		Геог	•			ым пе	ереді	ним у	глом д	ζЛЯ			работкі	И.										
RDHX 1604MOT	M8310	_		255	0.30	2.0	-	-	-	-		240	0.30	2.0		-	-	-		-	-	_	50	0.15	1.0
	M8325	_		195	0.30	2.0	-	-	_	_		_	_	-		_	_	_		_	_	_	_	_	_
	M8330	_		245	0.30	2.0	_	-	_	_		230	0.30	2.0		_	_	_		_	_	-	45	0.15	1.0
	M8345	_		180	0.30	2.0	-	-	_	_		-	_	-		_	_	-		-	_	-	-	_	_
	M9325	-		290	0.30	2.0	-	-	-	-		275	0.30	2.0		_	-	-		-	-	-	55	0.15	1.0


	RDI	MX 16	
	INSD	D1	S
-	(мм)	(MM)	(MM)
1604	16.0	5.20	4.76

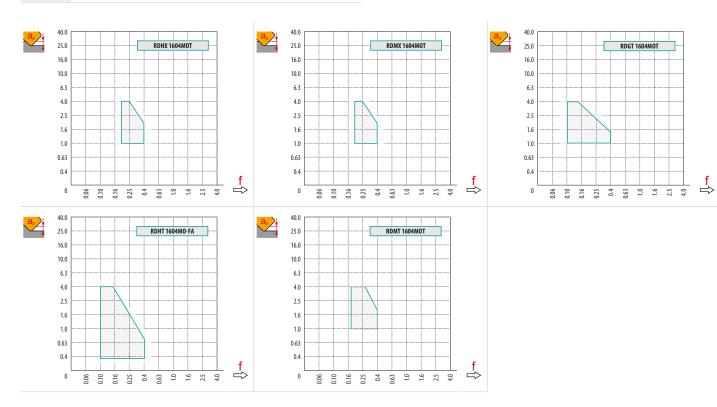
	PERMIT	RE			Р			M				K				N				S			Н	
Обозначение				VC	f	ap	VC	f	ар		VC	f	ар		VC	f	ap		VC	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	()	и/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)
	20°	0,20	Гес		НFС ия с ней	тральн	ым пере	едним у	глом д	для	я чисто	вой обр	работки	۸.										
RDMX 1604MOT	M8310	_		255	0.30	2.0	_	_	_		240	0.30	2.0		_	_	_		_	_	_	50	0.15	1.0
	M8325	_		195	0.30	2.0	_	_	_		_	_	_		_	_	_		-	_	-	-	_	_
	M8345	-		180	0.30	2.0	_	_	_		-	_	-		_	_	_		_	_	_	-	_	_



•	1245545	RE			Р				M				K			N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc [/] мин)	f (мм/зуб)	ар (мм)
	0,15	22,0°	2	1	HFC	T																	
	20°		По	ЗИТИВН	ная гео	метри	я ду	1Я ЧИС	товой (обрабо	TKI	и.											
RDGT 1604M0T	M6330	-		230	0.30	2.0		165	0.27	2.0		_	-	_	_	-	_	65	0.21	1.6	-	_	-
	M8310	_		285	0.30	2.0		145	0.27	2.0		270	0.30	2.0	_	_	_	_	_	_	_	_	-
	M8325	_		220	0.30	2.0		105	0.27	2.0		_	_	_	_	_	_	_	_	_	_	_	_
	M8345	_		200	0.30	2.0		120	0.27	2.0		_	_	_	_	_	_	50	0.21	1.6	_	_	_
	MOJTJ		_															50	0.21	1.0			


PRAMET

0.0	RE	P	M	K	N	S	Н
Обозначение	KE (MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)
	22,0°	+ HFC F					
		Позитивная геометри	я для чистовой и получ	чистовой обработки цв	етных сплавов.		
RDHT 1604MO-FA	HF7 –				3 15 0.36 2.0		


ripimenenie interpym	унистенные инструмента, на вывывые эта тенния спорости резаиния (ту, и глуонныя резаиния (ару. дли дополнительных рас тетов воспользующей принценный спорости резаиния (ту, и глуонныя резаиния (ару. дли дополнительных рас тетов воспользующей принценный принцепный принценный п																				
06	PARKE	RE		Р			M			K			N	ı			S			Н	
Обозначение			١	c f	ap	vc	f	ap	VC	f	ap		VC	f	ар	VC	f	ap	VC	f	ap
		(MM)	(M/	ин) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин	(мм/зуб)	(MM)	(M.	/мин) (мм	и/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(M/M	ін) (мм/зуб) (мм)
	0,18	18°\	Н Геоме	S грия для	чистово	ой обраб	ОТКИ.														
RDMT 1604MOT	M8325	_	2 .	20 0.30	2.0	1 05	0.27	2.0	_	-	_			_	-	_	_	_	-	-	_
	M8345	-	2	0.30	2.0	120	0.27	2.0	_	_	_			_	-	_	-	_	-	_	_

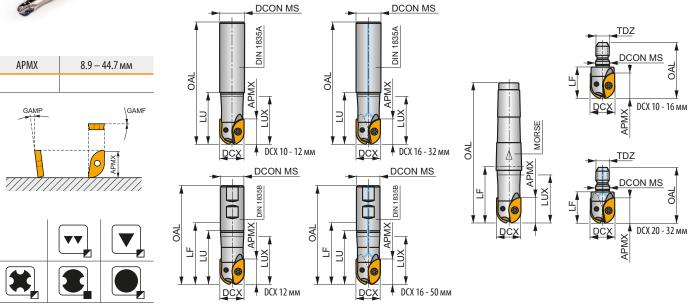
a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	RDHX 16	RDMX 16	RDGT 16	RDHT 16-FA
RE	8.0	8.0	8.0	8.0
BS	_	-	-	_

DCX	a _p	0.00	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00	7.00	8.00
32		16.0	21.6	22.8	23.7	24.6	25.3	26.6	27.6	28.5	29.2	29.9	30.8	31.5	31.9	32.0
52		36.0	41.6	42.8	43.7	44.6	45.3	46.6	47.6	48.5	49.2	49.9	50.8	51.5	51.9	52.0
66	DEF	50.0	55.6	56.8	57.7	58.6	59.3	60.6	61.6	62.5	63.2	63.9	64.8	65.5	65.9	66.0
80		64.0	69.6	70.8	71.7	72.6	73.3	74.6	75.6	76.5	77.2	77.9	78.8	79.5	79.9	80.0
100		84.0	89.6	90.8	91.7	92.6	93.3	94.6	95.6	96.5	97.2	97.9	98.8	99.5	99.9	100.0
	a _p	0.00	0.50	0.75	1.00	1.25	1.50	2.00	2.50	3.00	3.50	4.00	5.00	6.00	7.00	8.00
	‡ ⇔f	_	0.91	0.74	0.65	0.58	0.53	0.46	0.42	0.38	0.36	0.34	0.30	0.28	0.26	0.25

DCX	DMIN	DMAX	DMIN Ø	SMAX DMAX
32	34.0	64.0	4.0	4.0
52	74.0	104.0	4.0	4.0
66	102.0	132.0	4.0	4.0
80	130.0	160.0	4.0	4.0
100	170.0	200.0	4.0	4.0

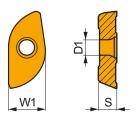
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
52	IV/S/FE	0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
66	FE	0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
100		1.095	1.414	2.000	2.449	2.828	3.464	4.000	4.472	4.899	5.657	6.325
RE	μm	3	5	10	15	20	30	40	50	60	80	100
8.0	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530



Копировальная фреза с пластинами ZP...

Конструкция фрезы имеет нейтрально-негативную геометрию, внутренний подвод СОЖ. Двухсторонние пластины ZP.. с максимальной глубиной резания от 8.9 мм до 44.7 мм имеют 2 режущие кромки. Фреза подходит для копировальной обработки фасонных поверхностей.

	Обозначение	DCX	OAL	DCON MS	LU	LUX	LF	TDZ	CZC MS	APMX	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)			(MM)	(°)	(°)							
	10L2R030A10-SZP10	10	130	10	30	30	-	-	-	8.9	0	-10	2	-	35800	_	0.11	GI255	
	10L2R050A16-SZP10	10	160	16	50	22.3	-	-	-	8.9	0	-10	2	-	35800	_	0.26	GI255	C0510
	12L2R035A12-SZP12	12	140	12	35	35	-	-	-	10.7	0	-10	2	-	21000	_	0.15	GI253	C0510
	12L2R045A20-SZP12	12	200	20	_	22	_	-	_	10.7	0	-10	2	_	21000		0.51	GI253	C0511
	16L2R040A16-SZP16-C	16	160	16	40	40	-	-	-	14.4	0	-10	2	_	20000	✓	0.24	GI256	C0510
	16L2R045A20-SZP16-C	16	200	20	_	29.4	-	-	_	14.4	0	-10	2	-	20000	✓	1.48	GI256	C0512
DIN 1835A	20L2R050A20-SZP20-C	20	250	20	50	-	-	-	-	17.9	0	-10	2	_	24000	✓	0.56	GI254	C0513
	20L2R055A25-SZP20-C	20	200	25	_	36.1	-	-	_	17.9	0	-10	2	-	24000	✓	0.68	GI254	C0513
	20L2R055A32-SZP20-C	20	250	32	_	34.5	-	-	_	17.9	0	-10	2	-	24000	✓	1.34	GI254	C0513
	25L2R060A25-SZP25-C	25	250	25	60	-	-	-	-	22.3	0	-10	2	-	24000	✓	0.86	GI257	C0514
	25L2R065A32-SZP25-C	25	250	32	_	43	-	-	_	22.3	0	-10	2	_	24000	✓	1.34	GI257	C0514
	32L2R070A32-SZP32-C	32	250	32			_	_		28.6	0	-10	2	_	18500	✓	1.43	GI258	C0515
	12L2R040B20-SZP12	12	91	20	40	21.5	66.5	-	-	10.7	0	-10	2	-	21000	_	0.19	GI253	C0511
	12L2R060B20-SZP12	12	111	20	60	23.8	86.5	-	-	10.7	0	-10	2	-	21000	_	0.23	GI253	C0511
	16L2R040B20-SZP16-C	16	91	20	40	28.3	66.5	_	_	14.4	0	-10	2	_	20000	✓	0.15	GI256	C0512
	16L2R060B20-SZP16-C	16	111	20	60	32.9	86.5	_	_	14.4	0	-10	2	_	20000	✓	0.21	GI256	C0512
	20L2R050B25-SZP20-C	20	107	25	50	35.1	75.5	-	-	17.9	0	-10	2	-	24000	√	0.31	GI254	C0513
	20L2R070B25-SZP20-C	20	127	25	70	39.5	95.5	_	_	17.9	0	-10	2	_	24000	✓	0.36	GI254	C0513
DIN 1835B	25L2R060B25-SZP25-C	25	117	25	60	_	85.5	_	_	22.3	0	-10	2	_	24000	√	0.36	GI257	C0514
	25L2R080B25-SZP25-C	25	137	25	80	_	105	_	_	22.3	0	-10	2	_	24000	√	0.43	GI257	C0514
	32L2R070B32-SZP32-C	32	131	32	70	_	95.5	_	_	28.6	0	-10	2	_	18500	√	0.72	GI258	C0515
	32L2R100B32-SZP32-C	32	161	32	100	_	125.5	_		28.6	0	-10	2	_	18500	✓	0.85	GI258	C0515
	40L2R070B32-SZP40-C	40	131	32	70		95.5	_		35.7	0	-10	2	_	8000	√	0.81	GI259	C0516
	40L2R100B40-SZP40-C	40	171	40	100	_	131	_	_	35.7	0	-10	2	_	8000	√	1.40	GI259	C0516
	50L2R100B50-SZP50-C	50	181	50	100		136.5	-	_	44.7	0	-10	2	-	7000	✓	2.25	GI260	C0517
	10L2R050E02-SZP10	10	114	-	-	21.9	50	-	2	8.9	0	-10	2	-	35800	-	0.13	GI255	C0510
DIN 228A	12L2R040E02-SZP12	12	104	-	_	22.5	40	-	2	10.7	0	-10	2	-	21000	-	0.14	GI253	C0511


	Обозначение	DCX	OAL	DCON MS	LU	LUX	LF	TDZ	CZC MS	APMX	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(мм)	(MM)	(MM)	(MM)			(MM)	(°)	(°)			24222			C10.00	50-11
	12L2R060E02-SZP12	12	124	_	_	25.8	60	_	2	10.7	0	-10	2	_	21000	_	0.18	GI253	C0511
	12L2R090E02-SZP12	12	154	_	-	25.8	90		2	10.7	0	-10	2		21000	-	0.23	GI253	C0511
	16L2R040E02-SZP16	16	104	-	-	31.3	40	-	2	14.4	0	-10	2	-	20000	-	0.14	GI256	C0512
	16L2R060E02-SZP16	16	124	_	-	42.2	60	_	2	14.4	0	-10	2	-	20000	-	0.19	GI256	C0512
	16L2R090E02-SZP16	16	154	_	-	75.9	90	-	2	14.4	0	-10	2	-	20000	-	0.23	GI256	C0512
	20L2R050E03-SZP20	20	131	_	_	36.6	50	_	3	17.9	0	-10	2	-	24000	_	0.35	GI254	CO513
DIN 228A	20L2R070E03-SZP20	20	151	_	_	-	70	-	3	17.9	0	-10	2	-	24000	_	0.39	G1254	CO513
DIN 228A	20L2R100E03-SZP20	20	181	_	-	77.4	100	-	3	17.9	0	-10	2	-	24000	_	0.42	GI254	C0513
	25L2R080E03-SZP25	25	161	_	-	-	80	-	3	22.3	0	-10	2	-	24000	_	0.46	GI257	C0514
	25L2R110E04-SZP25	25	213	_	_	92.7	110	_	4	22.3	0	-10	2	-	24000	_	0.84	GI257	C0514
	32L2R100E04-SZP32	32	203	_	_	_	100	-	4	28.6	0	-10	2	-	18500	_	0.90	G1258	C0515
	32L2R150E04-SZP32	32	253	_	-	-	150	-	4	28.6	0	-10	2	-	18500	-	1.10	GI258	C0515
	50L2R100E05-SZP50	50	230	_	-	-	100	-	5	44.7	0	-10	2	-	7000	-	2.20	GI260	C0517
	10L2R025M08-SZP10	10	_	8.5	_	_	25	M8	_	8.9	0	-10	2	_	_	_	0.03	GI255	C0510
	12L2R025M06-SZP12	12	_	6.5	-	-	25	M6	_	10.7	0	-10	2	-	_	-	0.05	GI253	C0510
	12L2R025M08-SZP12	12	-	8.5	-	-	25	M8	_	10.7	0	-10	2	-	-	-	0.05	GI253	C0511
MODULAR	16L2R025M08-SZP16	16	_	8.5	_	-	25	M8	_	14.4	0	-10	2	_	_	_	0.05	GI256	C0512
WODGLAR	20L2R030M10-SZP20-C	20	_	10.5	_	_	30	M10	_	17.9	0	-10	2	_	_	✓	0.07	GI254	C0513
	25L2R035M12-SZP25-C	25	_	12.5	_	_	35	M12	_	22.3	0	-10	2	_	_	✓	0.09	GI257	C0514
	32L2R045M16-SZP32-C	32	-	17	-	-	45	M16	-	27.9	0	-10	2	-	_	✓	0.15	GI258	C0515

	6
GI253	ZP 12
Gl254	ZP 20
GI255	ZP 10
Gl256	ZP 16
GI257	ZP 25
GI258	ZP 32
GI259	ZP 40
GI260	ZP 50

			X.		Nm			Ro
C0510	_	_	Flag T06P	US 62004-T06P	0.6	M 2	4	-
C0511	_	_	Flag T08P	US 62506-T08P	1.2	M 2.5	6	_
C0512	_	_	Flag T08P	US 62508-T08P	1.2	M 2.5	7	_
C0513	_	_	Flag T10P	US 63510-T10P	2.0	M 3.5	9	-
C0514	_	_	Flag T15P	US 4011A-T15P	3.5	M 4	11	_
C0515	_	_	-	US 65013-T20	5.0	M 5	13	SDR T20
C0516	_	_	_	US 66015-T25P	7.5	M 6	15	SDR T25P
C0517	SZN 400322	US 3508-T15P	Flag T15P	US 68020-T30P	15.0	M 8	20	SDR T30P

	W1	D1	S
	(мм)	(мм)	(мм)
10	10.000	2.20	1.70
12	12.000	2.90	2.38
16	16.000	2.90	3.18
20	20.000	4.00	3.97
25	25.000	4.70	4.76
32	32.000	5.90	6.35
40	40.000	7.00	7.94
50	50.000	9.60	7.94

	2428024	RE		P				M			K			N				S			Н	
Обозначение			VC	f	ар		VC	f	ap	VC	f	ар	VC	f	ар		/C	f	ар	VC	f	ap
		(MM)	(м/мин)	(мм/зуб)	(MM)	((м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(M)	мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
		\20°	+	F																		

Позитивная геометрия для чистовой обработки.

ZP 20ER-F **☑** 305 0.27 1.0 **☑** 155 0.24 1.0 M8310

Геометрия с нейтральным передним углом для чистовой и получистовой обработки.

ZP 10ER-FM	M8310 –	305 0.36 0.5	 285 0.36 0.5	 	60 0.15 1.0
	M8345 -	210 0.36 0.5	 	 	
ZP 12ER-FM	M8310 –	300 0.36 0.6	 285 0.36 0.6	 	■ 60 0.15 1.0
	M8345 -	205 0.36 0.6	 	 	
ZP 16ER-FM	M8310 –	290 0.36 0.8	 275 0.36 0.8	 	■ 55 0.15 1.0
	M8345 -	200 0.36 0.8	 	 	
ZP 20ER-FM	M8310 –	285 0.36 1.0	 270 0.36 1.0	 	5 5 0.15 1.0
	M8345 -	1 95 0.36 1.0	 	 	
ZP 25ER-FM	M8310 –	275 0.36 1.3	 260 0.36 1.3	 	55 0.15 1.0
	M8345 -	190 0.36 1.3	 	 	
ZP 32ER-FM	M8310 -	270 0.36 1.6	 255 0.36 1.6	 	50 0.15 1.0
	M8345 –	1 85 0.36 1.6	 	 	

Позитивная геометрия для получистовой обработки.

ZP 12ER-M	M8330	_	280	0.36	0.6	165	0.32	0.6	265	0.36	0.6	_	_	_	70	0.25	0.5	_	_	_
	M8340	_	260	0.36	0.6	155	0.32	0.6	245	0.36	0.6	_	-	_	65	0.25	0.5	_	_	_
	M8345	_	205	0.36	0.6	120	0.32	0.6	-	_	-	_	_	_	50	0.25	0.5	_	_	_
ZP 16ER-M	M8330	_	270	0.36	0.8	160	0.32	0.8	255	0.36	0.8	_	_	_	65	0.25	0.6	_	_	_
	M8340	-	250	0.36	0.8	150	0.32	0.8	235	0.36	0.8	-	-	-	60	0.25	0.6	-	-	-
	M8345	-	200	0.36	0.8	120	0.32	0.8	-	-	-	-	-	-	50	0.25	0.6	-	-	-
ZP 20ER-M	M8330	_	265	0.36	1.0	155	0.32	1.0	250	0.36	1.0	_	_	_	65	0.25	0.8	_	_	_
	M8345	_	195	0.36	1.0	115	0.32	1.0	-	_	-	_	_	_	45	0.25	0.8	_	_	_
ZP 25ER-M	M8330	-	260	0.36	1.3	155	0.32	1.3	245	0.36	1.3	_	_	_	65	0.25	1.0	_	_	_
	M8345	_	190	0.36	1.3	110	0.32	1.3	-	-	-	_	_	-	45	0.25	1.0	_	_	_
ZP 32ER-M	M8330	_	255	0.36	1.6	150	0.32	1.6	240	0.36	1.6	_	_	_	60	0.25	1.3	_	_	_
	M8345	_	185	0.36	1.6	110	0.32	1.6	_	_	_	_	_	_	45	0.25	1.3	_	_	_

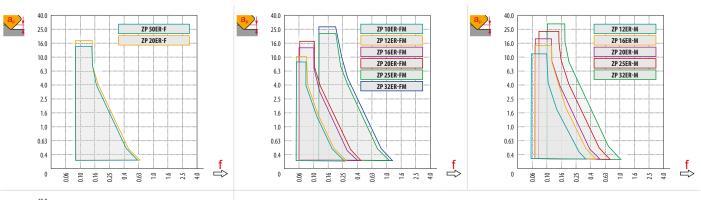
Позитивная геометрия для чистовой и получистовой обработки.

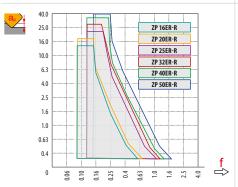
ZP 16ER-R	M8345	-	1 90	0.45	0.8	1 10	0.41	0.8	_	_	-	_	_	-	45	0.32	0.6	_	_	_
ZP 20ER-R	M8345	-	1 85	0.45	1.0	1 10	0.41	1.0	-	-	-	-	-	-	45	0.32	0.8	_	-	-

25	PRESCRI	RE			Р			M			K			N				S			Н	
Обозначение				VC	f	ap	VC	f	ap	VC	f	ар	VC	f	ар		VC	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/ми	н) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(и/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	<u></u>	\7°	1	Û	E																	

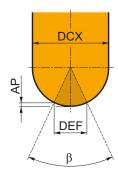
Позитивная геометрия для чистовой и получистовой обработки.

ZP 25ER-R	M8345	-	180	0.45	1.3	105	0.41	1.3		-	_	-	_	_	_	45	0.32	1.0	_	_	_
ZP 32ER-R	M8330	-	240	0.45	1.6	140	0.41	1.6	Z	225	0.45	1.6	_	-	_	60	0.32	1.3	45	0.15	1.0
	M8345	-	175	0.45	1.6	105	0.41	1.6		-	_	-	_	-	_	40	0.32	1.3	_	-	_
ZP 40ER-R	M8345	_	170	0.45	2.0	100	0.41	2.0		-	_	- 1	_	_	-	40	0.32	1.6	_	-	_
ZP 50ER-R	M8345	_	165	0.45	2.5	95	0.41	2.5		-	_	-	_	_	_	40	0.32	2.0	_	_	_



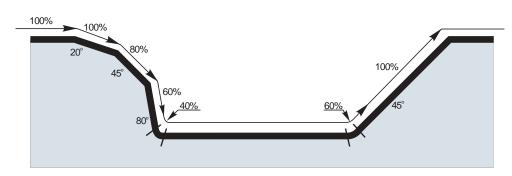

a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	ZP 20-F	ZP 50-F	ZP 10-FM	ZP 12-FM	ZP 16-FM	ZP 20-FM	ZP 25-FM	ZP 32-FM
RE	10.0	25.0	5.0	6.0	8.0	10.0	12.5	16.0
BS	_	_	_	_	_	_	-	_


0000000	ZP 12-M	ZP 16-M	ZP 20-M	ZP 25-M	ZP 32-M
RE	6.0	8.0	10.0	12.5	16.0
BS	-	_	_	-	-

00000000	ZP 16-R	ZP 20-R	ZP 25-R	ZP 32-R	ZP 40-R	ZP 50-R
RE	8.0	10.0	12.5	16.0	20.0	25.0
BS	-	-	-	-	-	_

DCX	a _p	0.30	0.40	0.50	0.70	1.00	1.25	1.50	2.00	2.50	3.00	4.00	5.00	6.00	8.00	10.00	12.00	15.00	16.00	20.00	22.50	25.00
10		3.4	3.9	4.4	5.1	6.0	6.6	7.1	8.0	8.7	9.2	9.8	10.0	_	_	-	_	_	_	_	_	_
12		3.7	4.3	4.8	5.6	6.6	7.3	7.9	8.9	9.7	10.4	11.3	11.8	12.0	-	-	-	-	-	-	-	-
16		4.3	5.0	5.6	6.5	7.7	8.6	9.3	10.6	11.6	12.5	13.9	14.8	15.5	16.0	-	-	-	-	-	-	-
20	DEF	4.9	5.6	6.2	7.4	8.7	9.7	10.5	12.0	13.2	14.3	16.0	17.3	18.3	19.6	20.0	-	-	-	-	-	-
25		5.4	6.3	7.0	8.2	9.8	10.9	11.9	13.6	15.0	16.2	18.3	20.0	21.4	23.3	24.5	25.0	-	-	-	-	-
32		6.2	7.1	7.9	9.4	11.1	12.4	13.5	15.5	17.2	18.7	21.2	23.2	25.0	27.7	29.7	31.2	31.9	32.0	_	_	-
40		6.9	8.0	8.9	10.5	12.5	13.9	15.2	17.4	19.4	21.1	24.0	26.5	28.6	32.0	34.6	37.1	38.7	39.2	40.0	_	_
50		7.7	8.9	9.9	11.7	14.0	15.6	17.1	19.6	21.8	23.7	27.1	30.0	32.5	36.7	40.0	43.3	45.8	46.6	49.0	49.7	50.0

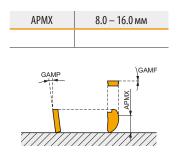


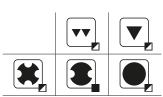
DCX	0000000	β	DEF	AP
10	FM	41°	3.496	0.322
12	FM	41°	4.194	0.381
16	FM	42°	5.660	0.520
20	FM	42°	7.100	0.650
25	FM	41°	8.756	0.794
35	FM	41°	11.113	0.998
40	R	41°	14.108	1.298
50	R	45°	19.176	1.915

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
10		0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
12		0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
16	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25	FE	0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32	FE	0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
40		0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
50		0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472

DEF	a _e	1%	2.5 %	5 %	7.5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %	45 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
	a _p										⊚ ⇔x.f									
19.9 %	1.0 %	2.86	1.84	1.33	1.12	1.00	0.89	-	-	-	-	-	-	-	-	-	-	-	-	-
31.2 %	2.5 %	3.58	2.28	1.64	1.36	1.20	1.01	0.92	0.88	0.91	-	-	-	-	-	-	-	-	-	-
43.6 %	5.0 %	4.22	2.68	1.92	1.58	1.39	1.16	1.03	0.95	0.90	0.88	0.89	-	-	-	-	-	-	-	-
52.7 %	7.5 %	4.63	2.95	2.10	1.73	1.51	1.26	1.11	1.02	0.96	0.91	0.89	0.88	0.90	_	_	_	-	_	-
60.0 %	10.0 %	4.94	3.14	2.24	1.84	1.61	1.33	1.18	1.07	1.00	0.95	0.91	0.89	0.88	1.00	-	-	-	-	-
71.4 %	15.0 %	5.39	3.42	2.43	2.00	1.74	1.44	1.27	1.15	1.07	1.01	0.96	0.93	0.90	0.88	0.93	-	-	-	-
80.0 %	20.0 %	5.70	3.62	2.57	2.11	1.84	1.52	1.33	1.21	1.12	1.05	1.00	0.96	0.93	0.89	0.88	0.89	1.00	-	-
86.6%	25.0 %	5.93	3.76	2.67	2.20	1.91	1.58	1.38	1.25	1.16	1.08	1.03	0.99	0.95	0.90	0.88	0.88	0.89	-	-
91.7 %	30.0 %	6.10	3.87	2.75	2.26	1.96	1.62	1.42	1.28	1.18	1.11	1.05	1.01	0.97	0.92	0.89	0.88	0.88	0.93	-
95.4 %	35.0 %	6.23	3.95	2.80	2.30	2.00	1.65	1.44	1.31	1.20	1.13	1.07	1.02	0.98	0.93	0.89	0.88	0.88	0.90	-
98.0 %	40.0 %	6.31	4.00	2.84	2.33	2.03	1.67	1.46	1.32	1.22	1.14	1.08	1.03	0.99	0.93	0.90	0.89	0.88	0.89	-
99.5%	45.0 %	6.36	4.03	2.86	2.35	2.04	1.68	1.47	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	-
100.0 %	50.0 %	6.38	4.04	2.87	2.35	2.05	1.69	1.48	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	1.00

Вылет фрезы по отношению к диаметру <i>DCX</i>	<3.0	3.0 – 3.5	3.6 – 4.0	4.1 – 4.5	>4.6
Поправочный коэффициент на скорость резания	1.0	0.9	0.8	0.7	0.5

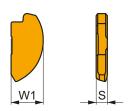




Копировальная фреза MULTISIDE XP

Конструкция фрезы имеет нейтрально-негативную геометрию. Односторонние пластины ХР. с максимальной глубиной резания от 8 мм до 16 мм имеют 1 режущую кромку. Фреза подходит для копировальной обработки фасонных поверхностей.

MULTISIDE XP

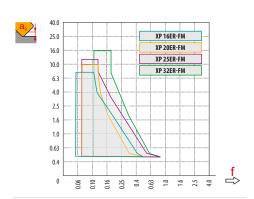

	Обозначение	DCX	OAL	DCON MS	LU	LUX	LF	TDZ	APMX	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(мм)	(MM)	(мм)	(мм)		(MM)	(°)	(°)							
	16K3R050A16-CXP16	16	200	16	50	_	_	_	8.00	0	-5	3	-	22600	_	0.36	GI267	C0520
	16K3R050A20-CXP16	16	200	20	50	-	_	-	8.00	0	-5	3	-	22600	_	0.51	GI267	C0520
	20K3R050A20-CXP20	20	200	20	50	-	-	-	10.00	0	-5	3	-	20000	-	0.53	GI268	C0521
DIN 1835A	20K3R060A25-CXP20	20	250	25	60	-	-	-	10.00	0	-5	3	-	20000	-	0.92	GI268	C0521
	25K3R060A25-CXP25	25	250	25	60	-	_	-	12.50	0	-5	3	_	20000	_	0.96	GI269	C0522
	32K3R080A32-CXP32	32	250	32	80	-	_	_	16.00	0	-5	3	_	15000	_	1.50	GI270	C0523
	16K3R060B20-CXP16	16	111	20	60	-	86.5	-	8.00	0	-5	3	-	22600	-	0.24	GI267	C0520
DIN 1835B	20K3R070B25-CXP20	20	127	25	70	-	95.5	_	10.00	0	-5	3	_	20000	_	0.41	G1268	C0521
DIN 1833B	25K3R080B25-CXP25	25	137	25	80	-	105	-	12.50	0	-5	3	-	20000	-	0.49	G1269	C0522
	16K3R035M08-CXP16	16	_	8.5	_	-	35	M8	8.00	0	-5	3	-	_	_	0.07	GI267	C0520
	16K3R035M10-CXP16	16	-	10.5	-	-	35	M10	8.00	0	-5	3	-	_	-	0.07	GI267	C0520
MODULAR	20K3R040M10-CXP20	20	_	10.5	_	-	40	M10	10.00	0	-5	3	_	_	_	0.07	G1268	C0521
WODOLAR	25K3R045M12-CXP25	25	_	12.5	_	-	45	M12	12.50	0	-5	3	_	-	_	0.16	G1269	C0522
	32K3R055M16-CXP32	32	-	17	-	-	55	M16	16.00	0	-5	3	-	-	-	0.29	GI270	C0523

GI267	ХР 16
GI268	XP 20
G1268 G1269	XP 25
GI270	XP 32

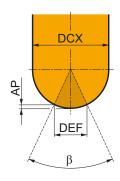
	3	Nm			X
C0520	US 63009-T09P	1.2	M 3	9	Flag T09P
C0521	US 63513-T15P	3.0	M 3.5	12	Flag T15P

		Nm			×
C0522	US 64014-T15P	3.5	M 4	14	Flag T15P
C0523	US 65017-T20P	5.0	M 5	17	Flag T20P

	ХР	
	W1	S (MM)
16	16.000	2.00
20	20.000	2.50
25	25.000	3.17
32	32.000	4.00



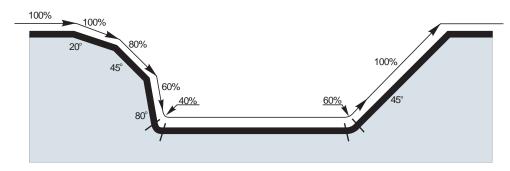
	DELONG SE	RE			Р			M				K				N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
3			_	Û	E							×6											
XP 16ER-FM	M8310	_	le	ометри 1 285	ия с ней 0.27	0.8	м пере	0.24	0.8	ДЛ	я чисто	0.27	0.8	ΚИ.	_	_	_	_	_	_	55	0.15	1.0
	M8330 M8345	_	F	265 195	0.27	0.8	155 115	0.24	0.8		250	0.27	0.8		_	-	-	65 45	0.19	0.6	50	0.15	1.0
XP 20ER-FM	M8310	_	Ī	275	0.27	1.0	140	0.24	1.0		260	0.27	1.0		-	-	-	-	-	-	55	0.15	1.0
	M8330 M8345	_	Ė	260 190	0.27	1.0	155 110	0.24	1.0		245 –	0.27	1.0		_	_	_	65 45	0.19	0.8	50 –	0.15	1.0
XP 25ER-FM	M8310 M8330	_	F	270 250	0.27	1.3		0.24	1.3		255 235	0.27	1.3		-	_	_	- 60	0.19	1.0	50 50	0.15	1.0
XP 32ER-FM	M8310 M8330			265 245	0.27	1.6		0.24	1.6 1.6		250 230	0.27	1.6 1.6		-	-	-	- 60	- 0.19	- 1.3	50 45	0.15	1.0
	M8345	_		180	0.27	1.6		0.24	1.6		-	-	-		_	_	-	45	0.19	1.3	4 3	-	-



000000	XP 16-FM	XP 20-FM	XP 25-FM	XP 32-FM
RE	8.0	10.0	12.5	16.0
BS	_	-	-	_

DCX	a _p	0.3	0.4	0.5	0.7	1.0	1.25	1.5	2.0	2.5	3.0	4.0	5.0	6.0	8.0	10.0	12.0	15.0	16.0	20.0	22.5	25.0
16		4.3	5.0	5.6	6.5	7.7	8.6	9.3	10.6	11.6	12.5	13.9	14.8	15.5	16.0	-	-	-	-	-	-	-
20	(DEC)	4.9	5.6	6.2	7.4	8.7	9.7	10.5	12.0	13.2	14.3	16.0	17.3	18.3	19.6	20.0	_	_	_	_	_	_
25	DEF	5.4	6.3	7.0	8.2	9.8	10.9	11.9	13.6	15.0	16.2	18.3	20.0	21.4	23.3	24.5	25.0	-	-	-	-	-
32		6.2	7.1	7.9	9.4	11.1	12.4	13.5	15.5	17.2	18.7	21.2	23.2	25.0	27.7	29.7	31.2	31.9	_	-	-	-

Эффективная область на 1 режущую кромку фрезы.



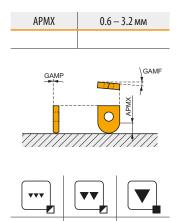
DCX	β	DEF	AP
16	41°	5.568	0.51
20	37°	6.314	0.52
25	37°	7.901	0.65
32	37°	10.122	0.83

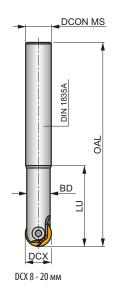
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
16	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25	FE	0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578

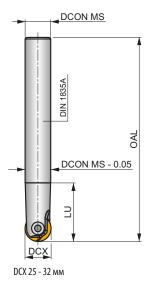
DEF	a _e	1.0 %	2.5 %	5.0 %	7.5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %	45 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
	a _p										⊚ ⇒x.f									
19.9 %	1.0 %	2.86	1.84	1.33	1.12	1.00	0.89	-	-	-	-	-	-	-	-	_	-	-	-	-
31.2 %	2.5 %	3.58	2.28	1.64	1.36	1.20	1.01	0.92	0.88	0.91	-	_	-	-	-	-	-	-	_	-
43.6%	5.0 %	4.22	2.68	1.92	1.58	1.39	1.16	1.03	0.95	0.90	0.88	0.89	-	-	-	-	-	-	-	-
52.7 %	7.5 %	4.63	2.95	2.10	1.73	1.51	1.26	1.11	1.02	0.96	0.91	0.89	0.88	0.90	-	-	-	-	-	-
60.0%	10.0 %	4.94	3.14	2.24	1.84	1.61	1.33	1.18	1.07	1.00	0.95	0.91	0.89	0.88	1.00	-	-	-	-	-
71.4 %	15.0 %	5.39	3.42	2.43	2.00	1.74	1.44	1.27	1.15	1.07	1.01	0.96	0.93	0.90	0.88	0.93	-	-	-	-
80.0%	20.0 %	5.70	3.62	2.57	2.11	1.84	1.52	1.33	1.21	1.12	1.05	1.00	0.96	0.93	0.89	0.88	0.89	1.00	-	-
86.6%	25.0 %	5.93	3.76	2.67	2.20	1.91	1.58	1.38	1.25	1.16	1.08	1.03	0.99	0.95	0.90	0.88	0.88	0.89	-	-
91.7 %	30.0 %	6.10	3.87	2.75	2.26	1.96	1.62	1.42	1.28	1.18	1.11	1.05	1.01	0.97	0.92	0.89	0.88	0.88	0.93	_
95.4%	35.0 %	6.23	3.95	2.80	2.30	2.00	1.65	1.44	1.31	1.20	1.13	1.07	1.02	0.98	0.93	0.89	0.88	0.88	0.90	-
98.0 %	40.0 %	6.31	4.00	2.84	2.33	2.03	1.67	1.46	1.32	1.22	1.14	1.08	1.03	0.99	0.93	0.90	0.89	0.88	0.89	-
99.5 %	45.0 %	6.36	4.03	2.86	2.35	2.04	1.68	1.47	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	_
100.0 %	50.0 %	6.38	4.04	2.87	2.35	2.05	1.69	1.48	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	1.00

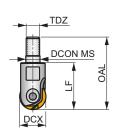
Вылет фрезы по отношению к диаметру <i>DCX</i>	<3.0	3.1 – 4.0	4.1 – 6.0	>6.1
Поправочный коэффициент на скорость резания	1.0	0.9	0.7	0.5

K2-SRC



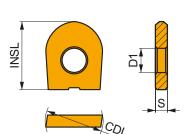



Копировальная фреза


Конструкция фрезы позволяет устанавливать пластины LC.. и RC.. с максимальной глубиной резания от 0.6 мм до 3.2 мм. Фреза подходит для копировальной обработки фасонных поверхностей.

PRAMET

S


	Обозначение	DCX	OAL	DCON MS	BD	LU	LF	TDZ			max.		kg		
		(MM)	(MM)	(MM)	(мм)	(MM)	(MM)								
	08K2R025A10-SRC08-A	8	110	10	7.5	25	_	_	2	_	56000	_	0.09	GI030	C0530
	08K2R050A12-SRC08-A	8	140	12	_	13.5	_	-	2	_	56000	_	0.11	GI030	C0530
	10K2R030A12-SRC10-A	10	130	12	9	30	_	_	2	_	42000	_	0.11	GI031	C0531
	10K2R060A16-SRC10-A	10	150	16	_	19.5	_	_	2	_	42000	_	0.18	GI031	C0531
	12K2R030A12-SRC12-A	12	130	12	10.5	30	_	_	2	_	35000	_	0.11	GI032	C0532
	16K2R035A16-SRC16-A	16	140	16	14	35	_	_	2	_	22000	-	0.23	GI033	C0533
DIN 1835A	20K2R045A20-SRC20-A	20	160	20	18	45	_	_	2	_	16000	_	0.40	GI034	C0534
	25K2R045A25-SRC25-A	25	160	25	22.4	45	_	_	2	_	10000	_	0.59	GI035	C0535
	32K2R060A32-SRC32-A	32	180	32	28.6	60	_	_	2	_	6000	-	1.10	GI036	C0536
	12K2R060A16-SRC12-A	12	160	16	_	24.5	_	_	2	_	35000	_	0.14	GI032	C0532
	16K2R065A20-SRC16-A	16	175	20	_	31.5	_	_	2	-	22000	_	0.41	GI033	C0533
	20K2R080A25-SRC20-A	20	190	25	-	33.5	-	-	2	-	16000	-	0.66	GI034	C0534
	08K2R30M06-SRC08-A	8	45	6.5	_	_	30	M6	2	_	-	_	0.02	GI123	C0530
	10K2R30M06-SRC10-A	10	45	6.5	_	_	30	M6	2	_	_	_	0.03	GI124	C0531
	12K2R30M06-SRC12-A	12	45	6.5	_	_	30	M6	2	_	_	_	0.16	GI125	C0530
MODULAR	12K2R30M08-SRC12-A	12	48	8.5	-	-	30	M8	2	-	-	-	0.04	GI125	C0532
	16K2R35M08-SRC16-A	16	53	8.5	_	_	35	M8	2	_	_	_	0.05	GI033	C0533
	20K2R35M10-SRC20-A	20	54	10.5	_	_	35	M10	2	_	_	_	0.08	GI034	C0534

GI030	RC 08	RC 08-F	LC 08-KP	LC 08-KPF	-	-
GI031	RC 10	RC 10-F	LC 10-KP	LC 10-KPF	_	_
GI032	RC 12	RC 12-F	-	-	LC 12CH	LC 12RE
GI033	RC 16	RC 16-F	-	-	-	-
GI034	RC 20	RC 20-F	_	_	_	_
GI035	RC 25	RC 25-F	_	_	_	_

			•	•		
GI036	RC 32	RC 32-F	_	_	-	_
GI123	RC 08	RC 08-F	_	_	_	-
GI124	RC 10	RC 10-F	_	_	_	_
GI125	RC 12	RC 12-F	_	-	-	-

		Nm			Pa		Po	×.
C0530	CS 3007-T08P	1.2	M 3	7	_	_	_	Flag T08P
C0531	CS 4008-T15P	3.0	M 4	8	_	D-T08P/T15P	FG-15	_
C0532	CS 5009-T20P	5.0	M 5	9	SDR T20P	_	_	_
C0533	CS 5013-T20P	5.0	M 5	13	SDR T20P	_	_	_
C0534	CS 5015-T20P	5.0	M 5	15	SDR T20P	_	_	_
C0535	CS 6020-T20P	7.5	M 6	20	SDR T20P	_	_	_
C0536	CS 8025-T30P	15.0	M 8	25	SDR T30P	_	_	_

		RC		
	CDI (MM)	D1	INSL	S (MM)
08	8.0	3.00	9.5	2.00
10	10.0	4.00	11.5	2.50
12	12.0	5.00	12.0	2.50
16	16.0	5.00	14.0	3.00
20	20.0	5.00	16.0	3.00
25	25.0	6.00	21.5	4.00
32	32.0	8.00	25.8	5.00

PRAMET

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

06	RE		P			ı	M			K			N			S			Н	
Обозначение		VC	f	ap		VC	f	ар	VC	f	ap	VC	f	ap	VC	f	ap	VC	f	ар
	(MM)	(м/мин)	(мм/зуб)	(MM)	(и/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)

Позитивная геометрия с нейтральным передним углом.

RC 08	M4310	_	255	0.36	0.4	_	_	_	240	0.36	0.4	_	_	-	_	_	_	50	0.15	1.0
	M8310	_	295	0.36	0.4	-	-	-	280	0.36	0.4	-	-	-	_	-	_	55	0.15	1.0
	M8330	_	275	0.36	0.4	_	_	_	260	0.36	0.4	_	_	-	_	_	_	55	0.15	1.0
RC 10	M4310	_	250	0.36	0.5	_	_	_	235	0.36	0.5	_	_	-	_	_	_	50	0.15	1.0
	M8310	_	290	0.36	0.5	_	_	_	275	0.36	0.5	-	_	-	_	_	_	55	0.15	1.0
	M8330	-	270	0.36	0.5	-	-	-	255	0.36	0.5	_	-	-	_	-	-	50	0.15	1.0
RC 12	M4310	_	2 45	0.36	0.6	_	_	_	230	0.36	0.6	_	_	-	_	_	_	45	0.15	1.0
	M8310	_	285	0.36	0.6	_	_	_	270	0.36	0.6	_	_	-	_	_	_	55	0.15	1.0
	M8330	_	265	0.36	0.6	_	_	_	250	0.36	0.6	_	_	-	-	_	_	50	0.15	1.0
RC 16	M4310	-	235	0.36	0.8	_	_	-	220	0.36	8.0	_	-	-	_	-	_	45	0.15	1.0
	M8310	_	275	0.36	0.8	_	_	_	2 60	0.36	8.0	_	_	-	_	_	_	55	0.15	1.0
	M8330	-	255	0.36	0.8	_	-	-	240	0.36	8.0	_	-	-	_	-	_	50	0.15	1.0
RC 20	M4310	-	235	0.36	1.0	_	-	-	220	0.36	1.0	_	-	-	_	-	-	45	0.15	1.0
	M8310	_	270	0.36	1.0	_	_	_	255	0.36	1.0	_	_	-	_	_	_	50	0.15	1.0
	M8330	_	250	0.36	1.0	_	-	_	235	0.36	1.0	_	-	-	_	-	-	50	0.15	1.0
RC 25	M4310	-	225	0.36	1.3	_	-	-	210	0.36	1.3	_	-	-	_	-	-	45	0.15	1.0
	M8310	-	260	0.36	1.3	_	-	-	245	0.36	1.3		-	-	-	-	-	50	0.15	1.0
	M8330	_	245	0.36	1.3	_	_	_	230	0.36	1.3		-	-	-	-	-	45	0.15	1.0
RC 32	M4310	_	220	0.36	1.6	_	_	_	205	0.36	1.6	_	_	-	_	-	-	40	0.15	1.0
	M8330	-	2 40	0.36	1.6		-	-	225	0.36	1.6		-	-		-	_	45	0.15	1.0

	PSERVER	RE			P			M				K			N			S				Н	
Обозначение				VC	f	ap	VC	f	ар		VC	f	ар	VC	f	ар	١	c 1		ар	VC	f	ар
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)	(M/I	ин) (мм/	зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)
	Q_		+		F																		
RC 08-F	M4310		Π03	255	ная гео 0.36		ля чис	0.32	обрабо 0.4	TKI	и.	0.36	0.4	_	_	_	_		-	_	50	0.15	1.0
RC 10-F	M4310	_		250	0.36			0.32	0.5	F	235	0.36	0.5	_	_	_		_		_	50	0.15	1.0
RC 12-F	M4310	_		245	0.36	0.6	120	0.32	0.6		230	0.36	0.6	_	_	_				_	45	0.15	1.0
RC 16-F	M4310	_		235	0.36	0.8	115	0.32	0.8		220	0.36	0.8	_	-	_			-	_	45	0.15	1.0

0.8 240

1.0 220 0.36

0.36 0.8

		LC		
	CDI (MM)	D1	L (MM)	S (MM)
08	8.0	3.00	9,50	2.00
10	10.0	4.00	11.50	2.50
12	12.0	5.00	14.00	2.50
16	16.0	5.00	16.00	3.00
20	20.0	5.00	18.00	3.00

M8330

M4310

M8330

RC 20-F

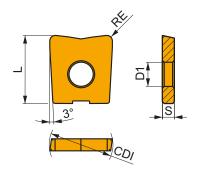
255 0.36

0.36

235

0.8 🖊 150 0.32

1.0 🖊 115 0.32

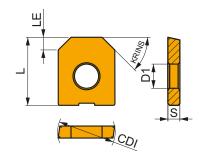

■ 250 0.36 1.0 **■** 150 0.32 1.0 **■** 235 0.36

PRAMET

0.15 1.0

0.15

45 0.15 1.0


06	PARASAS	RE		- 1	Р			M			K			N			S			Н	
Обозначение		(MM)	(1	VC л/мин) (f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MUH)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	Q		ξĆ		E																
			Геом	етрия	с нейт	тральн	ым пере	едним у	углом д	іля чист	овой и г	олучист	говой о	бработн	ки.						
LC 0806-KP	M4310	0.6		280	0.16	0.3	-	_	_	2 65	0.16	0.3	_	-	-	_	-	-	55	0.15	1.0

| M4310 0.6 | 5 E | 280 | 0.16 | 0.3 | - | _ | - | - | 265 | 0.16 | 0.3
 |

 | _
 | - | - | - | _ | _
 | | 55 | 0.15 | 1.0 |
|------------------|---|---|---|---|--|--|--|---|--|---
--

--

--
--|---|---|---|--
---|---|---|--|
| M8310 0.6 | 5 | 325 | 0.16 | 0.3 | _ | _ | - | - 1 | 305 | 0.16 | 0.3
 |

 | _
 | _ | _ | _ | _ | _
 | | 65 | 0.15 | 1.0 |
| M8330 0.6 | 5 | 295 | 0.16 | 0.3 | _ | _ | - | - 1 | 280 | 0.16 | 0.3
 |

 | _
 | _ | _ | _ | - | _
 | | 55 | 0.15 | 1.0 |
| M4310 1.0 |) 🗾 | 280 | 0.16 | 0.5 | _ | _ | - | - 1 | 265 | 0.16 | 0.5
 |

 | _
 | _ | _ | _ | - | _
 | | 55 | 0.15 | 1.0 |
| M8310 1.0 |) 🔳 | 325 | 0.16 | 0.5 | _ | _ | - | - 1 | 305 | 0.16 | 0.5
 |

 | _
 | _ | - | - | - | _
 | | 65 | 0.15 | 1.0 |
| M4310 0.8 | 3 | 270 | 0.16 | 0.4 | _ | _ | - | - 1 | 255 | 0.16 | 0.4
 |

 | _
 | _ | _ | _ | _ | _
 | | 50 | 0.15 | 1.0 |
| M8310 0.8 | 3 | 315 | 0.16 | 0.4 | _ | _ | - | - 1 | 295 | 0.16 | 0.4
 |

 | _
 | _ | _ | _ | - | _
 | | 60 | 0.15 | 1.0 |
| M8330 0.8 | 3 | 290 | 0.16 | 0.4 | _ | _ | - | - 1 | 275 | 0.16 | 0.4
 |

 | _
 | _ | _ | _ | - | _
 | | 55 | 0.15 | 1.0 |
| M4310 1.0 | | 280 | 0.16 | 0.5 | _ | _ | - | - 1 | 265 | 0.16 | 0.5
 |

 | _
 | _ | - | - | - | _
 | | 55 | 0.15 | 1.0 |
| M8310 1.0 |) 🔳 | 325 | 0.16 | 0.5 | _ | _ | - | - 1 | 305 | 0.16 | 0.5
 |

 | _
 | _ | _ | _ | - | _
 | | 65 | 0.15 | 1.0 |
| M8330 1.0 |) 🔳 | 295 | 0.16 | 0.5 | _ | _ | - | - 1 | 280 | 0.16 | 0.5
 |

 | _
 | _ | _ | _ | - | _
 | | 55 | 0.15 | 1.0 |
| M4310 1.0 |) 🔼 | 280 | 0.16 | 0.5 | _ | _ | - | - 1 | 265 | 0.16 | 0.5
 |

 | _
 | - | - | - | _ | _
 | | 55 | 0.15 | 1.0 |
| M8310 1.0 |) 🔳 | 325 | 0.16 | 0.5 | _ | _ | - | - | 305 | 0.16 | 0.5
 |

 | -
 | - | - | _ | _ | _
 | | 65 | 0.15 | 1.0 |
| M8330 1.0 |) 🔳 | 295 | 0.16 | 0.5 | _ | _ | - | - 1 | 280 | 0.16 | 0.5
 |

 | _
 | _ | - | _ | _ | _
 | | 55 | 0.15 | 1.0 |
| M4310 2.0 |) 🔼 | 285 | 0.16 | 1.0 | _ | _ | - | - 1 | 270 | 0.16 | 1.0
 |

 | _
 | _ | - | _ | _ | _
 | | 55 | 0.15 | 1.0 |
| M4310 1.0 |) 🔼 | 280 | 0.16 | 0.5 | _ | _ | - | - 1 | 265 | 0.16 | 0.5
 |

 | _
 | - | - | - | _ | _
 | | 55 | 0.15 | 1.0 |
| M8310 1.0 |) 🔳 | 325 | 0.16 | 0.5 | _ | _ | - | - | 305 | 0.16 | 0.5
 |

 | -
 | - | - | _ | _ | _
 | | 65 | 0.15 | 1.0 |
| M8330 1.0 |) 🔳 | 295 | 0.16 | 0.5 | _ | _ | - | - 1 | 280 | 0.16 | 0.5
 |

 | _
 | _ | _ | _ | - | _
 | | 55 | 0.15 | 1.0 |
| M4310 1.3 | 3 🗾 | 270 | 0.16 | 0.7 | _ | _ | - | - 1 | 255 | 0.16 | 0.7
 |

 | _
 | _ | - | _ | _ | _
 | | 50 | 0.15 | 1.0 |
| M8310 1.3 | 3 | 315 | 0.16 | 0.7 | _ | _ | - | - 1 | 295 | 0.16 | 0.7
 |

 | _
 | - | - | - | _ | _
 | | 60 | 0.15 | 1.0 |
| M4310 3.0 | | 270 | 0.16 | 1.5 | _ | _ | - | - | 255 | 0.16 | 1.5
 |

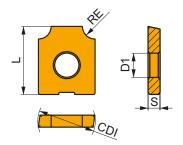
 | -
 | - | - | _ | _ | _
 | | 50 | 0.15 | 1.0 |
| M4310 1.0 | | 280 | 0.16 | 0.5 | _ | _ | - | - [| 265 | 0.16 | 0.5
 |

 | _
 | _ | - | _ | _ | _
 | | 55 | 0.15 | 1.0 |
| M8310 1.0 |) | 325 | 0.16 | 0.5 | _ | _ | - | - [| 305 | 0.16 | 0.5
 |

 | _
 | _ | _ | _ | _ | _
 | | 65 | 0.15 | 1.0 |
| M8330 1.0 |) | 295 | 0.16 | 0.5 | _ | _ | - | - | 280 | 0.16 | 0.5
 |

 | -
 | - | - | _ | - | -
 | | 55 | 0.15 | 1.0 |
| | M8310 0.6 M8330 0.6 M4310 1.0 M8310 1.0 M8310 0.8 M8310 0.8 M8330 0.8 M8330 1.0 M8330 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 M8310 1.0 | M8310 0.6 M8330 0.6 M4310 1.0 M8310 1.0 M8310 0.8 M8310 0.8 M8310 1.0 M8330 1.0 M8310 1.0 M8330 1.0 M8310 1.0 | M8310 0.6 ■ 325 M8330 0.6 ■ 295 M4310 1.0 ■ 325 M4310 0.8 ■ 270 M8310 0.8 ■ 315 M8330 0.8 ■ 290 M4310 1.0 ■ 280 M8310 1.0 ■ 295 M4310 1.0 ■ 295 M4310 1.0 ■ 325 M8330 1.0 ■ 295 M4310 2.0 ■ 285 M4310 1.0 ■ 325 M8310 1.0 ■ 325 M8310 1.3 ■ 325 M4310 1.3 ■ 315 M4310 1.3 ■ 315 M4310 1.0 ■ 280 M4310 1.0 ■ 295 M4310 1.3 ■ 315 M4310 1.0 ■ 280 M4310 1.0 ■ 280 M8310 1.0 ■ 295 M4310 1.0 ■ 280 M8310 1.0 ■ 295 M4310 | M8310 0.6 ■ 325 0.16 M8330 0.6 ■ 295 0.16 M4310 1.0 ■ 325 0.16 M8310 0.8 ■ 270 0.16 M8310 0.8 ■ 315 0.16 M8330 0.8 ■ 290 0.16 M8310 1.0 ■ 280 0.16 M8310 1.0 ■ 295 0.16 M8310 1.0 ■ 295 0.16 M8310 1.0 ■ 280 0.16 M8310 1.0 ■ 295 0.16 M8330 1.0 ■ 295 0.16 M4310 2.0 ■ 285 0.16 M8310 1.0 ■ 295 0.16 M8310 1.0 ■ 295 0.16 M8310 1.0 ■ 325 0.16 M8310 1.0 ■ 295 0.16 M8310 1.0 ■ 295 0.16 M8310 1.3 ■ 325 0.16 M8310 1.3 ■ 315 0.16 M4310 | M8310 0.6 ■ 325 0.16 0.3 M8330 0.6 ■ 295 0.16 0.3 M4310 1.0 ■ 280 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 M4310 0.8 ■ 315 0.16 0.4 M8330 0.8 ■ 290 0.16 0.4 M4310 1.0 ■ 280 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 M8330 1.0 ■ 295 0.16 0.5 M8310 1.0 ■ 280 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 M8330 1.0 ■ 295 0.16 0.5 M4310 2.0 ■ 285 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 M8310 1.0 ■ 280 0.16 0.5 M8310 1.0 ■ 280 0.16 0.5 M8310 1.3 ■ 325 0.16 0.5 | M8310 0.6 ■ 325 0.16 0.3 — M8330 0.6 ■ 295 0.16 0.3 — M4310 1.0 ■ 280 0.16 0.5 — M8310 1.0 ■ 325 0.16 0.5 — M8310 0.8 ■ 315 0.16 0.4 — M8330 0.8 ■ 290 0.16 0.4 — M8310 1.0 ■ 280 0.16 0.5 — M8310 1.0 ■ 325 0.16 0.5 — M8310 1.0 ■ 295 0.16 0.5 — M8310 1.0 ■ 295 0.16 0.5 — M8310 1.0 ■ 325 0.16 0.5 — M8330 1.0 ■ 295 0.16 0.5 — M8310 1.0 ■ 295 0.16 0.5 — M8310 1.0 ■ 295 0.16 0.5 — M8310 1.0 ■ 280 0.16 0.5 — | M8310 0.6 ■ 325 0.16 0.3 — — — — — — — — — — — — — — — — — — — | M8310 0.6 ■ 325 0.16 0.3 - - M8330 0.6 ■ 295 0.16 0.3 - - M4310 1.0 ■ 280 0.16 0.5 - - M8310 1.0 ■ 325 0.16 0.5 - - M8310 0.8 ■ 270 0.16 0.4 - - M8330 0.8 ■ 290 0.16 0.4 - - M8310 1.0 ■ 280 0.16 0.5 - - M8310 1.0 ■ 325 0.16 0.5 - - M8330 1.0 ■ 295 0.16 0.5 - - M8310 1.0 ■ 325 0.16 0.5 - - M8310 1.0 ■ 325 0.16 0.5 - - M8310 1.0 ■ 280 0.16 0.5 - - M8310 1.0 ■ 285 0.16 0.5 - - M8310 1.0< | M8310 0.6 ■ 325 0.16 0.3 - M8330 0.6 ■ 295 0.16 0.3 - M4310 1.0 ■ 280 0.16 0.5 - M8310 1.0 ■ 325 0.16 0.4 - M8310 0.8 ■ 315 0.16 0.4 - M8330 0.8 ■ 290 0.16 0.4 - M8310 1.0 ■ 325 0.16 0.5 - M8310 1.0 ■ 325 0.16 0.5 - M8310 1.0 ■ 295 0.16 0.5 | M8310 0.6 ■ 325 0.16 0.3 ■ 305 M8330 0.6 ■ 295 0.16 0.3 ■ 280 M4310 1.0 ■ 280 0.16 0.5 ■ 265 M8310 1.0 ■ 325 0.16 0.5 ■ 305 M4310 0.8 ■ 270 0.16 0.4 ■ 255 M8310 0.8 ■ 290 0.16 0.4 ■ 275 M4310 1.0 ■ 280 0.16 0.5 ■ 265 M8310 1.0 ■ 325 0.16 0.5 ■ 265 M8310 1.0 ■ 325 0.16 0.5 ■ 305 M8330 1.0 ■ 295 0.16 0.5 ■ 265 M8310 1.0 ■ 295 0.16 0.5 ■ 280 M4310 1.0 ■ 280 0.16 0.5 ■ 265 M8330 1.0 ■ 295 0.16 0.5 ■ 265 M8310 1.0 ■ 285 0.16 0.5 | M8310 0.6 ■ 325 0.16 0.3 ■ 305 0.16 M8330 0.6 ■ 295 0.16 0.3 ■ 280 0.16 M4310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 M8310 0.8 ■ 270 0.16 0.4 ■ 295 0.16 M8330 0.8 ■ 290 0.16 0.4 ■ 275 0.16 M8310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 M8310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 M8310 1.0 ■ 325 0.16 0.5 ■ 280 0.16 M8310 1.0 ■ 295 0.16 0.5 ■ 280 0.16 M8310 1.0 ■ 295 0.16 0.5 ■ 265 0.16 M8310 1.0 ■ 295 0.16 0.5 ■ 265 0.16 <t< th=""><th>M8310 0.6 ■ 325 0.16 0.3 ■ 305 0.16 0.3 M8330 0.6 ■ 295 0.16 0.3 ■ 280 0.16 0.3 M4310 1.0 ■ 280 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 0.8 ■ 270 0.16 0.4 ■ 255 0.16 0.4 M8330 0.8 ■ 290 0.16 0.4 ■ 295 0.16 0.4 M4310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.4 M8330 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 280 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 280 0.16 <td< th=""><th>M8310 0.6 ■ 325 0.16 0.3 ■ 305 0.16 0.3 M8330 0.6 ■ 295 0.16 0.3 ■ 280 0.16 0.3 M4310 1.0 ■ 280 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 0.8 ■ 270 0.16 0.4 ■ 255 0.16 0.4 M8330 0.8 ■ 290 0.16 0.4 ■ 295 0.16 0.4 M4310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.4 M8330 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 280 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 305 0.16 <td<
th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M4310 0.8 ≥ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - M8310 0.8 ■ 315 0.16 0.4 - - - ■ 255 0.16 0.4 - M8330 0.8 ■ 290 0.16 0.4 - - - ■ 275 0.16 0.4 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M8330 1.0 ■ 295 0.16 0.5 - - - ■ 280 0.16 0.5 - M8310 1.0 <t< th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 280 0.16 0.5 - - - ■ 285 0.16 0.4 - - - ■ 295 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 265 0.16 0.5 - - - ■ 285 0.16 0.5 - - - ■ 280 0.16 0.5 - -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - - - M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16 0.5 - - - M8310 1.0 ■ 325 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.5 - - - ■ 275</th><th>M8310 0.6 ■ 325 0.16 0.3 - - ■ 305 0.16 0.3 -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - - ■ 280 0.16 0.3 -</th><th>M8310 0.6 325 0.16 0.3 - - - 305 0.16 0.3 -</th></t<></th></td<><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 55 M4310 1.0 ■ 285 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 65 M8310 0.8 ■ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 50 M8310 0.8 ■ 315 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 65 0.15 M8330 0.6 ■ 295 0.16 0.3 -</th></th></td<></th></t<> | M8310 0.6 ■ 325 0.16 0.3 ■ 305 0.16 0.3 M8330 0.6 ■ 295 0.16 0.3 ■ 280 0.16 0.3 M4310 1.0 ■ 280 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 0.8 ■ 270 0.16 0.4 ■ 255 0.16 0.4 M8330 0.8 ■ 290 0.16 0.4 ■ 295 0.16 0.4 M4310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.4 M8330 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 280 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 280 0.16 <td< th=""><th>M8310 0.6 ■
325 0.16 0.3 ■ 305 0.16 0.3 M8330 0.6 ■ 295 0.16 0.3 ■ 280 0.16 0.3 M4310 1.0 ■ 280 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 0.8 ■ 270 0.16 0.4 ■ 255 0.16 0.4 M8330 0.8 ■ 290 0.16 0.4 ■ 295 0.16 0.4 M4310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.4 M8330 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 280 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 305 0.16 <td< th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M4310 0.8 ≥ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - M8310 0.8 ■ 315 0.16 0.4 - - - ■ 255 0.16 0.4 - M8330 0.8 ■ 290 0.16 0.4 - - - ■ 275 0.16 0.4 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M8330 1.0 ■ 295 0.16 0.5 - - - ■ 280 0.16 0.5 - M8310 1.0 <t< th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 280 0.16 0.5 - - - ■ 285 0.16 0.4 - - - ■ 295 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 265 0.16 0.5 - - - ■ 285 0.16 0.5 - - - ■ 280 0.16 0.5 - -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - - - M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16 0.5 - - - M8310 1.0 ■ 325 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.5 - - - ■ 275</th><th>M8310 0.6 ■ 325 0.16 0.3 - - ■ 305 0.16 0.3 -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - - ■ 280 0.16 0.3 -</th><th>M8310 0.6 325 0.16 0.3 - - - 305 0.16 0.3 -</th></t<></th></td<><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 55 M4310 1.0 ■ 285 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 65 M8310 0.8 ■ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 50 M8310 0.8 ■ 315 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 65 0.15 M8330 0.6 ■ 295 0.16 0.3 -</th></th></td<> | M8310 0.6 ■ 325 0.16 0.3 ■ 305
 0.16 0.3 M8330 0.6 ■ 295 0.16 0.3 ■ 280 0.16 0.3 M4310 1.0 ■ 280 0.16 0.5 ■ 265 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 0.8 ■ 270 0.16 0.4 ■ 255 0.16 0.4 M8330 0.8 ■ 290 0.16 0.4 ■ 295 0.16 0.4 M4310 1.0 ■ 325 0.16 0.5 ■ 265 0.16 0.4 M8330 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 325 0.16 0.5 ■ 305 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 280 0.16 0.5 M8310 1.0 ■ 295 0.16 0.5 ■ 305 0.16 <td< th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M4310 0.8 ≥ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - M8310 0.8 ■ 315 0.16 0.4 - - - ■ 255 0.16 0.4 - M8330 0.8 ■ 290 0.16 0.4 - - - ■ 275 0.16 0.4 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M8330 1.0 ■ 295 0.16 0.5 - - - ■ 280 0.16 0.5 - M8310 1.0 <t< th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 280 0.16 0.5 - - - ■ 285 0.16 0.4 - - - ■ 295 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 265 0.16 0.5 - - - ■ 285 0.16 0.5 - - - ■ 280 0.16 0.5 - -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - - - M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16 0.5 - - - M8310 1.0 ■ 325 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.5 - - - ■ 275</th><th>M8310 0.6 ■ 325 0.16 0.3 - - ■ 305 0.16 0.3 -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - - ■ 280 0.16 0.3 -</th><th>M8310 0.6 325 0.16 0.3 - - - 305 0.16 0.3 -</th></t<></th></td<> <th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 -</th> <th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 55 M4310 1.0 ■ 285 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 65 M8310 0.8 ■ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 50 M8310 0.8 ■ 315 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16</th> <th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 65 0.15 M8330 0.6 ■ 295 0.16 0.3 -</th> | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 -
 M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M4310 0.8 ≥ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - M8310 0.8 ■ 315 0.16 0.4 - - - ■ 255 0.16 0.4 - M8330 0.8 ■ 290 0.16 0.4 - - - ■ 275 0.16 0.4 - M4310 1.0 ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - M8330 1.0 ■ 295 0.16 0.5 - - - ■ 280 0.16 0.5 - M8310 1.0 <t< th=""><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 280 0.16 0.5 - - - ■ 285 0.16 0.4 - - - ■ 295 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 265 0.16 0.5 - - - ■ 285 0.16 0.5 - - - ■ 280 0.16 0.5 - -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - - - M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16 0.5 - - - M8310 1.0 ■ 325 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.5 - - - ■ 275</th><th>M8310 0.6 ■ 325 0.16 0.3 - - ■ 305 0.16 0.3 -</th><th>M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - - ■ 280 0.16 0.3 -</th><th>M8310 0.6 325 0.16 0.3 - - - 305 0.16 0.3 -</th></t<> | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 280 0.16 0.5 - - - ■ 285 0.16 0.4 - - - ■ 295 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 265 0.16 0.5 - - - ■ 285 0.16 0.5 - - - ■ 280 0.16 0.5 - - | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - M8330 0.6 ■ 295 0.16 0.3 - - - ■ 280 0.16 0.3 - - - M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16 0.5 - - - M8310 1.0 ■ 325 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.5 - - - ■ 275 | M8310 0.6 ■ 325 0.16 0.3 - - ■ 305 0.16 0.3 - | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - - ■ 280 0.16 0.3 - | M8310 0.6 325 0.16 0.3 - - - 305 0.16 0.3 - - - - - - -
 - | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 280 0.16 0.3 - - - ■ 55 M4310 1.0 ■ 285 0.16 0.5 - - - ■ 265 0.16 0.5 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 305 0.16 0.5 - - - ■ 65 M8310 0.8 ■ 270 0.16 0.4 - - - ■ 255 0.16 0.4 - - - ■ 50 M8310 0.8 ■ 315 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 275 0.16 0.4 - - - ■ 55 M8310 1.0 ■ 325 0.16 0.5 - - - ■ 265 0.16 | M8310 0.6 ■ 325 0.16 0.3 - - - ■ 305 0.16 0.3 - - - ■ 65 0.15 M8330 0.6 ■ 295 0.16 0.3 - |

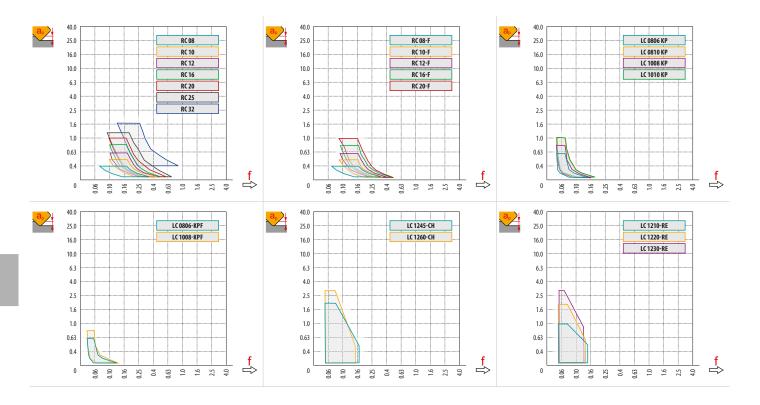
	THE PARTY COLUMN	RE			P				M				K				N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
6				О	Е ней	тралы	ныі	м пере	дним у	/глом	для	чисто	вой и г	получис	стоі	вой об	работ	ки.						
LC 2016-KP	M4310	1.6		280	0.16	0.8		_	_	_		265	0.16	0.8		_	_	_	_	_	_	55	0.15	1.0
	M8310	1.6		325	0.16	0.8		-	_	_		305	0.16	0.8		_	_	_	_	_	_	65	0.15	1.0
LC 2040-KP	M8330	4.0		285	0.16	2.0		-	_	_		270	0.16	2.0		_	_	_	_	_	-	55	0.15	1.0
		\11°	Пс	ЭЗИТИВ	Г	метрия	я д	ля чист	говой и	1 полу	чис	товой	обрабо	отки.										
LC 0806-KPF	M4310	0.6		280	0.16	0.3		140	0.14	0.3		265	0.16	0.3		-	-	-	-	-	-	55	0.15	1.0
LC 1008-KPF	M4310	0.8		270	0.16	0.4		135	0.14	0.4		255	0.16	0.4		_	_	_	-	_	_	50	0.15	1.0
LC 1210-KPF	M4310	1.0		280	0.16	0.5		140	0.14	0.5		265	0.16	0.5		_	_	_	_	_	-	55	0.15	1.0
	M8330	1.0		295	0.16	0.5		175	0.14	0.5		280	0.16	0.5		-	-	-	-	_	-	55	0.15	1.0
LC 1613-KPF	M4310	1.3		270	0.16	0.7		135	0.14	0.7		255	0.16	0.7		-	-	_	-	_	-	50	0.15	1.0
LC 2016-KPF	M4310	1.6		280	0.16	0.8		140	0.14	0.8		265	0.16	0.8		_	_	_	_	_	_	55	0.15	1.0



PRAMET

	PSE CALCAPA	RE		Р			M				K				N			S			Н	
Обозначение		(MM)	VC (м/мин	f ı) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)
	Q			E																		
			Геометр	ия с ней	ітральні	ым пере	едним у	/глом ,	для	1 ЧИСТО	вой и г	олучис	стоі	вой об	работ	ΚИ.						
LC 1245-CH	M4310	-	225	0.20	2.0	_	_	_		210	0.20	2.0		-	-	-	_	-	_	45	0.15	1.0

	PUAN SPA	RE			Р			M				K				N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f (мм/зуб)	ар (мм)	VC	f (мм/зуб)	ap
		(mm)	ن	(11/11/11/11/11/11/11/11/11/11/11/11/11/	(mm/syu)	(mm)	(m/min	(mm/syu)	(mm)		(m/mnn)	(mm/syu)	(mm)		(m/mnn)	(mm/syu)	(mm)	(m/mnn	(mm/3yu)	(mm)	(m/mnn)	(mm/syu)	(MM)
(0)	Q		2	W 5	L																		
4			Ге	ометри	ія с ней	тральн	ым пер	едним у	углом ,	ДЛЯ	я чисто	вой и г	олучи	СТО	вой об	іработк	ΧИ.						
LC 1220-RE	M4310	2.0		295	0.10	2.0	_	-	-		280	0.10	2.0		_	-	-	_	_	_	55	0.15	1.0
LC 1230-RE	M4310	3.0		285	0.10	3.0	_	_	_		270	0.10	3.0		_	_	-	_	_	_	55	0.15	1.0



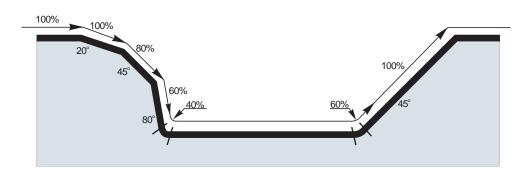
00000000	RC 08	RC 10	RC 12	RC 16	RC 20	RC 25	RC 32
RE	4.0	5.0	6.0	8.0	10.0	12.5	16.0
BS	-	-	-	-	-	-	-

00000000	RC 08-F	RC 10-F	RC 12-F	RC 16-F	RC 20-F
RE	4.0	5.0	6.0	8.0	10.0
BS	_	-	-	_	-

0000000	LC 08-KP	LC 08-KP	LC 10-KP	LC 10-KP	LC 08-KPF	LC 10-KPF
RE	0.6	1.0	0.8	1.0	0.6	0.8
BS	-	-	-	-	-	-

0000000	LC 1245-CH	LC 1260-CH	LC 1210-RE	LC 1220-RE	LC 1230-RE
RE	3×45	5×60	1.0	2.0	3.0
BS	-	-	-	-	-

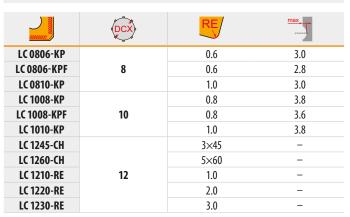
0000000	DCX
RC 08 / RC 08-F	8
RC 10 / RC 10-F	10
RC 12 / RC 12-F	12
RC 16 / RC 16-F	16
RC 20 / RC 20-F	20
RC 25 / RC 25-F	25
RC 32 / RC 32-F	32


a _p	0.3	0.4	0.5	0.7	1.0	1.25	1.5	2.0	2.5	3.0	4.0	5.0	6.0	8.0	10.0	12.0	15.0	16.0
	3.0	3.5	3.9	4.5	5.3	5.8	6.2	6.9	7.4	7.7	8.0	-	-	-	-	-	-	-
	3.4	3.9	4.4	5.1	6.0	6.6	7.1	8.0	8.7	9.2	9.8	10.0	_	_	_	_	_	-
	3.7	4.3	4.8	5.6	6.6	7.3	7.9	8.9	9.7	10.4	11.3	11.8	12.0	_	_	_	_	-
(DEF)	4.3	5.0	5.6	6.5	7.7	8.6	9.3	10.6	11.6	12.5	13.9	14.8	15.5	16.0	-	-	-	-
	4.9	5.6	6.2	7.4	8.7	9.7	10.5	12.0	13.2	14.3	16.0	17.3	18.3	19.6	20.0	-	-	-
	5.4	6.3	7.0	8.2	9.8	10.9	11.9	13.6	15.0	16.2	18.3	20.0	21.4	23.3	24.5	25.0	_	-
	6.17	7.11	7.94	9.36	11.14	12.40	13.53	15.49	17.18	18.65	21.17	23.24	24.98	27.71	29.66	30.98	31.94	32.00

0000000	DCX
RC 08 / RC 08-F	8
RC 10 / RC 10-F	10
RC 12 / RC 12-F	12
RC 16 / RC 16-F	16
RC 20 / RC 20-F	20
RC 25 / RC 25-F	25
RC 32 / RC 32-F	32

μm	3	5	10	15	20	30	40	50	60	80	100
	0.310	0.400	0.566	0.693	0.800	0.980	1.131	1.265	1.386	1.600	1.789
IVE FF	0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
FE	0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
	0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
	0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578

DEF	a _e	1.0 %	2.5 %	5.0 %	7.5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %	45 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
	a _p										⊚ ⇒x.f									
19.9%	1.0%	2.86	1.84	1.33	1.12	1.00	0.89	-	-	-	-	-	-	-	-	-	-	-	-	_
31.2%	2.5%	3.58	2.28	1.64	1.36	1.20	1.01	0.92	0.88	0.91	-	-	-	-	-	-	-	-	-	-
43.6%	5.0%	4.22	2.68	1.92	1.58	1.39	1.16	1.03	0.95	0.90	0.88	0.89	-	-	-	-	-	-	-	-
52.7 %	7.5%	4.63	2.95	2.10	1.73	1.51	1.26	1.11	1.02	0.96	0.91	0.89	0.88	0.90	-	-	-	-	-	-
60.0%	10.0%	4.94	3.14	2.24	1.84	1.61	1.33	1.18	1.07	1.00	0.95	0.91	0.89	0.88	1.00	-	-	-	-	-
71.4%	15.0%	5.39	3.42	2.43	2.00	1.74	1.44	1.27	1.15	1.07	1.01	0.96	0.93	0.90	0.88	0.93	-	-	-	_
80.0%	20.0%	5.70	3.62	2.57	2.11	1.84	1.52	1.33	1.21	1.12	1.05	1.00	0.96	0.93	0.89	0.88	0.89	1.00	-	_
86.6%	25.0%	5.93	3.76	2.67	2.20	1.91	1.58	1.38	1.25	1.16	1.08	1.03	0.99	0.95	0.90	0.88	0.88	0.89	-	_
91.7%	30.0%	6.10	3.87	2.75	2.26	1.96	1.62	1.42	1.28	1.18	1.11	1.05	1.01	0.97	0.92	0.89	0.88	0.88	0.93	_
95.4%	35.0%	6.23	3.95	2.80	2.30	2.00	1.65	1.44	1.31	1.20	1.13	1.07	1.02	0.98	0.93	0.89	0.88	0.88	0.90	-
98.0%	40.0%	6.31	4.00	2.84	2.33	2.03	1.67	1.46	1.32	1.22	1.14	1.08	1.03	0.99	0.93	0.90	0.89	0.88	0.89	-
99.5%	45.0%	6.36	4.03	2.86	2.35	2.04	1.68	1.47	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	_
100.0%	50.0%	6.38	4.04	2.87	2.35	2.05	1.69	1.48	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	1.00



000000	(DCX)								a								
<u></u>	(DCX)	RE	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.25	1.50	2.00	2.50	3.00	4.00
LC 0806-KP		0.6	6.8	7.8	7.9	8.0	8.0	-	-	-	-	-	-	-	-	-	_
LC 0806-KPF	8	0.6	6.8	7.8	7.9	8.0	8.0	_	_	_	_	_	_	_	_	_	_
LC 0810-KP		1.0	6.0	7.4	7.6	7.7	7.8	7.9	8.0	8.0	8.0	-	-	_	-	_	-
LC 1008-KP		0.8	8.4	9.6	9.8	9.9	9.9	10.0	10.0	-	-	-	-	-	-	-	_
LC 1008-KPF	10	0.8	8.4	9.6	9.8	9.9	9.9	10.0	10.0	_	_	_	_	_	-	_	_
LC 1010-KP		1.0	8.0	9.4	9.6	9.7	9.8	9.9	10.0	10.0	10.0	_	_	_	_	_	_
LC 1245-CH		3×45	8.0	8.6	8.8	9.0	9.2	9.4	9.6	9.8	10.0	10.5	11.0	12.0	-	-	-
LC 1260-CH		5×60	9.7	10.0	10.2	10.3	10.4	10.5	10.6	10.7	10.8	11.1	11.4	12.0	-	-	_
LC 1210-RE	12	1.0	10.0	10.1	10.2	10.3	10.4	10.6	10.8	11.1	12.0	_	_	-	-	_	_
LC 1220-RE		2.0	8.0	8.0	8.1	8.1	8.2	8.3	8.3	8.4	8.5	8.9	9.4	12.0	_	_	_
LC 1230-RE		3.0	6.0	6.0	6.1	6.1	6.1	6.2	6.2	6.3	6.3	6.5	6.8	7.5	8.7	12.0	-

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
8	FE	0.310	0.400	0.566	0.693	0.800	0.980	1.131	1.265	1.386	1.600	1.789
10		0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
DE/	μm											
RE	Fin	3	5	10	15	20	30	40	50	60	80	100
0.6		3 0.120	5 0.155	0.219	15 0.268	0.310	30 0.379	0.438	50 0.490	60 0.537	0.620	0.693
	FE	0.120 0.139	0.155 0.179									

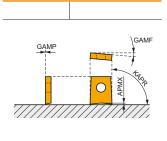
0000000	DCX	RE	RPMX	APMX/I
LC 0806-KP		0.6	2.5	1.5/35
LC 0806-KPF	8	0.6	2.2	1.5/39
LC 0810-KP		1.0	2.4	1.5/36
LC 1008-KP		0.8	2.6	1.5/33
LC 1008-KPF	10	0.8	2.3	1.5/38
LC 1010-KP		1.0	2.6	1.5/33
LC 1245-CH		3×45	_	_
LC 1260-CH		5×60	_	_
LC 1210-RE	12	1.0	_	_
LC 1220-RE		2.0	-	_
I C 1230-RF	-	3.0	_	_

0000000	DCX	RE	DMIN	DMAX	SMAX DMIN	DMAX O
LC 0806-KP		0.6	9.8	15.9	0.8	1.0
LC 0806-KPF	8	0.6	10.2	15.9	0.1	0.1
LC 0810-KP		1.0	9.9	15.9	0.1	0.1
LC 1008-KP		0.8	12.2	19.9	0.9	1.1
LC 1008-KPF	10	0.8	12.6	19.9	0.2	0.2
LC 1010-KP		1.0	12.2	19.9	0.2	0.2
LC 1245-CH		3×45	-	_	-	_
LC 1260-CH		5×60	-	-	-	-
LC 1210-RE	12	1.0	-	-	-	-
LC 1220-RE		2.0	-	-	-	_
LC 1230-RE		3.0	_	_	_	_

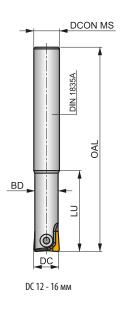
0000000	DCX	RE	a _s)
LC 0806-KP		0.6	0.15
LC 0806-KPF	8	0.6	0.13
LC 0810-KP		1.0	0.13
LC 1008-KP		0.8	0.2
LC 1008-KPF	10	0.8	0.18
LC 1010-KP		1.0	0.19
LC 1245-CH		3×45	-
LC 1260-CH		5×60	_
LC 1210-RE	12	1.0	-
LC 1220-RE		2.0	-
LC 1230-RE		3.0	_

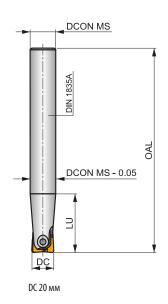
0000000	(DCX)	Фаска		Поправочный коэффициен скорость резания	тна П	одача для <i>АРМХ</i>
LC 1245-CH LC 1260-CH	12	3×45 5×60		1.26 1.26		0.21 0.21
LC 1200-CII		3 × 00		1.20		0.21
Вылет фрезы	по отношению к диаметру <i>DCX</i>	<3.0	3.0 – 3.5	3.6 – 4.0	4.1 – 4.5	>4.6
Поправочный	коэффициент на скорость резания	1.0	0.9	0.8	0.7	0.5

K2-SLC


PRAMET

Копировальная фреза с пластинами LC

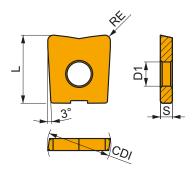

Конструкция фрезы позволяет устанавливать пластины LC.. с максимальной глубиной резания от 1 мм до 3 мм. Фреза подходит для чистовой обработки различных поверхностей.



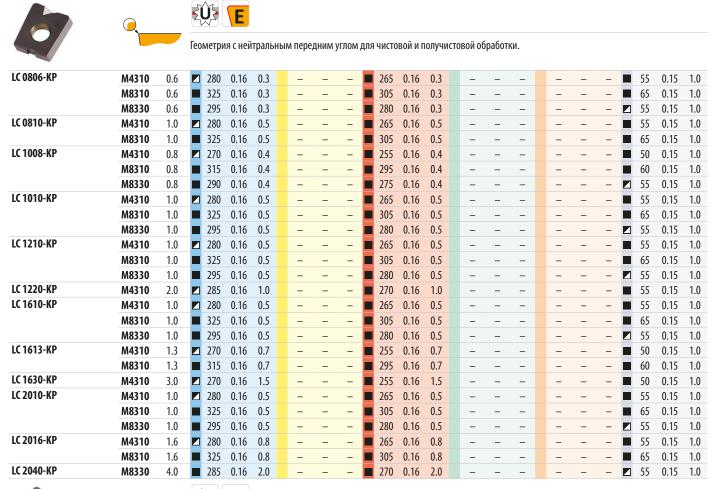
1.0 – 3.0 mm

APMX





	Обозначение	DC	OAL	DCON MS	LU	BD		(<u>()</u>	max.		kg		
		(MM)	(MM)	(MM)	(мм)	(мм)							
	12K2R030A12-SLC12-A	12	130	12	30	10.5	2	_	35000	-	0.11	GI037	C0532
DIN 1835A	16K2R035A16-SLC16-A	16	140	16	35	14	2	_	22000	_	0.20	GI038	C0533
DIN 1033A	20K2R045A20-SLC20-A	20	160	20	45	18	2	_	16000	_	0.38	GI039	C0534

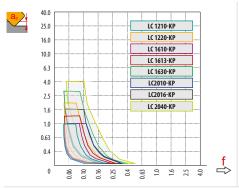

GI037	LC 12-KP	LC 12-KPF
GI038	LC 16-KP	LC 16-KPF
GI039	LC 20-KP	LC 20-KPF

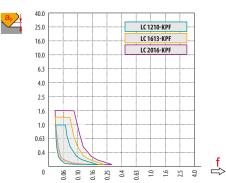
		Nm)			Po
C0532	CS 5009-T20P	5.0	M 5	9	SDR T20P
C0533	CS 5013-T20P	5.0	M 5	13	SDRT20P
C0534	CS 5015-T20P	5.0	M 5	15	SDR T20P

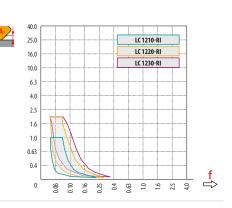
06	RE		P			M			K			N				S			Н	
Обозначение		VC	f	ap	VC	f	ар	VC	f	ap	VC	f	ap		VC	f	ар	VC	f	ap
	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(1	и/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)

Позитивная геометрия для чистовой и получистовой обработки.

LC 0806-KPF	M4310	0.6	280	0.16	0.3	140	0.14	0.3	265	0.16	0.3	-	_	-	-	_	-	55	0.15	1.0
LC 1008-KPF	M4310	0.8	270	0.16	0.4	135	0.14	0.4	255	0.16	0.4	-	-	-	_	_	_	50	0.15	1.0
LC 1210-KPF	M4310	1.0	280	0.16	0.5	140	0.14	0.5	265	0.16	0.5	-	_	-	_	_	_	55	0.15	1.0
	M8330	1.0	295	0.16	0.5	175	0.14	0.5	280	0.16	0.5	-	_	-	_	_	_	55	0.15	1.0
LC 1613-KPF	M4310	1.3	270	0.16	0.7	135	0.14	0.7	255	0.16	0.7	-	_	-	-	_	-	50	0.15	1.0
LC 2016-KPF	M4310	1.6	280	0.16	0.8	140	0.14	0.8	265	0.16	0.8	_	_	-	_	_	_	55	0.15	1.0






a。 DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒×.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	LC 12-KP	LC 12-KP	LC 16-KP	LC 16-KP	LC 16-KP	LC 20-KP	LC 20-KP	LC 20-KP
RE	1.0	2.0	1.0	1.3	3.0	1.0	1.6	4.0
BS	_	-	-	_	-	-	_	_

0000000	LC 12-KPF	LC 16-KPF	LC 20-KP	LC 1215-RI	LC 1220-RI	LC 1230-RI
RE	1.0	1.3	1.6	1.5	2.0	3.0
BS	-	-	-	-	-	_

	DC								a								
<u>00000000 </u>		RE	0.0	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.25	1.5	2.0	2.5	3.0	4.0
LC 1210-KP		1.0	10.0	11.4	11.6	11.7	11.8	11.9	12.0	12.0	12.0	_	-	_	-	-	-
LC 1210-KPF		1.0	10.0	11.4	11.6	11.7	11.8	11.9	12.0	12.0	12.0	_	_	_	_	_	-
LC 1220-KP	12	2.0	8.0	10.1	10.4	10.6	10.9	11.0	11.2	11.3	11.5	11.7	11.9	12.0	_	_	-
LC 1210-RI	12	1.0	10.0	11.4	11.6	11.7	11.8	11.9	12.0	12.0	12.0	_	_	_	_	_	-
LC 1220-RI		2.0	8.0	10.1	10.4	10.6	10.9	11.0	11.2	11.3	11.5	11.7	11.9	12.0	_	_	-
LC 1230-RI		3.0	6.0	8.6	9.0	9.3	9.6	9.9	10.1	10.3	10.5	10.9	11.2	11.7	11.9	_	-
LC 1610-KP		1.0	14.0	15.4	15.6	15.7	15.8	15.9	16.0	16.0	16.0	_	_	_	_	_	-
LC 1613-KP	16	1.3	13.4	15.1	15.3	15.4	15.6	15.7	15.8	15.9	15.9	16.0	_	_	_	_	-
LC 1613-KPF	10	1.3	13.4	15.1	15.3	15.4	15.6	15.7	15.8	15.9	15.9	16.0	_	_	_	_	-
LC 1630-KP		3.0	10.0	12.6	13.0	13.3	13.6	13.9	14.1	14.3	14.5	14.9	15.2	15.7	15.9	-	-
LC 2010-KP		1.0	18.0	19.4	19.6	19.7	19.8	19.9	20.0	20.0	20.0	_	-	_	-	_	_
LC 2016-KP	20	1.6	16.8	18.7	18.9	19.1	19.3	19.4	19.6	19.7	19.8	19.9	20.0	_	-	-	-
LC 2016-KPF	20	1.6	16.8	18.7	18.9	19.1	19.3	19.4	19.6	19.7	19.8	19.9	20.0	-	-	-	-
LC 2040-KP		4.0	12.0	15.0	15.5	15.9	16.2	16.5	16.8	17.1	17.3	17.8	18.2	18.9	19.4	-	-

DC	μm	3	5	10	15	20	30	40	50	60	80	100
12	₩/S-FE	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
16	FE	0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
RE	μm	3	5	10	15	20	30	40	50	60	80	100
1.3		0.177										
		0.177	0.228	0.322	0.395	0.456	0.559	0.645	0.721	0.790	0.912	1.020
1.6		0.177	0.228	0.322 0.358	0.395 0.438	0.456 0.506	0.559 0.620	0.645 0.716	0.721 0.800	0.790 0.876	0.912 1.012	1.020 1.131
1.6 2.0	FE											
	FE	0.196	0.253	0.358	0.438	0.506	0.620	0.716	0.800	0.876	1.012	1.131

0000000	DC	RE	max.
LC 1210-KP		1.0	4.8
LC 1210-KPF		1.0	4.4
LC 1220-KP	12	2.0	4.8
LC 1210-RI	12	1.0	_
LC 1220-RI		2.0	_
LC 1230-RI		3.0	-
LC 1610-KP		1.0	6.6
LC 1613-KP	16	1.3	6.6
LC 1613-KPF	10	1.3	5.9
LC 1630-KP		3.0	6.6
LC 2010-KP		1.0	8.5
LC 2016-KP	20	1.6	8.5
LC 2016-KPF	20	1.6	7.5
LC 2040-KP		4.0	8.5

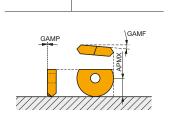
0000000	DC	RE	RPMX	APMX/I
LC 1210-KP		1.0	4.7	1.5/19
LC 1210-KPF		1.0	3.8	1.5/23
LC 1220-KP	12	2.0	4.4	2.0/26
LC 1210-RI	12	1.0	_	_
LC 1220-RI		2.0	_	_
LC 1230-RI		3.0	_	_
LC 1610-KP		1.0	4.8	1.5/18
LC 1613-KP	16	1.3	4.8	1.5/18
LC 1613-KPF	10	1.3	3.8	1.5/23
LC 1630-KP		3.0	4.4	3.0/39
LC 2010-KP		1.0	5.0	1.5/18
LC 2016-KP	20	1.6	4.9	1.6/19
LC 2016-KPF	20	1.6	3.8	1.6/25
LC 2040-KP		4.0	4.5	4.0/51

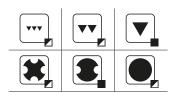
0000000	DC	RE	DMIN	DMAX	DMIN 🕢	DMAX DMAX
LC 1210-KP		1.0	14.1	23.9	1.0	1.2
LC 1210-KPF		1.0	15.0	23.9	0.4	0.4
LC 1220-KP	12	2.0	14.1	23.9	0.3	0.3
LC 1210-RI	12	1.0	-	_	_	-
LC 1220-RI		2.0	_	_	_	-
LC 1230-RI		3.0	_	_	_	-
LC 1610-KP		1.0	18.6	31.9	1.1	1.4
LC 1613-KP	16	1.3	18.6	31.9	0.6	0.6
LC 1613-KPF	10	1.3	19.9	31.9	0.5	0.5
LC 1630-KP		3.0	18.6	31.9	0.4	0.4
LC 2010-KP		1.0	22.8	39.9	1.3	1.5
LC 2016-KP	20	1.6	22.8	39.9	8.0	0.8
LC 2016-KPF		1.6	24.8	39.9	0.7	0.7
LC 2040-KP		4.0	22.8	39.9	0.5	0.5

0000000	DC	RE	a _p
LC 1210-KP		1.0	0.44
LC 1210-KPF		1.0	0.9
LC 1220-KP	12	2.0	0.4
LC 1210-RI	12	1.0	_
LC 1220-RI		2.0	_
LC 1230-RI		3.0	_
LC 1610-KP		1.0	0.65
LC 1613-KP	16	1.3	0.62
LC 1613-KPF	10	1.3	0.53
LC 1630-KP		3.0	0.44
LC 2010-KP		1.0	0.85
LC 2016-KP	20	1.6	0.79
LC 2016-KPF	20	1.6	0.67
LC 2040-KP		4.0	0.54

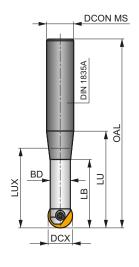
Вылет фрезы по отношению к диаметру <i>DCX</i>	<3.0	3 – 3.5	3.6 – 4.0	4.1 – 4.5	>4.6
Поправочный коэффициент на скорость резания	1.0	0.9	0.8	0.7	0.5

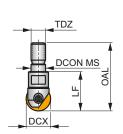
K2-PPH



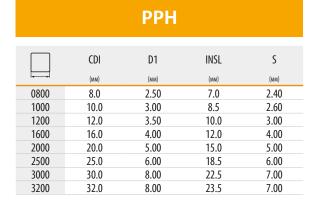

Копировальная фреза

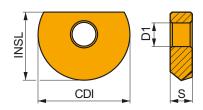

Конструкция фрезы позволяет устанавливать пластины РРН.. с максимальной глубиной резания от 0.3 мм до 4 мм. Фреза подходит для копировальной обработки фасонных поверхностей.




 $0.3 - 4.0\,\mathrm{mm}$

APMX




	Обозначение	DCX	OAL	DCON MS	BD	LB	LU	LUX	LF	TDZ	Твердый сплав	max.		S kg	0	
	_	(MM)	(мм)	(мм)	(MM)	(мм)	(мм)	(мм)	(мм)							
	PPH-08/02-QC12 - 092	8	92	12	6.5	19	35	23.1	-	-	-	40000	-	0.14	GI284	C0540
	PPH-08/02-QC12 - 110	8	110	12	6.5	33.5	53	41.5	_	_	_	33600	_	0.15	GI284	C0540
	PPH-08/02-QC12 - 132	8	132	12	6.5	19	75	41.8	-	_	_	16800	_	0.16	GI284	C0540
	PPH-10/02-QC12 - 092	10	92	12	8	22.4	38	30	_	-	_	40000	_	0.12	GI285	C0541
	PPH-10/02-QC12 - 110	10	110	12	8	38.7	53	51.9	_	_	-	40000	_	0.15	GI285	C0541
	PPH-10/02-QC12 - 132	10	132	12	8	21.8	75	73.6	-	-	_	20300	-	0.17	GI285	C0541
	PPH-12/02-QC16 - 145	12	145	16	10	22.5	85	63.3	-	_	_	19800	-	0.25	GI286	C0542
	PPH-16/02-QC20 - 166	16	166	20	14	29.5	100	75.5	_	_	_	20000	_	0.38	GI287	C0543
	PPH-20/02-QC25 - 191	20	191	25	17	35	115	82.2	-	-	_	18400	-	0.64	GI288	C0544
	PPH-25/02-QC32 - 215	25	215	32	21	42.5	135	97	_	_	_	16500	_	1.07	GI289	C0545
	PPH-12/02-QC12 - 083	12	83	12	10	_	26	_		_	_	40000	_	0.15	GI286	C0542
	PPH-12/02-QC12 - 110	12	110	12	10		53		-	-	_	40000	-	0.17	GI286	C0542
	PPH-12/02-QC12 - 145	12	145	12	10	-	45	_	_	_	_	40000	_	0.20	GI286	C0542
DIN 1835A	PPH-16/02-QC16 - 092	16	92	16	14	_	92	_	_	_	_	36000	_	0.21	GI287	C0543
	PPH-16/02-QC16 – 123	16	123	16	14		63		-	-	_	36000	-	0.24	GI287	C0543
	PPH-16/02-QC16 - 166	16	166	16	14	_	55	_	-	-	_	36000	-	0.31	GI287	C0543
	PPH-20/02-QC20 - 104	20	104	20	17	_	38	_	_	_	_	40000	_	0.35	GI288	C0544
	PPH-20/02-QC20 - 141	20	141	20	17	_	75	_	_	_	_	40000	_	0.41	GI288	C0544
	PPH-20/02-QC20 - 191	20	191	20	17	_	65		-	_	_	40000	-	0.54	GI288	C0544
	PPH-25/02-QC25 - 121	25	121	25	21	_	45	_	-	-	_	40000	-	0.53	GI289	C0545
	PPH-25/02-QC25 - 166	25	166	25	21	_	90	_	_	_	_	37100	_	0.57	GI289	C0545
	PPH-32/02-QC32 – 186	32	186	32	26	_	107	_	_	_	_	32500	_	1.09	GI290	C0546
	PPH-32/02-QC32 - 240	32	240	32	26	_	160	_	-	_		14500	-	1.37	GI290	C0546
	PPH-08/02-QC12 – 110HSCW	8	110	12	6.5	19	53	30.1	-	-	✓	40000	-	0.21	GI284	C0540
	PPH-08/02-QC12 – 132HSCW	8	132	12	6.5	19	75	37.1	-	-	✓	23400	-	0.24	GI284	C0540
	PPH-10/02-QC12 - 092HSCW	10	92	12	8	21.9	38.1	90.9	_	_	\checkmark	40000	_	0.20	GI285	C0541

	Обозначение	DCX	OAL (MM)	DCON MS	BD (MM)	LB (MM)	LU (mm)	LUX (MM)	LF (MM)	TDZ	Твердый сплав	max.		∫? kg		
	PPH-10/02-QC12 - 110HSCW	10	110	12	8	21.8	53.1	41.4	-	-	✓	40000	-	0.22	GI285	C0541
	PPH-10/02-QC12 - 132HSCW	10	132	12	8	21.8	75.1	51.1	-	-	✓	23400	-	0.27	GI285	C0541
	PPH-12/02-QC16 - 145HSCW	12	145	16	10	21.5	85	65.6	_	_	\checkmark	21000	_	0.28	GI286	C0542
	PPH-16/02-QC20 - 166HSCW	16	166	20	14	28.5	100	87.2	-	-	\checkmark	25500	-	0.66	GI287	C0543
	PPH-20/02-QC25 – 191HSCW	20	191	25	17	35	115	75.6	_	_	✓	18500	_	1.09	GI288	C0544
	PPH-08/02-QC08 - 130HSCW	8	130	8	6.5	-	20	_	_	_	\checkmark	40000	_	0.17	GI284	C0540
DIN 1835A	PPH-10/02-QC10 - 140HSCW	10	140	10	8	_	25	_	_	_	\checkmark	40000	_	0.25	GI285	C0541
UNI 1033A)	PPH-12/02-QC12 - 083HSCW	12	83	12	10	_	26	_	_	_	\checkmark	40000	_	0.23	GI286	C0542
	PPH-12/02-QC12 - 110HSCW	12	110	12	10	_	53	_	_	_	\checkmark	40000	_	0.26	GI286	C0542
	PPH-16/02-QC16 - 092HSCW	16	92	16	14	_	32	-	-	_	✓	43000	-	0.32	GI287	C0543
	PPH-16/02-QC16 - 123HSCW	16	123	16	14	_	63	_	_	_	\checkmark	43000	_	0.36	GI287	C0543
	PPH-20/02-QC20 - 104HSCW	20	104	20	17	_	38	_	_	_	\checkmark	40000	_	0.50	GI288	C0544
	PPH-20/02-QC20 - 141HSCW	20	141	20	17	_	75	_	-	-	✓	40000	-	0.62	GI288	C0544
	PPH-16/02 - 025-P08	16	_	8.5	_	_	_	_	25	M8	_	_	_	0.14	GI287	C0543
MODULAR	PPH-20/02 - 030-P10	20	-	10.5	-	-	-	_	30	M10	_	-	-	0.18	GI288	C0544

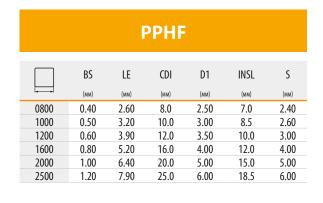
	•	•		
GI284	PPH 08	_	PPHT 08	PPHF 08
GI285	PPH 10	PPHE 10	PPHT 10	PPHF 10
GI286	PPH 12	PPHE 12	PPHT 12	PPHF 12
GI287	PPH 16	PPHE 16	PPHT 16	PPHF 16
GI288	PPH 20	PPHE 20	PPHT 20	PPHF 20
GI289	PPH 25	_	PPHT 25	PPHF 25
GI290	PPH 32	-	-	-

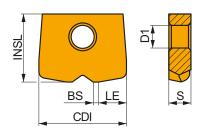
	97	Nm			10			
C0540	CS 42506-T07P	1.0	M 2.5	6	D-T07P/T09P	FG-15	-	_
C0541	CS 43008-T08P	1.2	M 3	8	D-T08P/T15P	FG-15	_	_
C0542	CS 43509-T10P	2.0	M 3.5	9	_	_	SDR T10P	_
C0543	CS 44013-T15P	3.0	M 4	13	D-T08P/T15P	FG-15	_	_
C0544	CS 45016-T20P	5.0	M 5	16	_	_	SDR T20P	_
C0545	CS 46020-T25P	7.5	M 6	20	_	_	_	SDR T25P-T
C0546	CS 48025-T40P	15.0	M 8	25	_	_	_	SDR T40P-T

Применение инструме	ента, начальнь	не значе	RNH	скорс	сти рез	вания	(Vc), пода	чи (f) и	ı глубі	1НЬ	ы резан	ия (ар)	. Для до	опо	лните	ельных	расче	TOB	воспо	ользуйт	есь г	рил	ожені	ием Cal	culator.
	PUNKSHI	RE			P				M				K				N				S				Н	
Обозначение				vc	f	ap		VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ар		VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)
	<u></u>			†	F																					
			По		ная гео	метри	Я.																			
PPH 0800-CL1	2003	-		285	0.36	0.4		145	0.32	0.4		270	0.36	0.4		-	-	-		-	-	-		55	0.15	1.0
PPH 1000-CL1	2003	_		280	0.36	0.5		140	0.32	0.5		265	0.36	0.5		_	_	-		-	-	-		55	0.15	1.0
PPH 1200-CL1	2003	_		275	0.36	0.6		140	0.32	0.6		260	0.36	0.6		_	_	_		_	_	_		55	0.15	1.0
PPH 1600-CL1	2003	_		265	0.36	0.8		135	0.32	0.8		250	0.36	0.8		_	_	_		_	_	_		50	0.15	1.0
PPH 2000-CL1	2003	_		260	0.36	1.0		130	0.32	1.0		245	0.36	1.0		_	_	_		_	_	_		50	0.15	1.0
PPH 2500-CL1	2003	_		250	0.36	1.3		125	0.32	1.3		235	0.36	1.3		_	_	_		_	_	_		50	0.15	1.0
PPH 3000-CL1	2003	_		245	0.36	1.5		120	0.32	1.5		230	0.36	1.5		_	-	_		_	_	_		45	0.15	1.0
PPH 3200-CL1	2003	_		245	0.36	1.6		120	0.32	1.6		230	0.36	1.6		-	-	-		-	_	-		45	0.15	1.0
				<u> </u>																						

Позитивная геометрия для прерывистого резания.

PPH 0800-CL4	8215	_	270	0.36	0.4	_	_	-	255	0.36	0.4	_	_	-	_	_	_	50	0.15	1.0
PPH 1000-CL4	8215	-	2 65	0.36	0.5	_	_	-	250	0.36	0.5	_	-	-	_	-	-	50	0.15	1.0
PPH 1200-CL4	8215	_	25 5	0.36	0.6	_	_	-	240	0.36	0.6	_	-	-	-	_	_	50	0.15	1.0
PPH 1600-CL4	8215	-	250	0.36	0.8	_	-	-	235	0.36	8.0	_	-	-	-	-	-	50	0.15	1.0
PPH 2000-CL4	8215	-	2 45	0.36	1.0	_	_	-	230	0.36	1.0	_	_	-	_	_	_	45	0.15	1.0
PPH 2500-CL4	8215	_	2 40	0.36	1.3	_	_	-	225	0.36	1.3	_	_	-	_	_	_	45	0.15	1.0
PPH 3000-CL4	8215	_	235	0.36	1.5	_	_	-	220	0.36	1.5	_	-	-	-	_	_	45	0.15	1.0
PPH 3200-CL4	8215	_	235	0.36	1.6	_	-	-	220	0.36	1.6	_	-	-	_	_	-	45	0.15	1.0

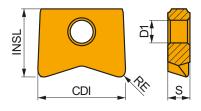




Позитивная геометрия.

PPHE 1000-SM1	8215	-	260	0.31	0.5	155	0.28	0.5	245	0.31	0.5	-	_	-	-	_	-	50	0.15	1.0
PPHE 1200-SM1	8215	-	245	0.36	0.6	145	0.32	0.6	230	0.36	0.6	-	_	-	-	_	-	45	0.15	1.0
PPHE 1600-SM1	8215	-	250	0.31	0.8	150	0.28	0.8	235	0.31	0.8	-	_	-	-	_	-	50	0.15	1.0
PPHE 2000-SM1	8215	-	240	0.31	1.0	140	0.28	1.0	225	0.31	1.0	-	_	-	-	_	-	45	0.15	1.0

06	RE		P			M			K			N			S			Н	
Обозначение		VC	f	ap	VC	f	ар	VC	f	ар	VC	f	ap	VC	f	ap	VC	f	ap
	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(M/MI	н) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
·																			


Прочная геометрия для обработки с высокой подачей.

PPHF 080004-CE1	M8330	_	200	0.30	0.3	120	0.27	0.3	190	0.30	0.3	_	_	-	50	0.27	0.2	40	0.15	1.0
PPHF 100005-CE1	M8330	-	190	0.35	0.3	110	0.32	0.3	180	0.35	0.3	_	_	_	45	0.32	0.2	35	0.15	1.0
PPHF 120006-CE1	M8330	-	205	0.45	0.4	120	0.41	0.4	190	0.45	0.4	-	_	_	50	0.41	0.3	40	0.15	1.0
PPHF 160008-CE1	M8330	_	190	0.60	0.5	110	0.54	0.5	180	0.60	0.5	_	_	_	45	0.54	0.4	35	0.15	1.0
PPHF 200010-CE1	M8330	_	190	0.70	0.6	110	0.63	0.6	180	0.70	0.6	_	_	_	45	0.63	0.5	35	0.15	1.0
PPHF 250012-CE1	M8330	_	175	0.90	0.8	105	0.81	0.8	165	0.90	0.8	_	_	_	40	0.81	0.6	35	0.15	1.0

PPHT

Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

06	550000	RE	F	P			M			K			N				S				Н	
Обозначение			VC	f ap		VC	f	ap	VC	f	ap	VC	f	ap		VC	f	ap		VC	f	ap
		(MM)	(м/мин) (м	мм/зуб) (мл	1)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/ми	н) (мм/зуб)	(MM)	(м	/мин)	(мм/зуб)	(MM)	(1	м/мин)	(мм/зуб)	(MM)

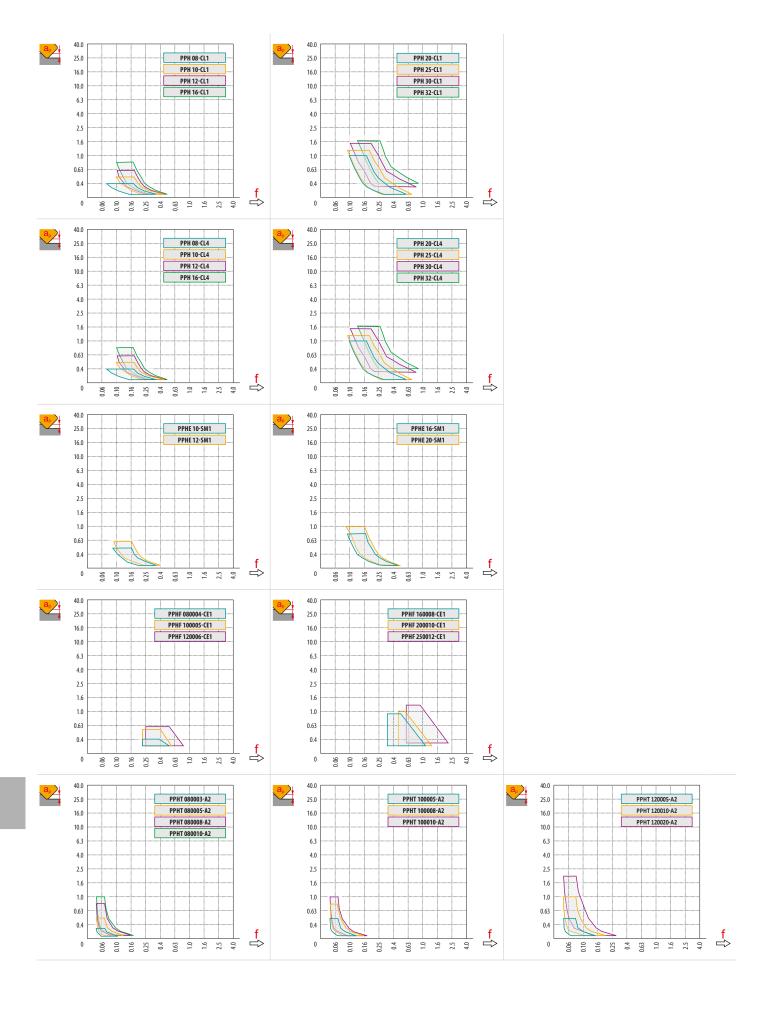
Позитивная геометрия для чистовой и получистовой обработки.

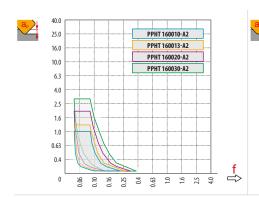
PPHT 080003-A2	2003	0.3	275	0.10	0.3	140	0.09	0.3	260	0.10	0.3	_	-	-	_	-	-	55	0.15	1.0
PPHT 080005-A2	2003	0.5	270	0.13	0.3	135	0.12	0.3	255	0.13	0.3	_	-	-	_	-	-	50	0.15	1.0
PPHT 080008-A2	2003	0.8	305	0.14	0.4	155	0.13	0.4	285	0.14	0.4	-	-	-	_	-	-	60	0.15	1.0
PPHT 080010-A2	2003	1.0	315	0.14	0.5	160	0.13	0.5	295	0.14	0.5	-	-	-	-	-	-	60	0.15	1.0
PPHT 100005-A2	2003	0.5	270	0.13	0.3	135	0.12	0.3	255	0.13	0.3	_	_	-	-	_	-	50	0.15	1.0
PPHT 100008-A2	2003	0.8	305	0.14	0.4	155	0.13	0.4	285	0.14	0.4	_	-	-	_	-	-	60	0.15	1.0
PPHT 100010-A2	2003	1.0	315	0.14	0.5	160	0.13	0.5	295	0.14	0.5	-	-	-	_	-	-	60	0.15	1.0
PPHT 120005-A2	2003	0.5	270	0.13	0.3	135	0.12	0.3	255	0.13	0.3	-	-	-	-	-	-	50	0.15	1.0
PPHT 120010-A2	2003	1.0	315	0.14	0.5	160	0.13	0.5	295	0.14	0.5	-	_	-	_	-	_	60	0.15	1.0
PPHT 120020-A2	2003	2.0	320	0.14	1.0	160	0.13	1.0	300	0.14	1.0	-	-	-	_	_	-	60	0.15	1.0

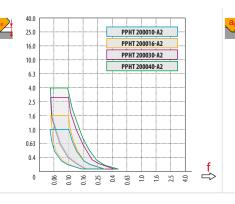
06	\$3520AZ3	RE		Р			M				K			N			:	S			Н	
Обозначение			VC	f	ap		c f		ар	VC	f	ap	VC	f	ар	v		f	ap	VC	f	ар
		(мм)	(м/ми	н) (мм/зуб)	(MM)	(M/	лин) (мм/	зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(M/N	ин) ((мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)

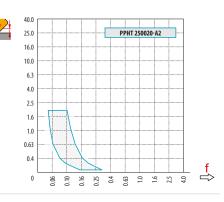
PPHT 160010-A2	2003	1.0	315	0.14	0.5	160	0.13	0.5	295	0.14	0.5	-	_	-	-	-	_	-	60	0.15	1.0
PPHT 160013-A2	2003	1.3	300	0.15	0.6	150	0.13	0.6	285	0.15	0.6	_	_	-	-	-	_	-	60	0.15	1.0
PPHT 160020-A2	2003	2.0	320	0.14	1.0	160	0.13	1.0	300	0.14	1.0	_	_	-	-	-	_	-	60	0.15	1.0
PPHT 160030-A2	2003	3.0	305	0.14	1.5	155	0.13	1.5	285	0.14	1.5	_	_	_	-	-	_	_	60	0.15	1.0
PPHT 200010-A2	2003	1.0	315	0.14	0.5	160	0.13	0.5	295	0.14	0.5	_	_	-	-	-	_	-	60	0.15	1.0
PPHT 200016-A2	2003	1.6	310	0.14	0.8	155	0.13	0.8	290	0.14	0.8	_	_	-	-	-	_	-	60	0.15	1.0
PPHT 200030-A2	2003	3.0	305	0.14	1.5	155	0.13	1.5	285	0.14	1.5	_	_	-	-	-	_	-	60	0.15	1.0
PPHT 200040-A2	2003	4.0	295	0.14	2.0	150	0.13	2.0	280	0.14	2.0	_	_	_	-	-	_	_	55	0.15	1.0
PPHT 250020-A2	2003	2.0	320	0.14	1.0	160	0.13	1.0	300	0.14	1.0	_	_	-	-	-	_	_	60	0.15	1.0

a _e /	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
(⊚) ⇔x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00


0000000	PPH 08-CL1	PPH 10-CL1	PPH 12-CL1	PPH 16-CL1	PPH 20-CL1	PPH 25-CL1	PPH 30-CL1	PPH 32-CL1
RE	4.0	5.0	6.0	8.0	10.0	12.5	15.0	16.0
BS	_	-	_	_	_	-	-	_
) 📓								
00000000	PPH 08-CL4	PPH 10-CL4	PPH 12-CL4	PPH 16-CL4	PPH 20-CL4	PPH 25-CL4	PPH 30-CL4	PPH 32-CL4
RE	4.0	PPH 10-CL4 5.0	PPH 12-CL4 6.0	PPH 16-CL4 8.0	10.0	12.5	PPH 30-CL4 15.0	16.0
RE								


00000000	PPHE 10-SM1	PPHE 12-SM1	PPHE 16-SM1	PPHE 20-SM1
RE	5.0	6.0	8.0	10.0
BS	_	_	_	_

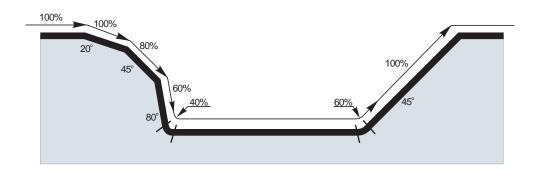

0000000	PPHF 08-CE1	PPHF 10-CE1	PPHF 12-CE1	PPHF 16-CE1	PPHF 20-CE1	PPHF 25-CE1
RE	0.6	0.8	1.0	1.3	1.6	1.9
BS	0.40	0.50	0.60	0.80	1.00	1.20


0000000	PPHT 08-A2	PPHT 08-A2	PPHT 08-A2	PPHT 08-A2	PPHT 10-A2	PPHT 10-A2	PPHT 10-A2	PPHT 12-A2	PPHT 12-A2	PPHT 12-A2	PPHT 16-A2
RE	0.3	0.5	0.8	1.0	0.5	0.8	1.0	0.5	1.0	2.0	1.0
BS	_	_	_	_	_	_	_	_	_	_	_

00000000	PPHT 16-A2	PPHT 16-A2	PPHT 16-A2	PPHT 20-A2	PPHT 20-A2	PPHT 20-A2	PPHT 20-A2	PPHT 25-A2
RE	1.3	2.0	3.0	1.0	1.6	3.0	4.0	2.0
BS	_	_	_	_	_	_	_	-

00000000	DCX	a _p	0.3	0.4	0.5	0.7	1.0	1.25	1.5	2.0	2.5	3.0	4.0	5.0	6.0	8.0	10.0	12.0	15.0	16.0
PPH 08	8		3.0	3.5	3.9	4.5	5.3	5.8	6.2	6.9	7.4	7.7	8.0	-	-	-	-	-	-	_
PPH 10	10		3.4	3.9	4.4	5.1	6.0	6.6	7.1	8.0	8.7	9.2	9.8	10.0	-	-	-	-	-	-
PPH 12	12		3.7	4.3	4.8	5.6	6.6	7.3	7.9	8.9	9.7	10.4	11.3	11.8	12.0	-	-	-	-	-
PPH 16	16	(DEF)	4.3	5.0	5.6	6.5	7.7	8.6	9.3	10.6	11.6	12.5	13.9	14.8	15.5	16.0	_	_	_	-
PPH 20	20	DEF	4.9	5.6	6.2	7.4	8.7	9.7	10.5	12.0	13.2	14.3	16.0	17.3	18.3	19.6	20.0	_	_	-
PPH 25	25		5.4	6.3	7.0	8.2	9.8	10.9	11.9	13.6	15.0	16.2	18.3	20.0	21.4	23.3	24.5	25.0	-	-
PPH 30	30		5.97	6.88	7.68	9.06	10.77	11.99	13.08	14.97	16.58	18.00	20.40	22.36	24.00	26.53	28.28	29.39	30.00	-
PPH 32	32		6.17	7.11	7.94	9.36	11.14	12.40	13.53	15.49	17.18	18.65	21.17	23.24	24.98	27.71	29.66	30.98	31.94	32.00

00000000	DCX	μm	3	5	10	15	20	30	40	50	60	80	100
PPH 08	8		0.310	0.400	0.566	0.693	0.800	0.980	1.131	1.265	1.386	1.600	1.789
PPH 10	10	IMPO FF	0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
PPH 12	12		0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
PPH 16	16		0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
PPH 20	20	FE	0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
PPH 25	25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
PPH 30	30		0.600	0.775	1.095	1.342	1.549	1.897	2.191	2.449	2.683	3.098	3.464
PPH 32	32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578


DEF	a _e	1%	2.5 %	5 %	7.5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %	45 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
	a _p										⊚ ⇒x.f									
19.9 %	1.0 %	2.86	1.84	1.33	1.12	1.00	0.89	_	_	_	-	_	_	_	_	_	_	_	_	_
31.2 %	2.5 %	3.58	2.28	1.64	1.36	1.20	1.01	0.92	0.88	0.91	_	_	_	_	_	_	_	_	_	_
43.6 %	5.0 %	4.22	2.68	1.92	1.58	1.39	1.16	1.03	0.95	0.90	0.88	0.89	-	-	-	-	-	-	-	_
52.7 %	7.5 %	4.63	2.95	2.10	1.73	1.51	1.26	1.11	1.02	0.96	0.91	0.89	0.88	0.90	-	-	-	-	-	_
60.0 %	10.0 %	4.94	3.14	2.24	1.84	1.61	1.33	1.18	1.07	1.00	0.95	0.91	0.89	0.88	1.00	-	-	-	-	_
71.4 %	15.0 %	5.39	3.42	2.43	2.00	1.74	1.44	1.27	1.15	1.07	1.01	0.96	0.93	0.90	0.88	0.93	-	-	-	_
80.0 %	20.0 %	5.70	3.62	2.57	2.11	1.84	1.52	1.33	1.21	1.12	1.05	1.00	0.96	0.93	0.89	0.88	0.89	1.00	-	_
86.6 %	25.0 %	5.93	3.76	2.67	2.20	1.91	1.58	1.38	1.25	1.16	1.08	1.03	0.99	0.95	0.90	0.88	0.88	0.89	-	-
91.7 %	30.0 %	6.10	3.87	2.75	2.26	1.96	1.62	1.42	1.28	1.18	1.11	1.05	1.01	0.97	0.92	0.89	0.88	0.88	0.93	_
95.4 %	35.0 %	6.23	3.95	2.80	2.30	2.00	1.65	1.44	1.31	1.20	1.13	1.07	1.02	0.98	0.93	0.89	0.88	0.88	0.90	-
98.0 %	40.0 %	6.31	4.00	2.84	2.33	2.03	1.67	1.46	1.32	1.22	1.14	1.08	1.03	0.99	0.93	0.90	0.89	0.88	0.89	_
99.5 %	45.0 %	6.36	4.03	2.86	2.35	2.04	1.68	1.47	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	-
100.0 %	50.0 %	6.38	4.04	2.87	2.35	2.05	1.69	1.48	1.33	1.23	1.15	1.09	1.04	1.00	0.94	0.90	0.89	0.88	0.88	1.00

J	DCX									a _p							
0000000		RE	0.0	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.25	1.5	2.0	2.5	3.0	4.0
PPHT 08-A2		0.3	7.4	8.0	_	_	-	_	-	_	_	_	-	_	-	_	-
PPHT 08-A2	8	0.5	7.0	7.9	8.0	8.0	-	_	_	_	_	_	-	_	_	_	_
PPHT 08-A2	0	0.8	6.4	7.6	7.8	7.9	7.9	8.0	8.0				-				
PPHT 08-A2		1.0	6.0	7.4	7.6	7.7	7.8	7.9	8.0	8.0	8.0	_	-	_	_	_	_
PPHT 10-A2		0.5	9.0	9.9	10.0	10.0	-	-	-	-	-	_	-	-	_	-	_
PPHT 10-A2	10	0.8	8.4	9.6	9.8	9.9	9.9	10.0	10.0	_	_	_	-	_		_	_
PPHT 10-A2		1.0	8.0	9.4	9.6	9.7	9.8	9.9	10.0	10.0	10.0	-	-	-	-	-	-
PPHT 12-A2		0.5	11.0	11.9	12.0	12.0	-	-	-	-	-	-	-	-	_	-	-
PPHT 12-A2	12	1.0	10.0	11.4	11.6	11.7	11.8	11.9	12.0	12.0	12.0	_	_	_	_	_	_
PPHT 12-A2		2.0	8.0	10.1	10.4	10.6	10.9	11.0	11.2	11.3	11.5	11.7	11.9	12.0	_	_	_
PPHT 16-A2		1.0	14.0	15.4	15.6	15.7	15.8	15.9	16.0	16.0	16.0	-	-	-	-	-	-
PPHT 16-A2	16	1.3	13.4	15.1	15.3	15.4	15.6	15.7	15.8	15.9	15.9	16.0	_	-	_	_	_
PPHT 16-A2	10	2.0	12.0	14.1	14.4	14.6	14.9	15.0	15.2	15.3	15.5	15.7	15.9	16.0	_	_	_
PPHT 16-A2		3.0	10.0	12.6	13.0	13.3	13.6	13.9	14.1	14.3	14.5	14.9	15.2	15.7	15.9	16.0	_
PPHT 20-A2		1.0	18.0	19.4	19.6	19.7	19.8	19.9	20.0	20.0	20.0	_	_	_	_	_	_
PPHT 20-A2	20	1.6	16.8	18.7	18.9	19.1	19.3	19.4	19.6	19.7	19.8	19.9	20.0	_	_	_	_
PPHT 20-A2	20	3.0	14.0	16.6	17.0	17.3	17.6	17.9	18.1	18.3	18.5	18.9	19.2	19.7	19.9	20.0	
PPHT 20-A2		4.0	12.0	15.0	15.5	15.9	16.2	16.5	16.8	17.1	17.3	17.8	18.2	18.9	19.4	19.7	20.0
PPHT 25-A2	25	2.0	21.0	23.1	23.4	23.6	23.9	24.0	24.2	24.3	24.5	24.7	24.9	25.0			
PPHF 08-CE1	8	0.6	2.8	6.0	7.1	-	-	-	_	-	-	-	-	-	-	-	
PPHF 10-CE1	10	0.8	3.6	6.8	7.9	9.0	-	-	_	-	-	-	-	-	-	-	
PPHF 12-CE1	12	1.0	4.2	7.4	8.5	9.6	10.7	11.8		-	-	-	-	-	-	-	
PPHF 16-CE1	16	1.3	5.6	8.8	9.9	11.0	12.1	13.2	14.2	15.3	-	_	_	_	-	_	
PPHF 20-CE1	20	1.6	7.2	10.4	11.5	12.6	13.7	14.8	15.8	16.9	18.0	-	-	-	-	-	
PPHF 25-CE1	25	1.9	9.2	12.4	13.5	14.6	15.7	16.8	17.8	18.9	20.0	22.7	_	_	_	_	_

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
8		0.310	0.400	0.566	0.693	0.800	0.980	1.131	1.265	1.386	1.600	1.789
10		0.346	0.447	0.632	0.775	0.894	1.095	1.265	1.414	1.549	1.789	2.000
12	OFE .	0.379	0.490	0.693	0.849	0.980	1.200	1.386	1.549	1.697	1.960	2.191
16		0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
RE	μm	3	5	10	15	20	30	40	50	60	80	100
1.3	μm	3	5 0.228	10 0.322	15 0.395	20 0.456	30 0.559	40 0.645	50 0.721	60 0.790	80 0.912	100 1.020
	μm					-						
1.3		0.177	0.228	0.322	0.395	0.456	0.559	0.645	0.721	0.790	0.912	1.020
1.3 1.6	μm	0.177 0.196	0.228 0.253	0.322 0.358	0.395 0.438	0.456 0.506	0.559 0.620	0.645 0.716	0.721 0.800	0.790 0.876	0.912 1.012	1.020 1.131
1.3 1.6 1.9		0.177 0.196 0.214	0.228 0.253 0.276	0.322 0.358 0.390	0.395 0.438 0.477	0.456 0.506 0.551	0.559 0.620 0.675	0.645 0.716 0.780	0.721 0.800 0.872	0.790 0.876 0.955	0.912 1.012 1.103	1.020 1.131 1.233

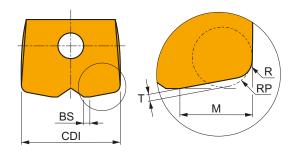
0000000	DCX	RE	max
PPHT 08-A2		0.3	2.4
PPHT 08-A2	8	0.5	2.4
PPHT 08-A2	0	0.8	2.5
PPHT 08-A2		1.0	2.7
PPHT 10-A2		0.5	3.2
PPHT 10-A2	10	0.8	3.3
PPHT 10-A2		1.0	3.4
PPHT 12-A2		0.5	4.0
PPHT 12-A2	12	1.0	4.2
PPHT 12-A2		2.0	4.6
PPHT 16-A2		1.0	5.7
PPHT 16-A2	16	1.3	5.8
PPHT 16-A2	10	2.0	6.0
PPHT 16-A2		3.0	6.4
PPHT 20-A2		1.0	7.2
PPHT 20-A2	20	1.6	7.4
PPHT 20-A2	20	3.0	7.8
PPHT 20-A2		4.0	8.2
PPHT 25-A2	25	2.0	9.3

0000000	(DCX)	RE	max
PPHF 08-CE1	8	0.6	2.0
PPHF 10-CE1	10	0.8	2.5
PPHF 12-CE1	12	1.0	3.0
PPHF 16-CE1	16	1.3	4.0
PPHF 20-CE1	20	1.6	5.0
PPHF 25-CE1	25	1.9	6.0

0000000	DCX	RE	RPMX	APMX/I
PPHT 08-A2		0.3	6.3	1.2/11
PPHT 08-A2	8	0.5	6.1	1.2/12
PPHT 08-A2	0	0.8	5.7	1.2/12
PPHT 08-A2		1.0	6.8	1.2/11
PPHT 10-A2		0.5	6.9	1.5/13
PPHT 10-A2	10	0.8	6.6	1.5/13
PPHT 10-A2		1.0	7.5	1.5/12
PPHT 12-A2		0.5	7.9	1.8/13
PPHT 12-A2	12	1.0	7.5	1.8/14
PPHT 12-A2		2.0	9.0	1.8/12
PPHT 16-A2		1.0	8.9	2.4/16
PPHT 16-A2	16	1.3	8.9	2.4/16
PPHT 16-A2	10	2.0	8.5	2.4/17
PPHT 16-A2		3.0	12.3	2.4/11
PPHT 20-A2		1.0	9.3	3/19
PPHT 20-A2	20	1.6	9.1	3/19
PPHT 20-A2	20	3.0	8.8	3/20
PPHT 20-A2		4.0	11.4	3/15
PPHT 25-A2	25	2.0	8.3	3.7/26

0000000	DCX	RE	RPMX	APMX/I
PPHF 08-CE1	8	0.6	8.0	0.4/3
PPHF 10-CE1	10	0.8	8.0	0.5/4
PPHF 12-CE1	12	1.0	8.0	0.6/5
PPHF 16-CE1	16	1.3	8.0	0.8/6
PPHF 20-CE1	20	1.6	8.0	1.0/8
PPHF 25-CE1	25	1.9	8.0	1.2/9

0000000	DCX	RE	DMIN	DMAX	DMIN 🕢	SMAX OMAX
PPHT 08-A2		0.3	11.0	15.9	0.5	0.5
PPHT 08-A2	8	0.5	10.9	15.9	0.5	0.5
PPHT 08-A2	0	0.8	10.7	15.9	0.4	0.4
PPHT 08-A2		1.0	10.3	15.9	0.4	0.4
PPHT 10-A2		0.5	13.4	19.9	0.7	0.7
PPHT 10-A2	10	8.0	13.2	19.9	0.6	0.6
PPHT 10-A2		1.0	12.9	19.9	0.6	0.6
PPHT 12-A2		0.5	15.8	23.9	1.0	1.0
PPHT 12-A2	12	1.0	15.4	23.9	8.0	0.8
PPHT 12-A2		2.0	14.6	23.9	0.7	0.7
PPHT 16-A2		1.0	20.4	31.9	1.3	1.3
PPHT 16-A2	16	1.3	20.2	31.9	1.3	1.3
PPHT 16-A2	10	2.0	19.7	31.9	1.0	1.0
PPHT 16-A2		3.0	18.9	31.9	1.2	1.2
PPHT 20-A2		1.0	25.4	39.9	1.8	1.8
PPHT 20-A2	20	1.6	24.9	39.9	1.6	1.6
PPHT 20-A2	20	3.0	24.1	39.9	1.2	1.2
PPHT 20-A2		4.0	23.3	39.9	1.3	1.3
PPHT 25-A2	25	2.0	31.1	49.9	1.8	1.8


0000000	DCX	RE	DMIN	DMAX	SMAX DMIN	SMAX DMAX
PPHF 08-CE1	8	0.6	10.0	14.7	0.40	0.40
PPHF 10-CE1	10	0.8	13.0	18.4	0.50	0.50
PPHF 12-CE1	12	1.0	15.7	22.0	0.60	0.60
PPHF 16-CE1	16	1.3	20.9	29.4	0.80	0.80
PPHF 20-CE1	20	1.6	26.2	36.7	1.00	1.00
PPHF 25-CE1	25	1.9	33.0	46.1	1.20	1.20

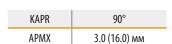
0000000	DCX	RE	a _p
PPHT 08-A2	-	0.3	0.52
PPHT 08-A2		0.5	0.47
PPHT 08-A2	8	0.8	0.39
PPHT 08-A2		1.0	0.40
PPHT 10-A2		0.5	0.69
PPHT 10-A2	10	0.8	0.61
PPHT 10-A2		1.0	0.62
PPHT 12-A2		0.5	0.97
PPHT 12-A2	12	1.0	0.79
PPHT 12-A2		2.0	0.68
PPHT 16-A2		1.0	1.33
PPHT 16-A2	16	1.3	1.26
PPHT 16-A2	10	2.0	1.03
PPHT 16-A2		3.0	1.15
PPHT 20-A2		1.0	1.80
PPHT 20-A2	20	1.6	1.59
PPHT 20-A2	20	3.0	1.21
PPHT 20-A2		4.0	1.27
PPHT 25-A2	25	2.0	1.83

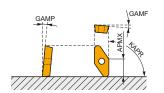
0000000	DCX	RE	a _p
PPHF 08-CE1	8	0.6	0.40
PPHF 10-CE1	10	0.8	0.50
PPHF 12-CE1	12	1.0	0.60
PPHF 16-CE1	16	1.3	0.80
PPHF 20-CE1	20	1.6	1.00
PPHF 25-CE1	25	1.9	1.20

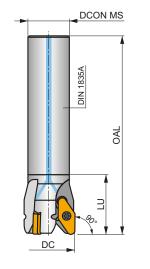
DCX	R	RP	М	Т
08	0.6	1.0	2.6	0.3
10	0.8	1.2	3.2	0.4
12	1.0	1.5	3.9	0.4
16	1.3	2.0	5.2	0.6
20	1.6	2.5	6.4	0.7
25	1.9	3.0	7.9	0.9

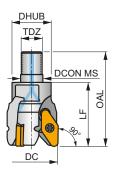
Вылет фрезы по отношению к диаметру <i>DCX</i>	<3.0	3.0 – 3.5	3.6 – 4.0	4.1 – 4.5	>4.6
Поправочный коэффициент на скорость резания	1.0	0.9	0.8	0.7	0.5

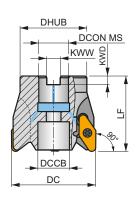
SVC22C

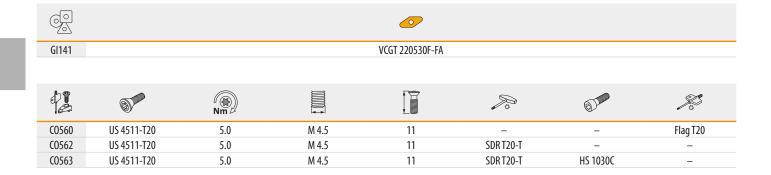


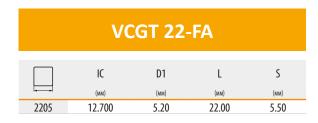


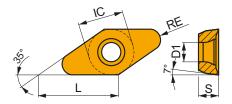

Копировальная фреза с пластинами VCGT 22


Конструкция фрезы имеет двойную позитивную геометрию, внутренний подвод СОЖ. Односторонние пластины VCGT 22 с глубиной резания до 16 мм имеют 2 режущие кромки. Фреза подходит для обработки различных поверхностей заготовок из цветных сплавов.



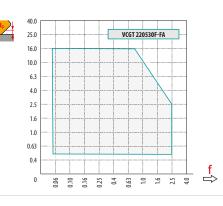


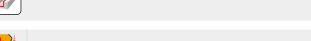




	Обозначение	DC	OAL	DCON MS	DCCB	LU	LF	DHUB	TDZ	KWW	KWD	GAMF	GAMP			max.		S kg	<u></u>	
		(MM)	(мм)	(MM)	(MM)	(MM)	(ww)	(MM)		(MM)	(MM)	(°)	(°)							
	32A2R045A25-SVC22C	32	120	25	-	45	-	-	-	_	-	4	3	2	-	10400	✓	0.46	GI141	C0560
DIN 1835A	40A3R045A32-SVC22C	40	150	32	-	45	-	-	-	_	-	8	3	3	_	9300	✓	0.91	GI141	C0560
	32A2R048M16-SVC22C	32	71	17	-	_	48	29	M16	_	_	11	3	2	_	_	✓	0.23	GI141	C0560
MODULAR	40A3R048M16-SVC22C	40	71	17	-	-	48	29	M16	_	-	13	3	3	_	-	✓	0.26	GI141	C0560
Pl-VPA	50A03R-S90VC22C	50	_	22	18	_	56	40	_	10	6.3	4	3	3	_	8400	✓	0.44	GI141	C0563
ISO 6462 DIN 8030	63A04R-S90VC22C	63	_	22	18	-	56	50	_	10	6.3	6	3	4	-	7400	✓	0.68	GI141	C0563
	80A05R-S90VC22C	80	_	27	20	_	56	63	_	12	7	8	3	5	_	6600	✓	1.15	GI141	C0562

PRAMET


	RE		Р	M	K	N	S	Н
Обозначение		мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)
6	23°		# + F					
	7		Позитивная геометрия	я для получистовой и че	ерновой обработки ц	ветных сплавов.		
VCGT 220530F-FA	HF7 3	3.0				210 0.48 1.0		



a. DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒ x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	VCGT 22-FA
RE	3.0
BS	_

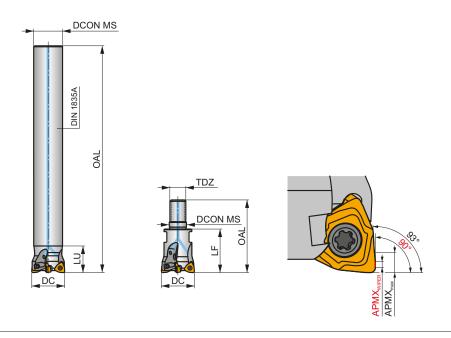
a _p	0.5	3.0	12.0
f ⇒	0.86	0.31	0.05

DC	RPMX	APMX/I
32	8.0	12.0/87
40	8.0	12.0/87
50	6.0	10.4/100
63	4.2	7.2/100
80	3.1	5 3/100

DC	DMIN	DMAX	DMIN Ø	DMAX DMAX
32	42.0	64.0	4.2	12.0
40	58.0	80.0	7.7	12.0
50	78.0	100.0	9.0	12.0
63	104.0	126.0	9.3	12.0
80	138.0	160.0	9.7	12.0

DC	μm	3	5	10	15	20	30	40	50	60	80	100
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
40	W SFE	0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
50	F	0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657
RE	μm	3	5	10	15	20	30	40	50	60	80	100
3.0	FE	0.268	0.346	0.490	0.600	0.693	0.849	0.980	1.095	1.200	1.386	1.549

SWN04C



			-	HATE
•	10	1	1 Pin	
	7	Tre -		
		(a)		

KAPR	90° (93°)
APMX	0.5 (2.0) мм
GAMP	GAMF
***	**

Фреза для обработки штампов и пресс-форм с пластинами WNHX 04

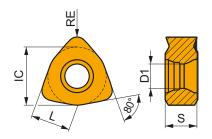
Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины WNHX 04 с глубиной резания до 0.5 мм имеют 6 режущих кромок. Фреза подходит для широкого применения, в частности для чистовой обработки штампов и пресс-форм.

C0602

US 42507-T07P

1.2

7

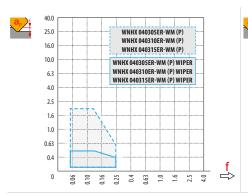

	Обозначение	DC	OAL	DCON MS	LU	LF	TDZ	GAMF	GAMP			max.		S kg		
		(ww)	(MM)	(MM)	(MM)	(MM)		(°)	(°)							
	20A3R020A18-SWN04C-C	20	160	18	20	_	_	-12	-8	3	_	19700	✓	0.27	Gl331	C0602
DIN 1835A	25A4R020A22-SWN04C-C	25	180	22	20	_	_	-11.5	-8	4	\checkmark	26600	\checkmark	0.45	GI331	C0602
DIN 1033A	32A6R020A25-SWN04C-C	32	200	25	20	-	_	-11.2	-8	6	✓	23500	✓	0.69	Gl331	C0602
	20A3R030M10-SWN04C-C	20	49	10.5	-	30	M10	-12	-8	3	_	-	\checkmark	0.08	GI331	C0602
	25A4R033M12-SWN04C-C	25	55	12.5	_	33	M12	-11.5	-8	4	\checkmark	_	\checkmark	0.11	GI331	C0602
MODULAR	32A6R040M16-SWN04C-C	32	63	17	-	40	M16	-11.2	-8	6	\checkmark	_	\checkmark	0.19	Gl331	C0602
	35A6R043M16-SWN04C-C	35	66	17	-	43	M16	-11.1	-8	6	\checkmark	-	✓	0.22	Gl331	C0602

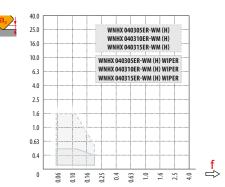
		6	
GI331		WNHX0403	
	Nm		

M 2.5

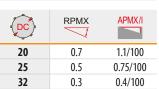
Flag T07P

06	53534343	RE		P			M			K			N			S			Н	ı
Обозначение			V	. f	ap		vc f	ap	VC	f	ap	VC	f	ap	VC	f	ap	,	VC	f ap
		(MM)	(M/I	ин) (мм/зуб	(MM)	(м	/мин) (мм/зуб)	(MM)	(м/ми) (мм/зуб)	(MM)	(м/ми	ı) (мм/зуб)	(MM)	(м/мин	(мм/зуб)	(MM)	(M/	/мин) (ми	м/зуб) (мм
			W				E													
	`15°		Геоме	рия с по	пиии	йаша	иполикой				na 06na	60-1/14								
			reome	рил спо	дчища	ощеи	кромкои	ин кир	зышени	н качест	ва оора	оотки.								
WNHX 040305ER-WM	M4310	0.5	≥ 29			ощеи	- –	4) II кіці —	зышени 2 75		1.0	—	_	_	_	_	_	■ 5	55 0	.15 1.0
WNHX 040305ER-WM	M4310 M8330	0.5 0.5		0 0.15	1.0	ощеи	- – - –	— —		0.15	·	— —		_ 	-	_ _	_ _			.15 1.0
WNHX 040305ER-WM WNHX 040310ER-WM			2 29	0 0.15 0 0.15	1.0	Ющей	кромкои , 	— — —	27 5	0.15 0.15	1.0	— — —	- - -	- - -	-	- - -	- - -		50 0	
	M8330	0.5	✓ 29✓ 26	0 0.15 0 0.15 0 0.15	1.0 1.0 1.0	ющей	— — — — — —	— — — —	275245	0.15 0.15 0.15	1.0	— — — —	- - -	- - - -	- - -	- - -	_	 5 7	50 0 70 0	.15 1.0
	M8330 M4310	0.5 1.0	29 20 20	0 0.15 0 0.15 0 0.15 0 0.15	1.0 1.0 1.0	ЮЩСИ	— — — — — — — — — — — — — — — — — — —	— — — — —	275245350	0.15 0.15 0.15 0.15	1.0 1.0 1.0	— — — — — — — — — — — — — — — — — — —	- - - -	- - - -	- - -	- - - -	_	✓ 5✓ 7✓ 6	50 0 70 0 55 0	.15 1.0




a。 DC	5 %	10 %	15 %	20%	25 %	30 %	40 %	50 %	60%	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00

a。/ DC	0.5 %	1.0 %	2.0 %	3.0 %	4.0 %	5.0 %
X.V	2.04	1.85	1.68	1.59	1.53	1.48

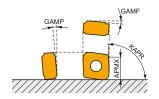

00000000		WNHX 04-WM	
RE	0.5	1.0	1.5
BS	0.50	0.50	0.50

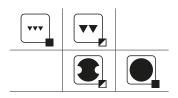
0.3

35

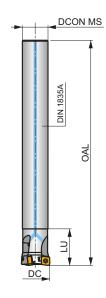
0.4/100

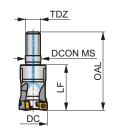
SCN05C





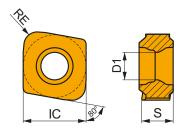
405		No. 10	
10	-)	
1 6			
- 6			


KAPR	90° (93°)
APMX	0.5 (1.0) мм



Фреза для обработки штампов и пресс-форм с пластинами CNHX 05

Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины СNHX 05 с глубиной резания до 0.5 мм имеют 4 режущие кромки. Фреза подходит для широкого применения, в частности для чистовой обработки штампов и пресс-форм.

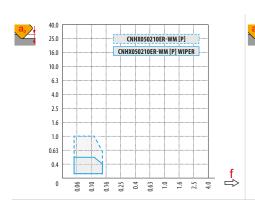

	Обозначение	DC	OAL	DCON MS	LU	LF	TDZ	GAMF	GAMP			max.		∫(kg		
		(MM)	(MM)	(MM)	(MM)	(мм)		(°)	(°)							
	12A2R020A10-SCN05C-C	12	100	10	20	_	_	-15	-8	2	_	48700	✓	0.08	GI330	C0601
DIN 1835A	16A3R020A14-SCN05C-C	16	130	14	20	_	_	-13.5	-7.8	3	_	42200	\checkmark	0.13	GI330	C0601
DIIV 1033A	20A5R020A18-SCN05C-C	20	160	18	20	_	_	-12.7	-7.5	5	✓	37700	✓	0.28	GI330	C0601
	12A2R020M06-SCN05C-C	12	35	6.5	-	20	M6	-15	-8	2	_	-	\checkmark	0.04	GI330	C0601
MODULAR	16A3R025M08-SCN05C-C	16	43	8.5	-	25	M8	-13.5	-7.8	3	_	-	\checkmark	0.06	GI330	C0601
MODOLAR	20A5R030M10-SCN05C-C	20	49	10.5	-	30	M10	-12.7	-7.5	5	✓	_	\checkmark	0.08	GI330	C0601

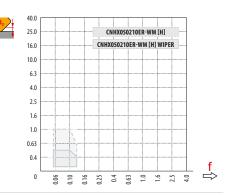
GI330	CNHX0502

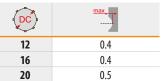
		Nm			
C0601	US 62005-T06P	0.9	M 2	4.9	Flag T06P

PRAMET

Применение инструмен	іта, начальнь	е значе	ения	скоро	сти рез	вания (/с), п	ода	чи (f) и	глубі	1НЫ	і резан	ия (ар)). Для ,	доп	олните	ельных	расче	тов восп	ользуйт	есь пр	оило	жени	ем Cald	ulator
0.5	EACMANA.	RE			Р				M				K				N			S				Н	
Обозначение				VC	f	ap		VC	f	ар		VC	f	ap		VC	f	ар	VC	f	ар		VC	f	ар
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м.	мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)
	23°			V (я с под	чищаю		Кро	мкой д	ля по	ВЫІ	шения	качест	ва обр	рабо	отки.									
CNHX 050205ER-WM	M4310	0.5		350	0.10	0.5		_	_	_		335	0.10	0.5		_	_	_	_	_	_		70	0.15	1.0
	M8330	0.5		310	0.10	0.5		_	_	_		290	0.10	0.5		_	-	_	_	_	_		60	0.15	1.0
CNHX 050210ER-WM	M4310	1.0		440	0.10	0.5		_	-	-		420	0.10	0.5		_	_	_	_	_	_		85	0.15	1.0
	M8330	1.0		390	0.10	0.5		-	-	-		370	0.10	0.5		_	-	_	_	_	-		75	0.15	1.0




a。 DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00


a。/ DC	0.5 %	1.0 %	2.0 %	3.0 %	4.0 %	5.0 %
(X.V	2.04	1.85	1.68	1.59	1.53	1.48

0000000	CNHX 05-WM	
RE	0.5	1.0
BS	0.50	0.50

DC	RPMX	APMX/I
12	2.4	1/25
16	1.5	1/40
20	1.1	1/54

высокоподачные фрезы

ВЫСОКОПОДАЧНЫЕ ФРЕЗЫ – НАВИГАТОР

ФРЕЗЕРОВАНИЕ С ВЫСОКОЙ ПОДАЧЕЙ

>>>

	SBN	SBN10 20°		NEW	SPD	09	SZDO	7	SZD	09
	20°		18°		19	0	_		_	
	АРМХ (мм)	1.0	APMX (MM)	1.7	АРМХ (мм)	2.0	АРМХ (мм)	1.0	APMX (mm)	1.0
	DCX(mm)	16 – 42	DCX (MM)	32 – 125	DCX (MM)	32 – 140	DCX(MM)	16 – 32	DCX (MM)	25 – 66
Цилиндрический хвостовик	3	DCX = 16 – 35 (mm)		DCX = 32 – 35 (mm)	Į.	DCX = 32 – 40 (mm)		DCX = 16 - 25 (mm)		
Хвостовик Weldon										DCX = 25 - 32 (MM)
Сменная головка с резьбовым хвостовиком		DCX = 16 - 40 (MM)		DCX = 32 – 40 (MM)				DCX = 16 – 32 (MM)		DCX = 25-42 (MM)
Насадная фреза		DCX = 40 - 42 (mm)		DCX = 40 - 125 (MM)		DCX = 42 – 140 (MM)				DCX = 40 – 66 (MM)
Страница	₽ 6	14	4 6	20	₽ 6	525	<u></u> 63	1	Д	635
ISO	P M K	S H	P M K	S	P M K	S H	P K	Н	P K	Н
Форма пластины		0	O		C		•			
Тип пластины	BNGX 1 ANHX 1		SNGX 1	104	PD 09	905	ZDCW 07	703	ZDCW	09T3
Количество режущих кромок	4/2		8		5		4		4	
Фрезерование плоскостей										1
Фрезерование с винтовой интерполяцией										1
Фрезерование неглубоких уступов										1
Плунжерное фрезерование										1
Фрезерование с засверливанием									Z	1
Врезание под углом	•					I				
Копировальное фрезерование									Z	1
Фрезерование неглубоких пазов]			Z	1

ВЫСОКОПОДАЧНЫЕ ФРЕЗЫ – НАВИГАТОР

111

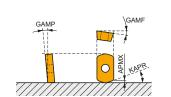
ФРЕЗЕРОВАНИЕ С ВЫСОКОЙ ПОДАЧЕЙ

SZD12								
_								
	.6 - 80							
DCA(MM) 32	- 80							
5	DCX = 40 (MM)							
3.4	DCX =							
	S							
	DCX = 32 - 40 (MM)							
4	CX = 32							
_								
	DCX = 50 - 80 (MM)							
	X = 50							
4 639	۵							
P K	н							
•								
ZDEW 1204								
4								
-								
_								
								61

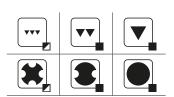
SBN10

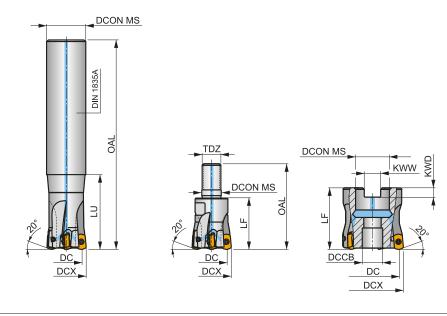
Высокоподачная фреза с углом в плане 20° и пластинами BNGX 10

PRAMET



Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины
BNGX 10 для высоких подач с глубиной резания до 1 мм имеют 4 режущие кромки; односторонние пластины ANHX 10 для чистовой
обработки с глубиной резания до 3 мм имеют 2 режущие кромки. Фреза подходит для широкого применения.

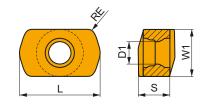

KAPR


APMX

20°

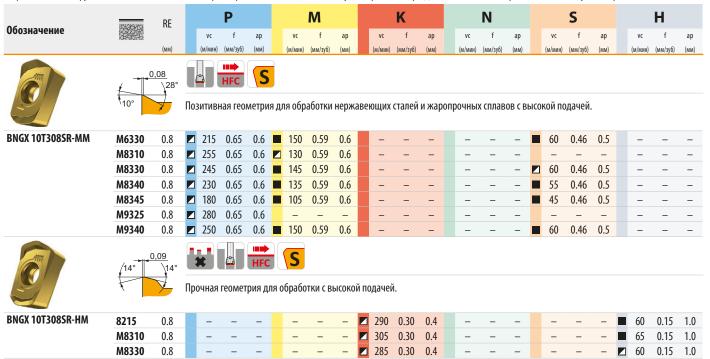
1.0 мм

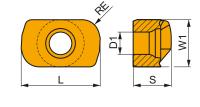
	Обозначение	DCX	DC	OAL	DCON MS	DCCB	LU	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		∫ kg		
		(мм)	(мм)	(MM)	(мм)	(MM)	(MM)	(MM)		(MM)	(MM)	(°)	(°)							
	16E2R030A16-SBN10-C	16	9.4	100	16	-	30	-	-	-	-	-12	-10	2	✓	31100	✓	0.13	GI329	C0310
	16E2R050A16-SBN10-C	16	9.4	150	16	_	50	_	_	_	_	-12	-10	2	_	31100	✓	0.18	GI329	CO310
	16E2R030A14-SBN10-C	16	9.4	150	14	_	30	_	-	_	_	-12	-10	2	_	31100	✓	0.15	GI329	CO310
	18E2R030A16-SBN10-C	18	11.4	150	16	_	30	-	-	_	_	-11	-10	2	-	29200	✓	0.20	GI329	CO310
	20E3R040A20-SBN10-C	20	13.4	130	20	-	40	-	-	-	_	-10	-10	3	-	27700	✓	0.25	GI329	CO310
	20E3R080A20-SBN10-C	20	13.4	160	20	-	80	-	-	_	_	-10	-10	3	_	27700	✓	0.29	GI329	CO310
	20E3R040A18-SBN10-C	20	13.4	180	18	_	40	_	-	_	_	-10	-10	3	_	27700	✓	0.30	GI329	CO310
	20E4R040A20-SBN10-C	20	13.4	130	20	-	40	-	-	-	-	-10	-10	4	-	27700	✓	0.26	GI329	CO310
DIN 1835A	25E4R050A25-SBN10-C	25	18.4	140	25	-	50	-	-	-	_	-9	-10	4	✓	24800	✓	0.42	GI329	CO310
	25E4R100A25-SBN10-C	25	18.4	180	25	-	100	-	_	_	_	-9	-10	4	✓	24800	✓	0.51	GI329	CO310
	25E4R050A22-SBN10-C	25	18.4	220	22	-	50	-	-	_	_	-9	-10	4	✓	24800	✓	0.54	GI329	CO310
	25E5R050A25-SBN10-C	25	18.4	140	25	-	50	-	-	-	-	-9	-10	5	-	24800	✓	0.42	GI329	CO310
	32E5R070A32-SBN10-C	32	25.4	150	32	-	70	-	-	-	-	-8	-10	5	✓	21900	✓	0.73	GI329	CO310
	32E6R070A32-SBN10-C	32	25.4	150	32	-	70	-	-	-	-	-8	-10	6	✓	21900	✓	0.73	GI329	CO310
	32E5R120A32-SBN10-C	32	25.4	200	32	-	120	-	-	_	_	-8	-10	5	✓	21900	✓	1.02	GI329	CO310
	35E5R050A32-SBN10-C	35	28.4	200	32	-	50	-	-	-	-	-7.5	-10	5	✓	21000	✓	1.08	GI329	CO310
	35E6R050A32-SBN10-C	35	28.4	200	32	-	50	-	-	-	-	-7.5	-10	6	✓	21000	✓	1.08	GI329	CO310
	16E2R025M08-SBN10-C	16	9.4	43	8.5	-	-	25	M8	-	-	-12	-10	2	-	31100	✓	0.03	GI329	CO310
	18E2R025M08-SBN10-C	18	11.4	43	8.5	-	_	25	M8	_	_	-11	-10	2	_	29200	✓	0.06	GI329	CO310
	20E3R030M10-SBN10-C	20	13.4	49	10.5	-	-	30	M10	-	-	-10	-10	3	-	27700	✓	0.08	GI329	CO310
	20E4R030M10-SBN10-C	20	13.4	49	10.5	-	-	30	M10	-	-	-10	-10	4	-	27700	✓	0.08	GI329	CO310
	25E4R033M12-SBN10-C	25	18.4	55	12.5	-	-	33	M12	-	-	-9	-10	4	✓	24800	✓	0.08	GI329	CO310
MODULAR	25E5R033M12-SBN10-C	25	18.4	55	12.5	-	_	33	M12	_	_	-9	-10	5	_	24800	✓	0.10	GI329	CO310
	28E5R035M12-SBN10-C	28	21.4	57	12.5	-	-	35	M12	-	-	-8.5	-10	5	✓	23400	✓	0.13	GI329	CO310
	32E5R040M16-SBN10-C	32	25.4	63	17	-	-	40	M16	-	-	-8	-10	5	✓	21900	✓	0.21	GI329	CO310
	32E6R040M16-SBN10-C	32	25.4	63	17	-	_	40	M16	_	_	-8	-10	6	✓	21900	✓	0.21	GI329	CO310
	35E6R043M16-SBN10-C	35	28.4	66	17	-	_	43	M16	_	_	-7.5	-10	6	✓	21000	✓	0.24	GI329	C0310


	Обозначение	DCX (MM)	DC (MM)	OAL	DCON MS	DCCB	LU (MM)	LF (MM)	TDZ	KWW	KWD	GAMF	GAMP			max.		∫ kg		
	40E6R043M16-SBN10-C	40	33.4	66	17	(mm)	(mm)	43	M16	(mm)	(mm)	-7	-10	6	_	19600	√	0.27	GI329	C0310
MODULAR	40E7R043M16-SBN10-C	40	33.4	66	17	_	_	43	M16	_	_	-7	-10	7	√	19600	→	0.26		C0310
	40A05R-SMOBN10-C	40	33.4	_	16	14.1	_	40	_	8.4	5.6	-7	-10	5	✓	19600	✓	0.23	GI329	C0312
ISO 6462 DIN 8030	40A07R-SMOBN10-C	40	33.4	_	16	14.1	_	40	_	8.4	5.6	-7	-10	7	✓	19600	✓	0.27	Gl329	CO312
ISO 6462 DIN 8030	42A05R-SM0BN10-C	42	35.4	-	16	14.1	-	40	_	8.4	5.6	-7	-10	5	✓	19100	✓	0.23	GI329	CO312
	42A07R-SMOBN10-C	42	35.4	-	16	14.1	-	40	-	8.4	5.6	-7	-10	7	✓	19100	✓	0.26	GI329	CO312

	(0)	
GI329	BNGX 10T3	ANHX 10T3

		Nm			×	(a) James	
CO310	US 42507-T07P	3.0	M 2.5	7	Flag T07P	-	_
CO312	US 42507-T07P	3.0	M 2.5	7	D-T07P/T09P	FG-15	HS 0830C


	E	BNGX 1	0	
	W1	D1	L	S
	(MM)	(MM)	(MM)	(MM)
10T3	5.800	2.76	9.92	3.90

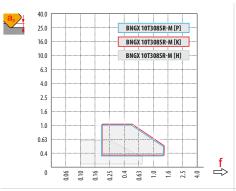

ripumentenine unterpymen	именение инструмента, начальные значении спорости резании (те), подачи (т) и глуонны резании (ар). Дли дополнительных расчетов воснользуютеся приложением саканасы.																						
	P4CP4CP4	RE			Р			M				K				N			S			Н	
Обозначение				VC	f	ар	VC	f	ар		VC	f	ар		VC	f	ap	VC	f	ар	VC	f	ар
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
		15 24°	7	1			S																
			По	ЗИТИВН	ная гео	метрия	для обр	аботки	С ВЫС	0K(ой пода	чей.											
BNGX 10T308SR-M	8215	0.8		240	0.65	0.7	_	-	_		225	0.65	0.7		_	-	-	_	-	_	45	0.15	1.0
	M6330	0.8		210	0.65	0.7	_	-	-		-	-	-		_	-	-	_	_	_	-	-	-
	M8310	0.8		250	0.65	0.7	_	_	_		235	0.65	0.7		_	_	_	_	_	_	50	0.15	1.0
	M8330	0.8		240	0.65	0.7	_	_	_		225	0.65	0.7		_	_	_	_	_	_	45	0.15	1.0
	M8340	0.8		225	0.65	0.7	_	_	_		210	0.65	0.7		_	_	_	_	_	_	_	_	_
	M8345	0.8		180	0.65	0.7	_	-	-		-	_	-		_	-	_	_	_	-	_	_	_
	M9325	0.8		275	0.65	0.7	_	_	_		260	0.65	0.7		_	_	_	_	_	-	55	0.15	1.0

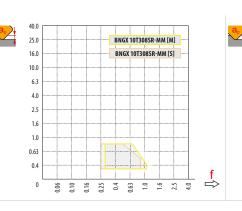
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

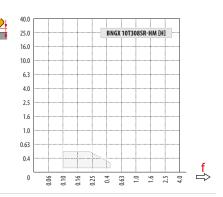
W1 D1 L S (MM) (MM) (MM) (MM) 10T3 5.800 2.76 9.72 4.70

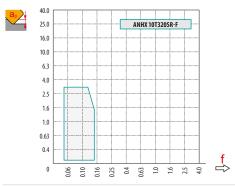
PRAMET

	PKPKPH	RE			P			M				K			N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M)		ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	12°), <u>05</u>)31°	По	∀ W	ная геом	S метрия	для чі	істовой	и полу	чис	стовой	обрабо	тки.									
ANHX 10T320SR-F	M8310 M8330	2.0		380 340		2.5 L			2.5 2.5		-	- -	- -	-	-	_ _	<u>-</u>	_ _	_ _	-	- -	_

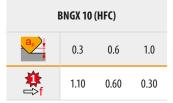





a _e /	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00


0000000	BNGX 10-M	BNGX 10-MM	BNGX 10-HM
RE	0.8	0.8	0.8
BS	_	-	_

00000000	ANHX 10 - F
RE	2.0
BS	0.92


	BNGX 10 (HFC)														
DCX	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00					
16		9.40	12.85	13.36	13.80	14.20	14.56	14.88	15.19	15.47					
18		11.40	14.85	15.36	15.80	16.20	16.56	16.88	17.19	17.47					
20		13.40	16.85	17.36	17.80	18.20	18.56	18.88	19.19	19.47					
25		18.40	21.85	22.36	22.80	23.20	23.56	23.88	24.19	24.47					
28	(DEF)	21.40	24.85	25.36	25.80	26.20	26.56	26.88	27.19	27.47					
32		25.40	28.85	29.36	29.80	30.20	30.56	30.88	31.19	31.47					
35		28.40	31.85	32.36	32.80	33.20	33.56	33.88	34.19	34.47					
40		33.40	36.85	37.36	37.80	38.20	38.56	38.88	39.19	39.47					
42		35.40	38.85	39.36	39.80	40.20	40.56	40.88	41.19	41.47					
	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00					
	♠ ⇔f	-	1.30	1.10	0.90	0.80	0.72	0.68	0.65	0.50					

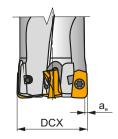
BNGX 10												
DCX	a _{e max}	f _{max} ⇒										
16	3.5	0.12										
18	3.5	0.12										
20	4.0	0.15										
25	4.0	0.15										
28	4.0	0.17										
32	4.0	0.17										
35	4.0	0.17										
40	4.0	0.17										
42	4.0	0.17										

1	BNGX 10 (HFC)													
DCX	RPMX	APMX/I												
16	4.0	1/16												
18	4.0	1/16												
20	4.0	1/16												
25	2.8	1/22												
28	2.3	1/26												
32	1.9	1/32												
35	1.7	1/35												
40	1.3	1/46												
42	1.3	1/46												

ANHX 10												
DCX	RPMX	APMX/I										
16	1.6	2.65/100										
18	1.3	2.15/100										
20	1.1	1.80/100										
25	0.8	1.25/100										
28	0.7	1.10/100										
32	0.5	0.75/100										
35	0.5	0.75/100										
40	0.4	0.55/100										
42	0.4	0.55/100										

BNGX 10 (HFC)											
DCX	ap	f _{max} ⇒									
16	0.4	0.15									
18	0.7	0.15									
20	0.7	0.15									
25	0.7	0.15									
28	0.7	0.2									
32	0.7	0.2									
35	0.7	0.2									
40	0.7	0.2									
42	0.7	0.2									

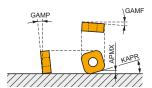
	BNGX 10 (HFC)												
DCX	DMIN	DMAX	MIN Ø	DMAX DMAX									
16	22.4	31.8	0.5	0.5									
18	25.4	35.8	0.5	0.5									
20	29.4	39.8	0.5	0.5									
25	39.4	49.8	0.5	0.5									
28	45.4	55.8	0.5	0.5									
32	53.4	63.8	0.5	0.5									
35	59.4	69.8	0.5	0.5									
40	69.4	79.8	0.5	0.5									
42	73.4	83.8	0.5	0.5									

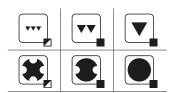


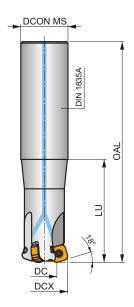
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
16		0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
18		0.465	0.600	0.849	1.039	1.200	1.470	1.697	1.897	2.078	2.400	2.683
20		0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25	IV/SFE	0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
28	FE	0.580	0.748	1.058	1.296	1.497	1.833	2.117	2.366	2.592	2.993	3.347
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
35		0.648	0.837	1.183	1.449	1.673	2.049	2.366	2.646	2.898	3.347	3.742
40		0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
42		0.710	0.917	1.296	1.587	1.833	2.245	2.592	2.898	3.175	3.666	4.099
						ANHX 10						
RE	μm	3	5	10	15	20	30	40	50	60	80	100
2.0	FE	0.219	0.283	0.400	0.490	0.566	0.693	0.800	0.894	0.980	1.131	1.265

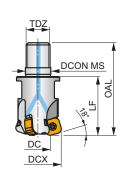
R	T
1.60	0.44

	max a _e /DCX
ANHX 10T320	0.05

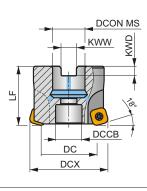



Высокоподачная фреза с углом в плане 18° и пластинами SNGX 11



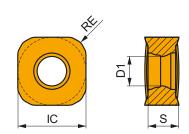


KAPR	18°
APMX	1.7 мм



Конструкция фрезы имеет двойную негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Двухсторонние пластины SNXG 11 с глубиной резания до 1.7 мм имеют 8 режущих кромок. Фреза подходит для обработки поверхностей с высокой подачей.

	Обозначение	DCX	DC	OAL	DCON MS	DCCB	LU	LF	TDZ	KWW	KWD	GAMF			ZNP		max.		∫ kg	© 201		
		(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)		(MM)	(MM)	(°)	(°)									
	32E3R070A32-SSN11-C	32	18.3	150	32	-	70	-	-	-	-	-11.5	-10	3	-	-	17500	✓	0.69	GI339	CO314	_
DIN 1835A	32E3R120A32-SSN11-C	32	18.3	200	32	-	120	-	_	_	-	-11.5	-10	3	_	-	17500	✓	0.89	GI339	C0314	
	35E3R050A32-SSN11-C	35	21.2	200	32	_	50	_	_	_	-	-11	-10	3	_	-	16800	✓	1.11	GI339	CO314	_
	32E3R040M16-SSN11-C	32	18.3	63	17	_	-	40	M16	_	-	-11.5	-10	3	-	-	17500	✓	0.17	GI339	C0314	_
MODULAR	35E3R040M16-SSN11-C	35	21.2	63	17	-	_	40	M16	-	-	-11	-10	3	_	_	16800	\checkmark	0.19	GI339	C0314	-
	40E4R043M16-SSN11-C	40	26.2	66	17	_	_	43	M16	_	_	-10.5	-10	4	_	✓	15700	✓	0.23	GI339	C0314	_
	40A04R-SM0SN11-C	40	26.2	_	16	12.4	_	40	_	8.4	5.6	-10.5	-10	4	_	✓	15700	✓	0.19	GI339	CO316	_
	42A04R-SM0SN11-C	42	28.2	-	16	14.1	-	40	-	8.4	5.6	-10.5	-10	4	-	✓	15300	\checkmark	0.21	GI339	CO318	_
	50A05R-SM0SN11-C	50	36.1	-	22	18.1	_	40	_	10.4	6.3	-10	-10	5	_	✓	14000	\checkmark	0.31	GI339	C0320	-
	50A06R-SM0SN11-C	50	36.1	_	22	18.1	_	40	_	10.4	6.3	-10	-10	6	_	✓	14000	✓	0.31	GI339	C0320	_
	52A05R-SM0SN11-C	52	38.1	_	22	18.1	_	40	_	10.4	6.3	-10	-10	5	_	✓	13800	✓	0.34	GI339	C0320	_
	52A06R-SM0SN11-C	52	38.1	-	22	18.1	-	40	-	10.4	6.3	-10	-10	6	-	✓	13800	✓	0.33	GI339	C0320	-
10+470	63A06R-SM0SN11-C	63	49.1	-	22	18.1	-	40	-	10.4	6.3	-10	-10	6	_	✓	12500	\checkmark	0.46	GI339	C0320	-
ISO 6462	63A08R-SM0SN11-C	63	49.1	-	22	18.1	-	40	-	10.4	6.3	-10	-10	8	_	\checkmark	12500	\checkmark	0.47	GI339	C0320	-
DIN 8030	66A06R-SMOSN11-C	66	52.1	-	27	18.1	-	50	-	12.4	7	-10	-10	6	_	\checkmark	12200	\checkmark	0.74	GI339	CO322	-
	66A08R-SMOSN11-C	66	52.1	_	27	18.1	_	50	_	12.4	7	-10	-10	8	_	\checkmark	12200	\checkmark	0.75	GI339	CO322	_
	80A07R-SM0SN11-C	80	66.1	_	27	38.1	_	50	_	12.4	7	-10	-10	7	_	\checkmark	11100	\checkmark	0.95	GI339	C0324 /	AC001
	80A09R-SMOSN11-C	80	66.1	-	27	38.1	-	50	_	12.4	7	-10	-10	9	_	\checkmark	11100	✓	1.04	GI339	C0324 /	AC001
	100A08R-SM0SN11-C	100	86.1	_	32	45.1	_	50	_	14.4	8	-10	-10	8	_	✓	9900	✓	1.63	GI339	C0324 /	AC002
	115A08R-SMOSN11-C	115	101.1	_	32	45.1	_	50	-	14.4	8	-10	-10	8	_	✓	9200	✓	2.34	GI339	C0324 /	AC002
	125A08R-SM0SN11-C	125	111.1	_	40	56.1	_	63	_	16.4	9	-10	-10	8	_	✓	8900	✓	3.39	GI339	C0324 /	AC003



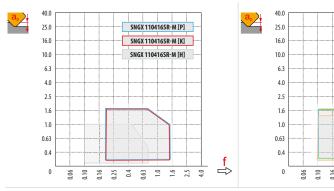
GI339 SNGX 1104...

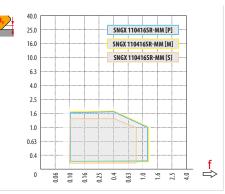
		Nm			10			
CO314	US 44012-T15P	3.5	M 4	12	_	_	Flag T15P	-
CO316	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	HCS 0840C
CO318	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	HS 90835
C0320	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	HS 1030C
C0322	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	HS 1230C
C0324	US 44012-T15P	3.5	M 4	12	D-T08P/T15P	FG-15	_	_

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32
AC003	KS 2040	K.FMH40

NEW		CV 4.4	
	SIN	GX 11	
	IC	D1	S
I I	(MM)	(MM)	(мм)
1104	10.600	4.56	4.76

Применение инструме	нта, начальнь	ые знач	ения	скорс	сти ре	зания ((Vc)	, пода	чи (f) і	и глуби	ИΗЬ	ы резан	іия (ар)). Для д	ΙОП	ОЛНИТ	ельны	х расч	етов	восп	ользуй [.]	гесь пр	иложен	ием Са	ılculatoı
Обозначение	KKESKK	RE		Р					M			K		N			S		Н						
ОООЗНАЧЕНИЕ		(мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/ми	f i) (mm/3y	ар i) (мм)
	17° - 0,2		1	1		S																			
	,		По	ВИТИВІ	ная гео	метрия	я дл	ія обр	аботки	СВЫС	0K0	ой пода	ічей.												
SNGX 110416SR-M	8215	1.6		260	0.60	1.0		-	-	-		245	0.60	1.0		-	-	-		-	-	-	_	-	-
	M8310	1.6		275	0.60	1.0		_	-	-		260	0.60	1.0		-	-	-		_	_	-	_	-	-
	M8330	1.6		260	0.60	1.0		-	-	-		245	0.60	1.0		-	-	-		_	-	-	_	-	-
	M8340	1.6		245	0.60	1.0		_	-	-		230	0.60	1.0		-	-	-		_	-	-	_	-	_
	M9325	1.6		305	0.60	1.0		_	-	-		285	0.60	1.0		-	-	-		-	-	-	_	-	-
	M9340	1.6		270	0.60	1.0		-	-	-		-	-	-		-	-	-		-	-	-	_	-	-
	22° (8°	0,1			HFC	S																			
	1 1		По	ВИТИВІ	ная гео	метрия	я ду	ія обр	аботки	нерж	аве	еющих	сталей	и жарс	опр	очны)	х сплав	80B C B	ЫСО	кой по	одачей.				
SNGX 110416SR-MM	M6330	1.6		175	0.60	1.0		125	0.54	1.0		-	-	-		_	_	_		50	0.42	0.8	_	_	-
	M8340	1.6		190	0.60	1.0		110	0.54	1.0		-	_	-		_	_	_		45	0.42	0.8	-	_	-
	M8345	1.6		150	0.60	1.0		90	0.54	1.0		-	_	-		_	_	_		35	0.42	8.0	_	_	_
	M9340	1.6		210	0.60	1.0		125	0.54	1.0		-	_	-		_	-	_		50	0.42	0.8	-	_	_

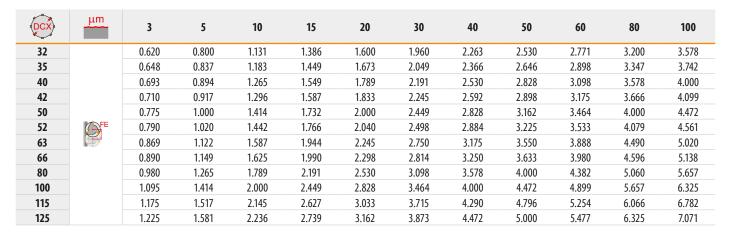

PRAMET



a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒ x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	SNGX 11 - M	SNGX 11 - MM
RE	1.6	1.6
BS	_	-

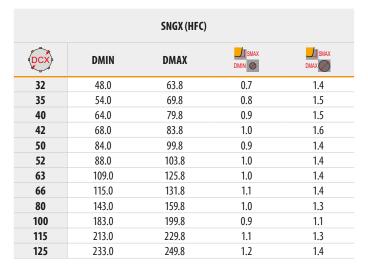
							HFC							
DCX	a _p	0.00	0.20	0.40	0.60	0.80	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70
32		18.30	19.53	20.76	21.99	23.22	24.46	25.07	25.69	26.30	26.92	27.53	28.15	28.76
35		21.20	22.43	23.66	24.89	26.12	27.36	27.97	28.59	29.20	29.82	30.43	31.05	31.66
40		26.20	27.43	28.66	29.89	31.12	32.36	32.97	33.59	34.20	34.82	35.43	36.05	36.66
42		28.20	29.43	30.66	31.89	33.12	34.36	34.97	35.59	36.20	36.82	37.43	38.05	38.66
50		36.10	37.33	38.56	39.79	41.02	42.26	42.87	43.49	44.10	44.72	45.33	45.95	46.56
52	(DEF)	38.10	39.33	40.56	41.79	43.02	44.26	44.87	45.49	46.10	46.72	47.33	47.95	48.56
63	, DEF	49.10	50.33	51.56	52.79	54.02	55.26	55.87	56.49	57.10	57.72	58.33	58.95	59.56
66		52.10	53.33	54.56	55.79	57.02	58.26	58.87	59.49	60.10	60.72	61.33	61.95	62.56
80		66.10	67.33	68.56	69.79	71.02	72.26	72.87	73.49	74.10	74.72	75.33	75.95	76.56
100		86.10	87.33	88.56	89.79	91.02	92.26	92.87	93.49	94.10	94.72	95.33	95.95	96.56
115		101.10	102.33	103.56	104.79	106.02	107.26	107.87	108.49	109.10	109.72	110.33	110.95	111.56
125		111.10	112.33	113.56	114.79	116.02	117.26	117.87	118.49	119.10	119.72	120.33	120.95	121.56
	a _p	-	0.20	0.40	0.60	0.80	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70
	‡ ⇔f	_	1.37	0.98	0.81	0.71	0.64	0.62	0.59	0.58	0.56	0.54	0.53	0.52

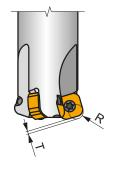


SNGX								
DCX	a _{e max}	$\overset{f_{\text{max}}}{\Longrightarrow}$						
32	5.0	0.25						
35	5.0	0.25						
40	5.2	0.30						
42	5.2	0.30						
50	5.3	0.30						
52	5.3	0.30						
63	5.4	0.30						
66	5.4	0.30						
80	5.5	0.35						
100	5.5	0.35						
115	5.5	0.35						
125	5.5	0.35						

SNGX (HFC)								
DCX	RPMX	APMX/I						
32	0.8	1.4/100						
35	0.8	1.4/100						
40	0.7	1.2/100						
42	0.7	1.2/100						
50	0.5	0.9/100						
52	0.5	0.9/100						
63	0.4	0.7/100						
66	0.4	0.7/100						
80	0.3	0.5/100						
100	0.2	0.3/100						
115	0.2	0.3/100						
125	0.2	0.3/100						

SNGX (HFC)								
DCX	a _p	f_{max}						
32	0.2	0.3						
35	0.2	0.3						
40	0.2	0.3						
42	0.2	0.3						
50	0.3	0.4						
52	0.3	0.4						
63	0.3	0.4						
66	0.3	0.4						
80	0.3	0.4						
100	0.3	0.4						
115	0.3	0.4						
125	0.3	0.4						

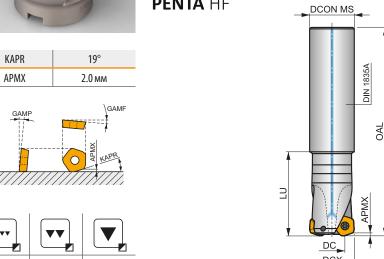


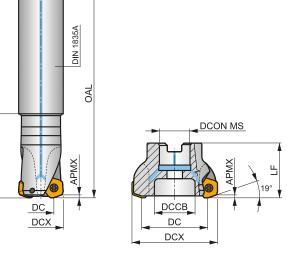


		SNGX		
a _p	0.2	0.5	1.0	1.7
∳	1.20	1.00	0.50	0.25

SNGX	R	T
SNGX 110416	4.6	0.92

SPD09





Высокоподачная фреза PENTA HF с углом в плане 19°

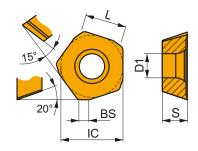
Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ. Односторонние пластины PD.. 09 с глубиной резания до 2 мм имеют 5 режущих кромок. Фреза подходит для обработки поверхностей с высокой подачей.

PENTA HF

S

	Обозначение	DCX	DC (MM)	OAL (MM)	DCON MS	DCCB (MM)	LU (MM)	LF (MM)	GAMF (°)	GAMP			max.		∫ kg	<u></u>		
	32E2R060A32-SPD09-C	32	18.4	250	32	(MM)	60	(MM)	-24	10	2		13100	√	1.54	GI245	C0340	
DIN 1835A	40E3R060A32-SPD09-C	40	25.5	250	32		60		-11	10	3		11700	· /	1.43	GI245	C0340	
DIN 1033A				250		_	00	_										
	42A03R-S19PD09-C	42	27.5	-	16	12	_	40	-8	10	3	_	11500	√	0.18	GI245	CO342	
	50A04R-S19PD09-C	50	35.3	_	22	18		40	-3	10	4		10500	✓	0.23	GI245	CO343	
	50A05R-S19PD09-C	50	35.3	-	22	18	-	40	-3	10	5	_	10500	✓	0.36	GI245	CO343	
	52A04R-S19PD09-C	52	37.3	-	22	18	-	40	-3	10	4	_	10300	\checkmark	0.25	GI245	CO343	-
	63A05R-S19PD09-C	63	48.2	_	22	18	_	40	-1	10	5	_	9400	\checkmark	0.33	GI245	CO343	_
	63A06R-S19PD09-C	63	48.2	_	22	18	_	40	-1	10	6	-	9300	✓	0.46	GI245	CO343	_
B-120	66A06R-S19PD09-C	66	51.2	-	22	18	-	40	-1	10	6	-	9200	\checkmark	0.35	GI245	CO343	-
ISO 6462	66A06R-S19PD09-CF	66	51.2	-	27	22	_	50	-1	10	6	-	9100	\checkmark	0.68	GI245	CO344	-
DIN 8030	80A05R-S19PD09-C	80	65.3	_	27	37	_	50	-1	10	5	_	8300	\checkmark	0.84	GI245	C0341	AC001
	80A06R-S19PD09-C	80	65.3	-	27	37	-	50	-1	10	6	-	8300	\checkmark	0.88	GI245	C0341	AC001
	100A06R-S19PD09-C	100	58.3	-	32	45	-	50	-1	10	6	-	7400	\checkmark	1.46	GI245	C0341	AC002
	100A08R-S19PD09-C	100	85.3	-	32	45	_	50	-1	10	8	-	7400	\checkmark	1.40	GI245	C0341	AC002
	125A08R-S19PD09-C	125	110.3	_	40	36	_	63	-1	10	8	_	6600	\checkmark	3.16	GI245	CO349	_
	125A10R-S19PD09-C	125	110.3	-	40	36	_	63	-1	10	10	_	6600	✓	3.15	GI245	CO349	-
	140A08R-S19PD09-C	140	125.3	_	40	36	_	63	-1	10	8	_	6200	✓	3.62	GI245	CO349	_

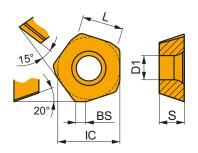
		O	
GI245	PD.X 0905ZE	PDKT 0905	PDMW 0905


		Nm			Po		×
CO340	US 45011-T20P	5.0	M 5	11	-	_	Flag T20P
C0341	US 45011-T20P	5.0	M 5	11	SDR T20P-T	_	_

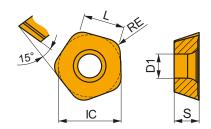
		Nm					
C0342	US 45011-T20P	5.0	M 5	11	SDR T20P-T	HS 90835	_
C0343	US 45011-T20P	5.0	M 5	11	SDR T20P-T	HS 1030C	_
C0344	US 45011-T20P	5.0	M 5	11	SDR T20P-T	HS 1230C	_
C0349	US 45011-T20P	5.0	M 5	11	SDR T20P-T	HSD 2040	_

AC001	KS 1230	K.FMH27
AC002	KS 1635	K.FMH32

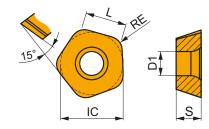

		PDK	(09		
	BS	IC	D1	L	S
-	(MM)	(мм)	(MM)	(MM)	(MM)
0905	2.00	13.500	5.50	9.00	5.47


PRAMET

0.5	FACHCAS	RE			Р			N	Λ				K			N				S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M		f ıм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,22	!\16°		۵,	HFC	S																		
PDKX 0905ZEER-FM	W(220		По		1 00						KO	й пода	чей.						55	0.70	10			
PDRA 0903ZEER-FM	M6330 M8345	_	H	195 165	1.00	1.2	■ 13 ■ 95).90).90	1.2		_	_		_		_	H	40	0.70	1.0	_		_
	M9340	-		215	1.00	1.2	12).90	1.2		_	_	-	_	-	-		50	0.70	1.0	_	-	_


PRAMET

Применение инструмен	нта, начальнь	іе знач	ения ско	ости ре	зания (Vc), под	цачи (f)	и глуб	инь	ы резан	іия (ар)	. Для до	0П0	лните	?льных	расче	етов і	зосп	ользуйт	гесь п	рилс	жени	ем Саю	culator.
Обозначение		RE	VC	P	ap	VC	M	ap		VC	K	ap		VC	N	ap		vc	S	ap		VC	H	ap
	KAPPANITA	(MM)	(M/MV		(MM)	(м/ми					(мм/зуб)	(мм)			(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(мм)			(мм/зуб)	(мм)
	15°	,2_		HFC	S																			
	(15)		Позити	вная гео	метрия	для об	іработк	и с выс	OK(ой пода	ічей.													
PDMX 0905ZEER-M	8215	_	2 1:	1.00	1.2	1 25	0.90	1.2		200	1.00	1.2		_	_	_		_	_	_		-	_	_
	M8330	-	2 20	1.00	1.2	1 30	0.90	1.2		205	1.00	1.2		-	-	-		_	-	-		-	-	_
	M8345	-	1 65	1.00	1.2	9 5	0.90	1.2		-	-	-		-	-	-		_	-	-		-	_	_
	M9340	_	2 1:	1.00	1.2	1 25	0.90	1.2		_	-	-		-	-	-		-	-	-		-	-	_
a Ma	(1)	15° √	*	HFC	P																			
3	15°	7	Прочна	я геоме	трия дл	я обраб	ботки с	высоко	рй п	іодачеі	í.													
PDMX 0905ZESR-R	8215	-	2 1:	1.00	1.3	_	-	_		200	1.00	1.3		-	_	-		_	-	-		40	0.15	1.0
	M8330	-	2 1:	1.00	1.3	_	-	-		200	1.00	1.3		-	-	-		_	-	_		40	0.15	1.0
	M8345	-	1 65	1.00	1.3	_	-	-		-	-	-		-	-	-		-	-	-		-	-	_
	M9325	-	2 4	1.00	1.3	_	-	_		230	1.00	1.3		-	-	-		-	-	-		45	0.15	1.0

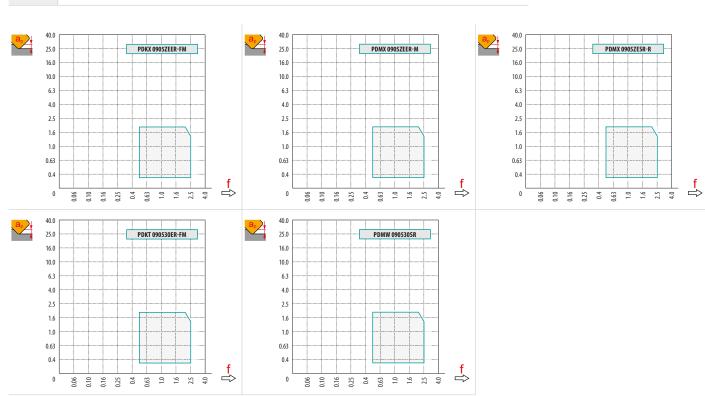


Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

		RE		Р			M			K			N			S		Н	
Обозначение		(MM)	VC (м/мин	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vс (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	V0 (M/M		ар (мм)	vc ı/мин) (мл	f ap /зуб) (мм)
		<u>,2</u>		HFC	S														
Pinter	¹ 17°		Позитив	ная гео	метрия	я для обр	аботки	с высо	кой пода	чей.									
	*17° 8215	3.0	Позитив	ная гео 1.00	•	я для обр — 140			кой пода 2 25	1.00	1.2	_	_	_	2 60	0.70	1.0		
		3.0			1.2		0.90				1.2		_ _	_ _	✓ 60✓ 60			<u> </u>	
	8215		2 40	1.00	1.2	∠ 140	0.90	1.2			1.2 - 1.2		_ _ _	_ _ _				_ ·	
	8215 M6330	3.0	240 210	1.00	1.2 1.2 1.2	✓ 140✓ 150✓ 125	0.90 0.90	1.2 1.2 1.2	225	1.00	-	- - -	_ _ _ _	- - -		0.70	1.0	_ ·	
PDKT 090530ER-FM	8215 M6330 M8310	3.0 3.0	240 210 250	1.00 1.00 1.00	1.2 1.2 1.2 1.2	✓ 140✓ 150✓ 125	0.90 0.90 0.90	1.2 1.2 1.2	225 — 235	1.00 - 1.00	1.2		- - - -	- - - -	6 0	0.70 - 0.70	1.0 - 1.0	_ ·	

PDMW 09 IC D1 L S (MM) (MM) (MM) (MM) (MM) 0905 13.500 5.50 9.00 5.47

PRAMET


0.5	CHEROSES	RE		P				M				K				N			S			Н	
Обозначение		(MM)	(M/N		ар (мм)		vc [/] мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,2	2	НFC	S	ітралы	ІЫМ Г	epe,	дним у	глом ,	ДЛЯ	я обраб	отки с	ВЫСОК	ой п	одаче	РЙ.							
PDMW 090530SR	M8310	3.0	2 24		1.4		-	-	_		230	1.00	1.4		-	-	-	-	-	-	45	0.15	1.0
	M8345 M9325	3.0	1827		1.4		_	_	_		255	1.00	1.4		-	_	-	_	_	_	50	0.15	1.0

a _e /DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⊚ ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

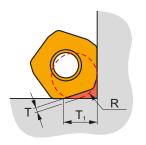
00000000	PDKX 09-FM	PDMX 09-M	PDMX 09-R	PDKT 09-FM	PDMW 09
RE	-	-	-	3.0	3.0
BS	2.00	2.00	2.00	-	-

DCX	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.25	1.50	2.00
32		18.4	20.1	20.7	21.3	21.9	22.5	23.0	23.6	24.2	25.7	27.1	30.0
40		25.5	27.2	27.8	28.4	29.0	29.6	30.1	30.7	31.3	32.8	34.2	37.1
42		27.5	29.2	29.8	30.4	31.0	31.6	32.1	32.7	33.3	34.8	36.2	39.1
50		35.3	37.0	37.6	38.2	38.8	39.4	39.9	40.5	41.1	42.6	44.0	46.9
52		37.3	39.0	39.6	40.2	40.8	41.4	41.9	42.5	43.1	44.6	46.0	48.9
63	(DEF)	48.2	49.9	50.5	51.1	51.7	52.3	52.8	53.4	54.0	55.5	56.9	59.8
66		51.2	52.9	53.5	54.1	54.7	55.3	55.8	56.4	57.0	58.5	59.9	62.8
80		65.3	67.0	67.6	68.2	68.8	69.4	69.9	70.5	71.1	72.6	74.0	76.9
100		85.3	87.0	87.6	88.2	88.8	89.4	89.9	90.5	91.1	92.6	94.0	96.9
125		110.3	112.3	112.9	113.5	114.1	114.6	115.2	115.8	116.4	117.9	119.3	122.2
140		125.3	127.3	127.9	128.5	129.1	129.7	130.2	130.8	131.4	132.9	134.3	137.2
	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.25	1.50	2.00
	‡ ⇔f	_	3.00	3.00	2.90	2.80	2.70	2.60	2.50	2.40	2.25	1.50	1.50

Данные рекомендации даны для фрезерования открытой плоскости. В случае обработки вблизи вертикальных поверхностей следует снижать подачу на 50% для предотвращения вибрации и разрушения режущих кромок.

DCX	RPMX	APMX/I
40	8.0	1.80/16
42	8.0	2.00/16
50	8.0	2.00/16
52	8.0	2.00/16
63	7.0	2.00/18
66	6.0	2.00/21
80	5.0	2.00/24
100	3.0	2.00/40

	HFC												
a _p	0.5	1.0	2.0										
∯ ⇔f	3.0	2.3	1.5										

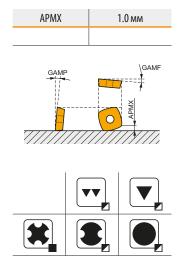

DCX	DMIN	DMAX	DMIN Ø	DMAX DMAX
40	63.7	80.0	2.00	2.00
42	67.5	84.0	2.00	2.00
50	83.3	100.0	2.00	2.00
52	87.3	104.0	2.00	2.00
63	109.2	126.0	2.00	2.00
66	115.2	132.0	2.00	2.00
80	143.3	160.0	2.00	2.00
100	183.3	200.0	2.00	2.00

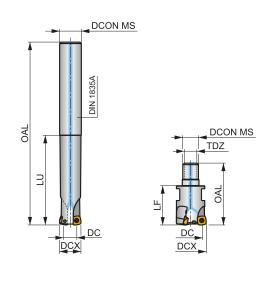
DCX	a _p	$\overset{f_{\text{max}}}{\Longrightarrow}$
32	1.8	0.20
40	1.8	0.20
42	2.0	0.20
50	2.0	0.20
52	2.0	0.20
63	2.0	0.25
66	2.0	0.25
80	2.0	0.30
100	2.0	0.30

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
40		0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
42		0.710	0.917	1.296	1.587	1.833	2.245	2.592	2.898	3.175	3.666	4.099
50	FE	0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
52		0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657

DCX	R	T	T,
32	4.5	1.1	6.8
40 – 140	4.5	1.1	7.3

SZD07

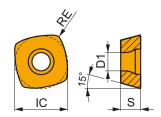




Высокоподачная фреза FEED ZD с пластинами ZDCW 07

Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины ZDCW 07 с глубиной резания до 1 мм имеют 4 режущие кромки. Фреза подходит для обработки поверхностей с высокой подачей.

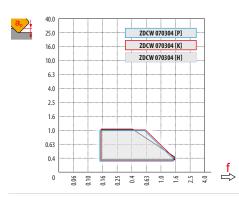
FEED ZD

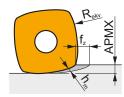


	Обозначение	DCX	DC	OAL	DCON MS	LU	LF	TDZ	GAMF	GAMP			max.		∫ kg		
		(мм)	(мм)	(MM)	(MM)	(MM)	(MM)		(°)	(°)							
	16E2R030A16-SZD07	16	6	100	16	30	-	-	-5	8	2	-	47400	✓	0.13	GI201	C0350
	16E2R065A16-SZD07	16	6	145	16	65	_	_	-5	8	2	_	47400	\checkmark	0.19	GI201	C0350
	20E3R040A20-SZD07	20	10	120	20	40	_	_	-5	8	3	_	42400	✓	0.25	GI201	C0350
DIN 1835A	20E3R080A20-SZD07	20	10	165	20	80	_	_	-5	8	3	_	42400	\checkmark	0.33	GI201	C0350
	25E3R050A25-SZD07	25	15	140	25	50	_	_	-5	8	3	_	37900	\checkmark	0.47	GI201	C0350
	25E3R100A25-SZD07	25	15	190	25	100	_	_	-5	8	3	_	37900	\checkmark	0.60	GI201	C0350
	16E2R030M08-SZD07	16	6	48	8.5	-	30	M8	-5	8	2	-	_	✓	0.04	GI201	C0350
	20E3R030M10-SZD07	20	10	49	10.5	-	30	M10	-5	8	3	-	_	\checkmark	0.08	GI201	C0350
MODULAR	25E3R032M12-SZD07	25	15	54	12.5	-	32	M12	-5	8	3	-	-	✓	0.15	GI201	C0350
	25E4R032M12-SZD07	25	15	54	12.5	-	32	M12	-5	8	4	✓	_	\checkmark	0.04	GI201	CO350
	32E4R040M16-SZD07	32	22	65	17	-	40	M16	-5	8	4	✓	_	✓	0.22	GI201	CO350

	8	Nm			X
CO350	US 2205-T07P	0.9	M 2.2	5	Flag T07P

	ZDO	CW 07	
	IC (MM)	D1	S (MM)
0703	6.800	2.60	3.18


· · · · · · · · · · · · · · · · · · ·																										
06	E-25-24-2-5-3	RE			P			M				K			N			S				Н				
Обозначение				VC	f	ap		VC	f	ap		VC	f	ap		VC	f	ap	V		ŕ	ар		VC	f	ap
		(мм)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)	(M/M	н) (мм	зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)
	20° 0	,15		<u></u>	HFC	S																				
			Спе	ециаль	эная ге	ометрі	ия Д	для об	работк	и с вы	сок	кой под	ачей.													
ZDCW 070304	M8310	0.4		420	0.60	0.4		-	-	-		395	0.60	0.4		-	-	-	-	-	-	-		80	0.15	1.0
	M8325	0.4		325	0.60	0.4		_	_	_		-	-	-		-	_	_	-	-	-	_		-	-	_
	M8345	0.4		305	0.60	0.4		_	_	_		-	-	-		-	-	_	-	-	-	_		-	-	_

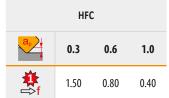


a _e /DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	ZDCW 07
RE	0.4
BS	_

DCX	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
16		6.0	12.0	12.9	13.7	14.4	15.1	15.7	16.2	16.8
20	DEE	10.0	16.0	16.9	17.7	18.4	19.1	19.7	20.2	20.8
25	DEF	15.0	21.0	21.9	22.7	23.4	24.1	24.7	25.2	25.8
32		22.0	28.0	28.9	29.7	30.4	31.1	31.7	32.2	32.8
	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
	‡	_	1.50	1.50	1.13	1.00	0.88	0.75	0.61	0.60

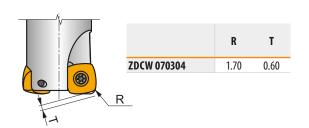
$$f_z = h_m \cdot \sqrt{\frac{2R_{ekv.}}{APMX}} \qquad (mm/sy6)$$


Данные рекомендации даны для фрезерования открытой плоскости. В случае обработки вблизи вертикальных поверхностей следует снижать подачу на 50% для предотвращения вибрации и разрушения режущих кромок.

DCX	max	$\overset{f_{max}}{\Longrightarrow}$
16	5.6	0.12
20	5.6	0.15
25	5.6	0.17
32	5.6	0.17

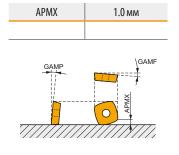
DCX	RPMX	APMX/I
16	7.8	1.0/9
10	7.0	1.0/ >
20	9.7	1.0/7

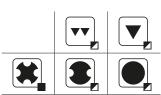
HFC								
DCX	RPMX	APMX/I						
16	0.5	0.75/100						
20	0.3	0.40/100						
25	0.2	0.20/100						
32	0.1	0.05/100						

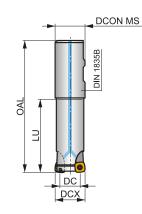

DCX	DMIN	DMAX	SMAX DMIN	SMAX DMAX
16	21.0	32.0	0.10	0.40
20	29.0	40.0	0.10	0.30
25	39.0	50.0	0.15	0.25
32	53.0	64.0	0.10	0.15

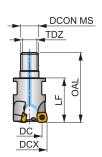
DCX	a _p	f _{max} ⇒
16	0.05	0.12
20	0.05	0.15
25	0.05	0.17
32	0.05	0.17

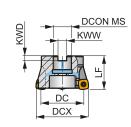
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
16		0.438	0.566	0.800	0.980	1.131	1.386	1.600	1.789	1.960	2.263	2.530
20	FE	0.490	0.632	0.894	1.095	1.265	1.549	1.789	2.000	2.191	2.530	2.828
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578



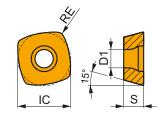



Высокоподачная фреза FEED ZD с пластинами ZDCW 09


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины ZDCW 09 с глубиной резания до 1 мм имеют 4 режущие кромки. Фреза подходит для обработки поверхностей с высокой подачей.


FEED ZD

	Обозначение	DCX (MM)	DC	OAL	DCON MS	LU (MM)	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		S kg		
	25E2R080B25-SZD09-C	25	11.6	140	25	80	_	_	_	_	-6	10	2	_	22800	✓	0.49	GI191	SQ400
	25E2R140B25-SZD09-C	25	11.6	200	25	140	_	_	_	_	-6	10	2	_	22800	✓	0.63	GI191	SQ400
	25E2R240B25-SZD09-C	25	11.6	300	25	240	_	_	_	_	-6	10	2	_	22800	✓	0.90	GI191	SQ400
DIN 1835B	32E2R080B32-SZD09-C	32	18.7	140	32	80	_	_	_	_	-6	10	2	_	20100	✓	0.80	GI191	SQ400
	32E2R140B32-SZD09-C	32	18.7	200	32	140	_	_	-	_	-6	10	2	_	20100	✓	1.07	GI191	SQ400
	32E2R240B32-SZD09-C	32	18.7	300	32	240	-	_	-	-	-6	10	2	_	20100	✓	1.57	GI191	SQ400
	25E2R032M12-SZD09-C	25	11.6	54	12.5	_	32	M12	_	_	-6	10	2	_	-	\checkmark	0.15	GI191	SQ400
	25E3R032M12-SZD09-C	25	11.6	54	12.5	-	32	M12	_	-	-6	10	3	-	-	\checkmark	0.14	GI191	SQ400
MODULAR	32E3R040M16-SZD09-C	32	18.7	63	17	-	40	M16	-	_	-6	10	3	-	-	✓	0.26	GI191	SQ400
	35E4R040M16-SZD09-C	35	21.7	63	17	_	40	M16	_	_	-6	10	4	✓	_	✓	0.22	GI191	SQ400
	42E4R040M16-SZD09-C	42	28.7	63	17	_	40	M16	_	_	-6	10	4	✓	_	✓	0.27	GI191	SQ400
	40A03R-SM0ZD09-C	40	26.7	-	16	-	40	-	8.4	5.6	-6	10	3	-	18000	✓	0.36	GI191	SQ402
	40A04R-SM0ZD09-C	40	26.7	-	16	-	40	-	8.4	5.6	-6	10	4	✓	18000	✓	0.44	GI191	SQ402
	50A05R-SM0ZD09-C	50	36.7	_	22	_	40	_	10.4	6.4	-6	10	5	✓	16000	✓	0.43	GI191	SQ403
ISO 6462 DIN 8030	52A05R-SM0ZD09-C	52	38.7	_	22	_	40	_	10.4	6.4	-6	10	5	✓	15700	✓	0.46	GI191	SQ403
	63A06R-SM0ZD09-C	63	49.7	-	22	-	40	-	10.4	6.4	-6	10	6	✓	14300	✓	0.60	GI191	SQ403
	66A06R-SM0ZD09-C	66	52.7	-	27	-	50	-	12	7	-6	10	6	\checkmark	14000	\checkmark	0.89	GI191	CO364

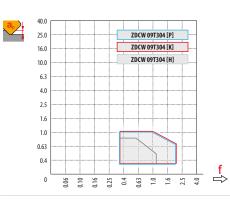


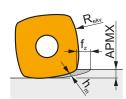
		Nm			10			(a) James
C0364	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	HS 1230C	-
SQ400	US 3006-T09P	2.0	M 3	6	_	_	Flag T09P	-

		Nm			10			
SQ402	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	_	HS 0830C
SQ403	US 3006-T09P	2.0	M 3	6	D-T07P/T09P	FG-15	_	HS 1030C

	ZD	CW 09	
	IC	D1	S
	(MM)	(MM)	(мм)
09T3	9.525	3.40	3.97

PRAMET


применение инструмента, начальные значения скорости резания (vc), подачи (1) и глуоины резания (ар). для дополнительных расчетов воспользуитесь приложением carculator.																							
•	15453674A	RE		P)			M				K			N			S				Н	
Обозначение				VC	f	ар	vc	f	ар		VC	f	ap	VC	f	ар	VC	f	ар		VC	f	ap
		(мм)	(N	/мин) (м	м/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)
	20° 0	,15	(-	Н	FC FC	S		S = 2 6 a= 11															
ZDCW 09T304	M8310	0.4				метри 0.6	я для об _	раоотк	– и с выс	.OK	ои под 300	1.00	0.6	_	_	_	_	_			60	0.15	1.0
	M8325	0.4				0.6	_		_	_	_	-	-			_	_		_	_	_	0.15	-
	M8345	0.4		235 1	.00	0.6	_	_	-		_	_	_	_	-	_	_	_	_		_	-	_



a _e /	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

00000000	ZDCW 09
RE	0.4
BS	-

DCX	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
25		11.6	17.4	18.2	19.0	19.7	20.3	20.9	21.5	22.0
32		18.7	24.5	25.3	26.1	26.8	27.4	28.0	28.6	29.1
35		21.7	27.3	28.1	28.8	29.5	30.1	30.7	31.2	31.7
40		27.7	33.5	34.3	35.1	35.8	36.4	37.0	37.6	38.1
42	(DEF)	28.7	34.3	35.1	35.8	36.5	37.1	37.7	38.2	38.7
50		36.7	42.3	43.1	43.8	44.5	45.1	45.7	46.2	46.7
52		38.7	44.3	45.1	45.8	46.5	47.1	47.7	48.2	48.7
63		49.7	55.3	56.1	56.8	57.5	58.1	58.7	59.2	59.7
66		52.7	58.3	59.1	59.8	60.5	61.1	61.7	62.2	62.7
	a _p	0.00	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
	∳ ⇒f	_	2.00	2.00	2.00	1.75	1.50	1.25	1.13	1.00

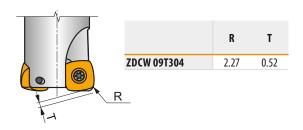
$$f_{z} = h_{m} \cdot \sqrt{\frac{2R_{ekv.}}{APMX}} \qquad (mm/3y6)$$

Данные рекомендации даны для фрезерования открытой плоскости. В случае обработки вблизи вертикальных поверхностей следует снижать подачу на 50% для предотвращения вибрации и разрушения режущих кромок.

DCX	max	f _{max} ⇒
25	7.7	0.15
32	7.7	0.17
40	7.7	0.20

HFC												
a _p	0.3	0.6	1.0									
‡ ⇔f	2.00	1.50	1.00									

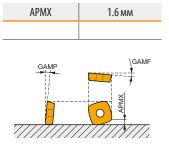
			HFC				
DCX	RPMX	APMX/I	RPMX	APMX/I			
25	12.0	1.0/6	0.9	1.00/65			
32	7.5	1.0/11	0.5	0.75/100			
40	3.6	1.0/17	0.4	0.55/100			

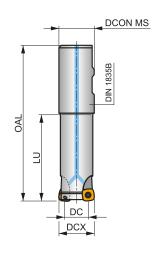

DCX	DMIN	DMAX	SMAX DMIN	MAX MAX
25	35.0	50.0	0.45	1.00
32	49.0	64.0	0.45	0.85
40	65.0	80.0	0.50	0.85

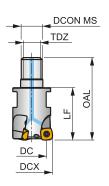
DCX	ap	f _{max} ⇒
25	0.15	0.15
32	0.15	0.17
40	0.15	0.20

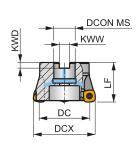
DCX	μm	3	5	10	15	20	30	40	50	60	80	100
25		0.548	0.707	1.000	1.225	1.414	1.732	2.000	2.236	2.449	2.828	3.162
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
35		0.648	0.837	1.183	1.449	1.673	2.049	2.366	2.646	2.898	3.347	3.742
40	FE	0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
42		0.710	0.917	1.296	1.587	1.833	2.245	2.592	2.898	3.175	3.666	4.099
52		0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138

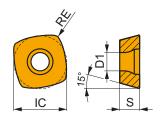
SZD12




Высокоподачная фреза FEED ZD с пластинами ZDEW 12


Конструкция фрезы имеет позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины ZDEW 12 с глубиной резания до 1.6 мм имеют 4 режущие кромки. Фреза подходит для обработки поверхностей с высокой подачей.

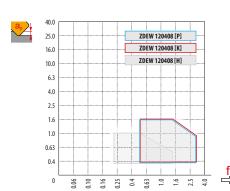

FEED ZD

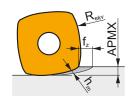

	Обозначение	DCX	DC	OAL	DCON MS	LU	LF	TDZ	KWW	KWD	GAMF	GAMP			max.		∫ kg	<u></u>		
		(мм)	(MM)	(MM)	(мм)	(MM)	(MM)		(MM)	(MM)	(°)	(°)								
	40E4R080B32-SZD12-C	40	22.5	140	32	80	_	-	_	_	-6	10	4	\checkmark	15700	\checkmark	0.78	GI192	SQ220	-
DIN 1835B	40E4R140B32-SZD12-C	40	22.5	200	32	140	-	-	_	-	-6	10	4	\checkmark	15700	\checkmark	1.13	GI192	SQ220	_
	32E3R040M16-SZD12-C	32	14.5	63	17	-	40	M16	-	-	-6	10	3	-	-	✓	0.24	GI192	SQ220	-
MODULAR	40E4R040M16-SZD12-C	40	22.5	63	17	-	40	M16	-	-	-6	10	4	_	-	\checkmark	0.23	GI192	SQ220	-
20-4720	50A04R-SM0ZD12-C	50	32.5	-	22	-	40	-	10.4	6.4	-6	10	4	✓	14000	✓	0.47	GI192	SQ033	_
ISO 6462 DIN 8030	63A05R-SM0ZD12-C	63	45.5	-	22	_	40	-	10.4	6.4	-6	10	5	\checkmark	12500	\checkmark	0.63	GI192	SQ033	_
DIN 8030	80A05R-SM0ZD12-C	80	62.5	-	27	-	50	-	12	7	-6	10	5	✓	11100	✓	1.12	GI192	C0371	AC001

		Nm					×	(a) James
C0371	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	-	_
SQ033	US 4011-T15P	3.5	M 4	10.6	D-T08P/T15P	FG-15	_	HS 1030C
SQ220	US 4011-T15P	3.5	M 4	10.6	-	_	Flag T15P	_

AC001	KS 1230	K.FMH27

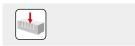
ZDEW 12 IC D1 S (MM) (MM) (MM) 1204 12.700 4.40 4.76


	17		1 1 1 17 7						1 1771 11					, '									
0.0	PKRKYS	RE		Р			M				K			N			S				Н		
Обозначение			v	f	ap	١	c f	ap		VC	f	ap		VC	f	ар	VC	f	ap		VC	f	ар
		(мм)	(M/I	ин) (мм/зуб)	(MM)	(m/	ин) (мм/з	/б) (мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/ми	н) (мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)
	20°	0,20	20	HFC	S																		
			Специ	ільная ге	ометри	ія для	обрабо	тки с вь	ICOI	кой под	цачей.												
ZDEW 120408	M8310	0.8	2 27	0 1.00	1.0	-		-		255	1.00	1.0		-	-	-	_	-	-		50	0.15	1.0
	M8325	0.8	2 0	5 1.00	1.0	-		_		-	_	_		-	-	-	_	-	-		-	-	_
	M8345	8.0	1 9	5 1.00	1.0	-		_		-	_	-		_	-	_	_	_	_		-	-	_

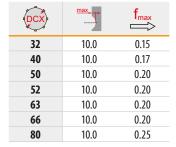


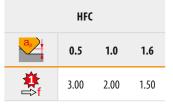
a _e / DCX	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00
⊚ ⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
© ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

0000000	ZDEW 12
RE	0.8
BS	_

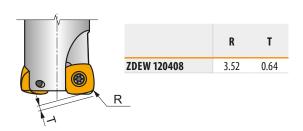

DCX	a _p	0.00	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60
32		14.5	22.7	23.5	24.2	24.8	25.4	26.0	26.5	27.0	27.5	28.0	28.5	28.9
40		22.5	30.7	31.5	32.2	32.8	33.4	34.0	34.5	35.0	35.5	36.0	36.5	36.9
50		32.5	40.7	41.5	42.2	42.8	43.4	44.0	44.5	45.0	45.5	46.0	46.5	46.9
52	(DEF)	34.5	42.7	43.5	44.2	44.8	45.4	46.0	46.5	47.0	47.5	48.0	48.5	48.9
63		45.5	53.7	54.5	55.2	55.8	56.4	57.0	57.5	58.0	58.5	59.0	59.5	59.9
66		48.5	56.7	57.5	58.2	58.8	59.4	60.0	60.5	61.0	61.5	62.0	62.5	62.9
80		62.5	70.7	71.5	72.2	72.8	73.4	74.0	74.5	75.0	75.5	76.0	76.5	76.9
	a _p	0.00	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60
	‡	-	3.00	3.00	3.00	3.00	3.00	3.00	2.50	2.25	2.00	1.80	1.65	1.50

$$f_z = h_m \cdot \sqrt{\frac{2R_{ekv.}}{APMX}}$$
 (MM/3y6)




Данные рекомендации даны для фрезерования открытой плоскости. В случае обработки вблизи вертикальных поверхностей следует снижать подачу на 50% для предотвращения вибрации и разрушения режущих кромок.

			н	FC
DCX	RPMX	APMX/I	RPMX	APMX/I
32	10	1.6/11	1.2	1.60/78
40	5.5	1.6/18	0.7	1.10/100
50	3.3	1.6/29	0.5	0.75/100
52	3.1	1.6/31	0.5	0.75/100
63	2.2	1.6/43	0.3	0.40/100
66	2.0	1.6/47	0.3	0.40/100
80	1.5	1.6/63	0.2	0.20/100


DCX	DMIN	DMAX	SMAX DMIN	SMAX DMAX
32	44.0	64.0	0.75	1.60
40	60.0	80.0	0.75	1.50
50	80.0	100.0	0.80	1.35
52	84.0	104.0	0.80	1.35
63	106.0	126.0	0.70	1.00
66	112.0	132.0	0.70	1.00
80	140.0	160.0	0.65	0.85

DCX	a _p	f _{max}
32	0.25	0.15
40	0.25	0.17
50	0.25	0.20
52	0.25	0.20
63	0.25	0.20
66	0.25	0.20
80	0.25	0.25

DCX	μm	3	5	10	15	20	30	40	50	60	80	100
32		0.620	0.800	1.131	1.386	1.600	1.960	2.263	2.530	2.771	3.200	3.578
40		0.693	0.894	1.265	1.549	1.789	2.191	2.530	2.828	3.098	3.578	4.000
50	IV/SFE	0.775	1.000	1.414	1.732	2.000	2.449	2.828	3.162	3.464	4.000	4.472
52	F	0.790	1.020	1.442	1.766	2.040	2.498	2.884	3.225	3.533	4.079	4.561
63		0.869	1.122	1.587	1.944	2.245	2.750	3.175	3.550	3.888	4.490	5.020
66		0.890	1.149	1.625	1.990	2.298	2.814	3.250	3.633	3.980	4.596	5.138
80		0.980	1.265	1.789	2.191	2.530	3.098	3.578	4.000	4.382	5.060	5.657

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ

ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ – НАВИГАТОР

ФРЕЗЕРОВАНИЕ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ

>>>

	SSDC)9	N-SS	009	25	16	26	36	J(T)-S	XP16	
	45°		45		45			- 80°		- 75°	
	APMX (mm)	4.5	APMX (MM)	4.5	APMX (MM)	8.5	APMX (MM)	8.5	APMX (MM)	7.0 – 28.0	
	DC(MM)	10 – 25	DC(mm)	8 – 25	DC(mm)	11 – 19	DC (MM)	5 – 23	DC(mm)	35 – 45	
Цилиндрический хвостовик	46	DC = 16 – 25 (MM)									
(востовик Weldon		DC = 10 – 25 (MM)									
Хвостовик с конусом Морзе	46	DC = 10 - 25 (MM)									
Насадная фреза											
Страница	4 64	-6	□ 6	549	ш	652		655	4 658		
SO	P M K	S H	P M K	S	P M K	S	P M K	S	P M K	N	
Форма пластины	Q		<u>[</u>		4	1	4	1	4	7	
Гип пластины	SDE. 09	03	SOMT (D9T3	TCMT	16T3	TCMT	16T3	ХРНТ	1604	
Количество режущих кромок	4		4		3	1		3	2		
Фрезерование фасок											
Фрезерование обратных уступов											
Фрезерование Г-образных пазов											
Фрезерование неглубоких уступов											
Фрезерование неглубоких пазов											

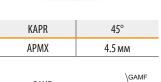
ФРЕЗЫ ДЛЯ ОБРАБОТКИ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ – НАВИГАТОР

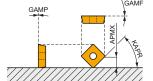
<<<

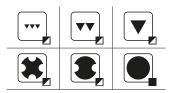
ФРЕЗЕРОВАНИЕ ФАСОК И Т-ОБРАЗНЫХ ПАЗОВ

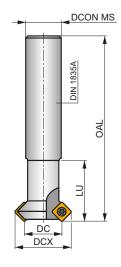
F-SCC			
90°			
АРМХ (мм) 11.0 — 18.0			
DC (MM) 25 – 40			
,T,			
662			
P M K			
©			
ССМХ			
2			
			641

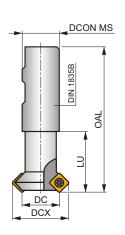
SSD09

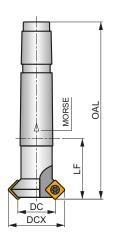


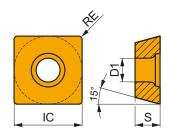





Фреза для обработки фасок 45° с пластинами SD.. 09


Конструкция фрезы имеет нейтральную геометрию. Односторонние пластины SD.. 09 с глубиной резания до 4.5 мм имеют 4 режущие кромки. Фреза подходит для обработки наружных и внутренних фасок.

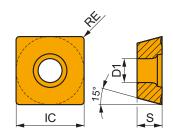




	Обозначение	DC	DCX	OAL	DCON MS	LU	LF	CZC MS	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(MM)	(мм)	(мм)	(MM)		(°)	(°)							
	16N2R027A16-SSD09	16	28	200	16	27	_	_	0	0	2	-	32200	_	0.37	GI129	C0070
DIN 1835A	25N3R042A25-SSD09	25	37	200	25	42	-	_	0	0	3	-	25800	-	0.78	GI129	CH011
	10N1R027B16-SSD09-A	10	22	75	16	27	-	_	0	0	1	-	40700	-	0.14	GI129	C0070
DIN 1835B	16N2R027B16-SSD09-A	16	28	75	16	27	_	_	0	0	2	-	32200	-	0.14	GI129	C0070
UNIV 1033D	25N3R042B25-SSD09-A	25	37	98	25	42	_	_	0	0	3	-	25800	-	0.37	GI129	CH011
	10N1R030E02-SSD09-A	10	22	94	-	_	30	2	0	0	1	-	40700	_	0.17	GI129	C0070
DIN 228A	16N2R030E02-SSD09-A	16	28	94	-	-	30	2	0	0	2	-	32200	-	0.25	GI129	C0070
	25N3R043E03-SSD09-A	25	37	124	-	-	43	3	0	0	3	-	25800	-	0.38	GI129	CH011

GI129	SDEW 0903	SDEX 0903

		Nm			
C0070	US 3507-T15	3.0	M 3.5	7	Flag T15
CH011	US 3509-T15	3.0	M 3.5	9	Flag T15

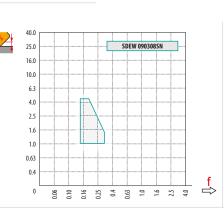


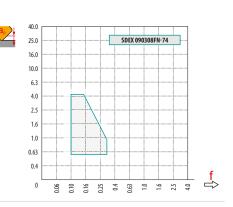
Применение инструмента, начальные значения скорости резания (Vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

г г/	•				•	,, -11	,	,			, , ,					'		,		•			
	PSCMORY	RE		Р			M				K				N			S				Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)
							·								·							·	
			Геометр	ия с ней	тральн	ым пер	едним у	/глом д	іля (фрезе	ровані	ия фас	0K 4	45°.									
SDEW 090308EN	M8330	0.8	2 35	0.10	4.5	-	_	-		220	0.10	4.5		-	_	-	-	_	_		45	0.15	1.0
	M8340	0.8	2 10	0.10	4.5	_	-	-		195	0.10	4.5		-	-	-	-	-	-		-	-	-
	20%	0,15	*	S																			
			Геометр	ия с ней	тральн	ым пер	едним у	/глом д	іля (фрезе	ровані	ия фас	0K 4	45°.									
SDEW 090308SN	8215	0.8	2 15	0.15	4.5	_	-	-		200	0.15	4.5		_	_	-	_	_	_		40	0.15	1.0
	M8330	0.8	2 15	0.15	4.5	_	-	-		200	0.15	4.5		_	-	-	_	-	-		40	0.15	1.0
	M8340	0.8	195	0.15	4.5	_	_	-		185	0.15	4.5		-	-	-	-	_	_		_	_	_

SDEX 09										
	IC	D1	S							
-	(MM)	(MM)	(MM)							
0903	9.525	4.40	3.18							

PRAMET


Обозначение В				P			M				K		١	N			S			Н	
Обозначение		(MM)	VC (M/MUH	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(vc (м/мин)	f (мм/зуб)	ар (мм)	vc мин)	f (мм/зуб)	ар (мм)	vc м/мин)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)
(2)	Q)20°	†	F				·													
SDEX 090308FN-74	M8330		Позитие 305			я для фре 1 80					0.12	4.5	_	_	_	75	0.11	3.6	_	_	-

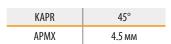


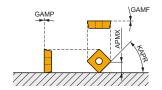
0000000	SDEW 09 EN	SDEW 09 SN	SDEX 09-74
RE	0.8	0.8	0.8
BS	_	_	_

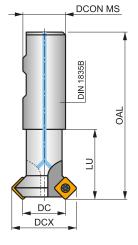
DC	DCX	(X.V	f _{min} ⇔	f _{max}
10	22	1.09	0.20	0.30
16	28	1.17	0.25	0.34
25	37	1.24	0.32	0.39

a。/ DC	0.10				0.15			0.20			0.25			0.30			0.35			0.40		0.	50 – 1.	00
\triangleleft	f⇒																							
45°	0.42	0.54	0.67	0.35	0.44	0.55	0.30	0.38	0.47	0.27	0.34	0.42	0.42 0.25 0.31 0.39				0.29	0.36	0.21 0.27 0.34			0.19	0.24	0.30
X.V		1.35 1.27 1.22 1.19			1.16			1.13			1.11			1.00										

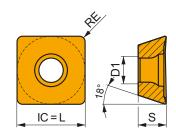
N-SSO09


PRAMET




Фреза для обработки фасок 45° с пластинами SOMT 09

Конструкция фрезы имеет нейтральную геометрию, внутренний подвод СОЖ. Односторонние пластины SOMT 09 с глубиной резания до 4.5 мм имеют 4 режущие кромки. Фреза подходит для обработки наружных и внутренних фасок.

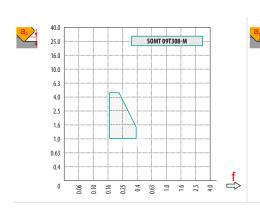


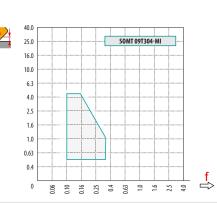
	Обозначение	DC (MM)	DCX (mm)	OAL (MM)	DCON MS	LU (MM)	GAMF	GAMP			max.		∫ kg		
		(MM)	(mm)	(MM)	(mm)	(MM)	()	()							
	16N2R027B16-SS009-C	16	28.8	110	16	27	0	0	2	-	26600	\checkmark	0.23	GI146	SQ500
DIN 1835B	25N3R042B25-SS009-C	25	37.8	125	25	42	0	0	3	-	21300	\checkmark	0.50	GI146	SQ500
UNI 2033B	8N1R027B16-SS009-C	8	20.5	90	16	27	0	0	1	-	37700	\checkmark	0.12	GI146	SQ500

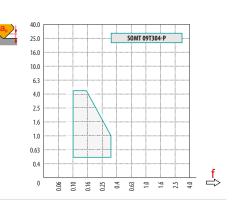
GI146	SOMT 09T3

		Nm			
SQ500	US 3006-T09P	2.0	M 3	6	Flag T09P

SOMT 09 IC D1 L S (MM) (MM) (MM) (MM) 09T3 9.550 3.50 9.55 3.97



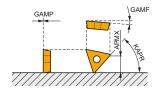

Применение инструм	ента, начальнь	ые знач	ения скорс	ости ре:	зания	(Vc), под	ачи (f) и	1 глубі	ИНЫ	резан	ия (ар)). Для д	ОПО	олните	льных	расч	етов	ВОСП	ользуйт	гесь пр	иложе	нием Са	lculator
06	EXCHAN	RE		Р			M				K				N				S			Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	VC (M/M)		ар () (мм)
	0,	12 15°	Позитив	ная гео	S метри		пучисто	вой об	браб	ботки.													
SOMT 09T308-M	8215	0.8	275	0.14	2.5	1 65	0.13	2.5		260	0.14	2.5		_	_	_		65	0.13	2.0	_	_	-
	M5315	0.8	390	0.14	2.5	_	-	_		370	0.14	2.5		-	-	-		-	-	-	-	-	-
	M8330	8.0	270	0.14	2.5	1 60	0.13	2.5		255	0.14	2.5		-	-	-		65	0.13	2.0	-	-	-
	M8340	8.0	250	0.14	2.5	1 50	0.13	2.5		235	0.14	2.5		-	-	-		60	0.13	2.0	_	_	_
	M9315	8.0	380	0.14	2.5	_	-	-		360	0.14	2.5		-	-	-		-	_	-	-	-	-
	14°	06 18°	Стабильн	S	итивн	ая геоме	трия дл	я полу	чис	товой	обрабо	ЭТКИ.											
SOMT 09T304-MI	8215	0.4	230	0.14	2.5	1 35	0.13	2.5		215	0.14	2.5		-	-	-		55	0.10	2.0	-	-	-
	M8310	0.4	255	0.14	2.5	1 30	0.13	2.5		240	0.14	2.5		-	-	-		-	-	-	_	_	_
	M8330	0.4	230	0.14	2.5	1 35				215	0.14	2.5		_	-	-		55	0.10	2.0	_	-	-
	M8340	0.4	210	0.14		125	0.13	2.5		195	0.14	2.5		-	-	-		50	0.10	2.0	-	-	-
	M9315	0.4	320	0.14	2.5		-	_		300	0.14	2.5		-	-	-		-	-	-		_	-
	M9340	0.4	2 65	0.14	2.5	1 55	0.13	2.5		-	-	-		_	_	-		65	0.10	2.0	-	_	-
	0,	,07 \18°		S				~ ,	. ,														
50117.00704.0	14°		Позитиві																				
SOMT 09T304-P	M8330	0.4	250	0.14		150		2.5			0.14	2.5		_	_	-		60	0.10	2.0		_	_
	M8340	0.4	230	0.14		135	0.13	2.5		215	0.14	2.5		_	_	-		55	0.10	2.0	-	_	-
	M9325	0.4	320	0.14	2.5		-	_		300	0.14	2.5		-	-	-		-	-	-	-	-	-

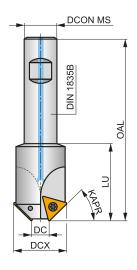


0000000	SOMT 09-M	SOMT 09-MI	SOMT 09-P
RE	0.8	0.4	0.4
BS	-	-	-

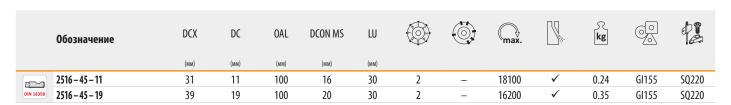
DC	DCX	(X.V	f _{min} ⇔	$\overset{f_{max}}{\Longrightarrow}$
8	20.5	1.06	0.18	0.29
16	28.8	1.17	0.25	0.34
25	37.8	1.24	0.32	0.39

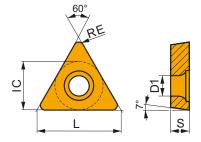
a _e / DC	0.10 0.15					0.20			0.25			0.30			0.35			0.40		0.	50 – 1.	00		
\triangleleft													f ⇒											
45°	0.42	0.63	0.80	0.35	0.51	0.66	0.30	0.44	0.57	0.27	0.40	0.51	0.25	0.36	0.46	0.23	0.33	0.43	0.21	0.31	0.40	0.19	0.28	0.36
X.V	1.35 1.27					1.22			1.19			1.16			1.13			1.11			1.00			




Фреза для обработки фасок 45° с пластинами TCMT 16

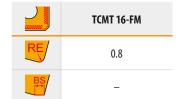
Конструкция фрезы имеет внутренний подвод СОЖ. Односторонние пластины ТСМТ 16 с глубиной резания до 8.5 мм имеют 3 режущие кромки. Фреза подходит для обработки наружных фасок.

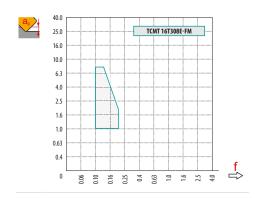




GI155	TCMT 16T308E-FM:T83

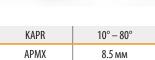
		Nm			×.
SQ220	US 4011-T15P	3.5	M 4	10.6	Flag T15P

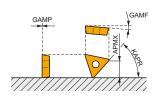


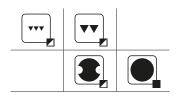


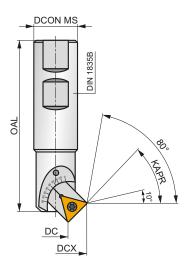
ripimeneniae interpyim	cirra, na ianoni	oic oilu ic	. 1 1 1 1 / 1	chope	cin pc.	Juliviii (rc), nog	u 111 (1) 1	1171901	11111	oi pesui	iviri (up)	• дли	доп	0,111,111	C/101101/	v puc ic	1000)CIIO)	nosym	icco iip	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ICIIVIC	civi cuiv	·uiutoi
06	KAYSASA	RE			P			M				K				N				S				Н	
Обозначение				VC	f	ар	vc	f	ap		vc	f	ар		VC	f	ap		VC	f	ap		VC	f	ap
		(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(M/	мин)	(мм/зуб)	(MM)	(1	м/мин)	(мм/зуб)	(мм)
	15 1		Γοο	1 MATRI		E	й и пол	VIIIMCTOR	oŭ ofr	126	ботки б	az vazn	12 MUN	D V	пория	ιν ζπατι	/a nnor	LIDIAC	TOFO	nazzu	ма				
TCMT 16T308E-FM	T8315	0.80			0.17	1.7	■ 100				1 160			·	510	0.20	1.7	лывис	_	резан _	ил, _		_	_	_
	T8330	0.80		160	0.17	1.7	95	0.15	1.7	Z	150	0.17	1.7		480	0.20	1.7		_	_	_		-	_	-

2636

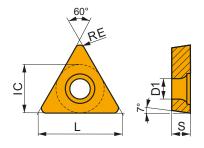







Фреза для обработки фасок 10...80° с пластинами TCMT 16

Конструкция фрезы имеет нейтрально-негативную геометрию и регулируемое положение пластины для выбора угла. Односторонние пластины ТСМТ 16 с глубиной резания до 8.5 мм имеют 3 режущие кромки. Фреза подходит для обработки наружных фасок.

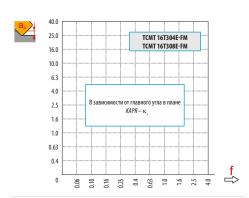


	Обозначение	DC	DCX	OAL	DCON MS	KAPR	GAMF	GAMP			max.		∫ kg		
		(MM)	(MM)	(MM)	(MM)	(°)	(°)	(°)							
		5.0	31.0			10									
		5.5	31.0			15									
		7.0	29.5			30									
DIN 1835B	2636-05-25	11.0	29.5	100	25	45	-8	0	1	_	18100	_	0.35	GI294	CH040
UN 20330		16.0	28.5			60									
		21.0	26.5			75									
		23.0	26.0			80									

GI294	TCMT 16T304E-FM:T83	TCMT 16T308E-FM:T83

			3	Nm			
CH040	USI 0614	CA 2669	US 4011-T15P	3.5	M 4	10.6	Flag T15

		TCMT		
	IC	D1	L	S
	(MM)	(MM)	(MM)	(MM)
16T3	9.525	4.4	16.5	3.97



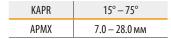
применение инструме	,																			
0.5	PHARMY	RE		P			M			K			N			S			Н	
Обозначение			vc	f	ар	V	f	ap	VC	f	ap	VC	f	ap	VC	f	ар	VC	f	ар
		(MM)	(м/мин	(мм/зуб)	(мм)	(м/м	н) (мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)
A			1	<u>_</u>	F															
	15°		Геометр			ой и по	іучистов	вой обр	аботки б	ез удар	а или в	услови	ях слегк	а прер	ывистог	о резан	ия.			
TCMT 16T304E-FM	15 T8315	0.40	Геометр 155	ия для ч				·	аботки б 2 145	ез удар 0.12	а или в 1.7		ях слегк 0.14	а прер	ывистог	о резан —	ия.	_	_	_
TCMT 16T304E-FM	*	0.40 0.40	·	ия для ч 0.12	истов		0.11	1.7		,	1.7	_			ывистог	о резан — —	ия. _ _	-	-	- -
TCMT 16T304E-FM TCMT 16T308E-FM	T8315		■ 155	ия для ч 0.12 0.12	нистов 1.7	9 0	0.11 0.11	1.7	■ 145	0.12	1.7 1.7	Z 465	0.14	1.7	ывистог — —	о резан — — —	ия. — — —	_ _ _	_ _ _	- - -

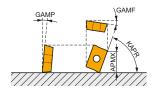
0000000	TCMT 1	6-FM
RE	0.8	0.4
BS	-	-

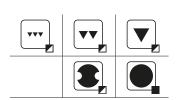
\triangleleft	a _p	DC	DCX	(x, y)	f _{min} ⇔	f _{max} →
10°	2.6	5.0	31.0	1.38	0.24	0.59
15°	3.9	5.5	31.0	1.30	0.17	0.40
30°	7.6	7.0	29.5	1.18	0.10	0.20
45°	10.7	11.0	29.5	1.13	0.09	0.14
60°	13.2	16.0	28.5	1.09	0.09	0.11
75°	14.7	21.0	26.5	1.06	0.09	0.10
80°	15.0	23.0	26.0	1.06	0.09	0.10

a _e / DC	0.10 0.15					0.20			0.25			0.30			0.35			0.40		0.	50 - 1.0	00		
\triangleleft		0.55 0.01 1.46 0.45 0.74										_1	f ⇒											
10°	0.55	0.91	1.46	0.45	0.74	1.19	0.39	0.64	1.03	0.35	0.58	0.92	0.32	0.53	0.84	0.29	0.49	0.78	0.27	0.46	0.73	0.24	0.41	0.65
15°	0.37	0.61	0.98	0.30	0.50	0.80	0.26	0.43	0.69	0.23	0.39	0.62	0.21	0.35	0.56	0.20	0.33	0.52	0.18	0.31	0.49	0.16	0.27	0.44
30°	0.19	0.32	0.51	0.15	0.26	0.41	0.13	0.22	0.36	0.12	0.20	0.32	0.11	0.18	0.29	0.10	0.17	0.27	0.09	0.16	0.25	0.08	0.14	0.23
45°	0.13	0.22	0.36	0.11	0.18	0.29	0.09	0.16	0.25	0.08	0.14	0.23	0.08	0.13	0.21	0.07	0.12	0.19	0.07	0.11	0.18	0.06	0.10	0.16
60°	0.11	0.18	0.29	0.09	0.15	0.24	0.08	0.13	0.21	0.07	0.12	0.18	0.06	0.11	0.17	0.06	0.10	0.16	0.05	0.09	0.15	0.05	0.08	0.13
75°	0.10	0.16	0.26	0.08	0.13	0.21	0.07	0.12	0.19	0.06	0.10	0.17	0.06	0.09	0.15	0.05	0.09	0.14	0.05	0.08	0.13	0.04	0.07	0.12
80°	0.10	0.16	0.26	0.08	0.13	0.21	0.07	0.11	0.18	0.06	0.10	0.16	0.06	0.09	0.15	0.05	0.09	0.14	0.05	0.08	0.13	0.04	0.07	0.11
(x,y)		1.35			1.27			1.22			1.19			1.16			1.13			1.11			1.00	

J(T)-SXP16

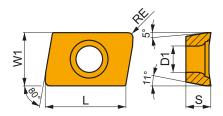




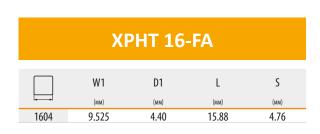


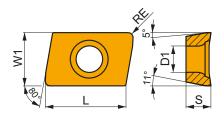
Длиннокромочная фреза для обработки фасок 15...75° с пластинами ХРНТ 16

Конструкция фрезы имеет нейтрально-негативную или позитивно-негативную геометрию, внутренний подвод СОЖ, переменный шаг зубьев. Односторонние пластины XPHT 16 с суммарной глубиной резания от 7 мм до 28 мм имеют 2 режущие кромки. Фреза подходит для обработки наружных фасок крупногабаритных заготовок.



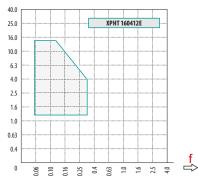
	Обозначение	DC (MM)	DCX (MM)	LF (MM)	DCON MS	DCCB	KAPR	KWW	KWD	APMX	GAMF	GAMP	NOF	5 X X 3 X 4 4 1 2 2		max.		∫ kg		
	35T03R-S15XP1607-C	35	90.6	50	27	22	15	12.4	7	7.00	-6	-1	3	6		15200	√	1.38	GI208	CH050
									-		-									
	35T03R-S25XP1612-C	35	87.3	50	27	22	25	12.4	/	12.00	-6	0	3	6	_	15200	✓	1.24	GI208	CH050
	35T03R-S30XP1614-C	35	85.1	50	27	22	30	12.4	7	14.00	-6	0	3	6	-	15200	✓	1.28	GI208	CH050
	35T03R-S35XP1616-C	35	82.4	50	27	22	35	12.4	7	16.00	-6	0	3	6	-	15200	\checkmark	1.15	GI208	CH050
	35T03R-S40XP1618-C	35	79.4	50	27	22	40	12.4	7	18.00	-6	1	3	6	_	15200	\checkmark	1.07	GI208	CH050
	35T03R-S45XP1620-C	35	76.1	50	27	22	45	12.4	7	20.00	-6	2	3	6	-	15200	✓	0.97	GI208	CH050
	35T03R-S50XP1622-C	35	72.4	50	27	22	50	12.4	7	22.00	-6	2	3	6	_	15200	✓	0.91	GI208	CH050
	35T03R-S55XP1623-C	35	68.4	50	27	22	55	12.4	7	23.00	-6	2	3	6	_	15200	✓	0.83	GI208	CH050
	35T03R-S60XP1625-C	35	64.2	50	27	22	60	12.4	7	25.00	-5	4	3	6	_	15200	✓	0.67	GI208	CH050
ISO 6462 DIN 8030	45T03R-S75XP1628-C	45	60.1	50	27	22	75	12.4	7	28.00	-5	5	3	6	_	13400	✓	0.73	GI208	CH050
	45T04R-S25XP1612-C	45	97.3	50	27	22	25	12.4	7	12.00	-6	0	4	8	✓	13400	✓	1.63	GI208	CH050
	45T04R-S30XP1614-C	45	95.1	50	27	22	30	12.4	7	14.00	-6	0	4	8	✓	13400	✓	1.22	GI208	CH050
	45T04R-S35XP1616-C	45	92.4	50	27	22	35	12.4	7	16.00	-6	2	4	8	✓	13400	✓	1.30	GI208	CH050
	45T04R-S40XP1618-C	45	89.5	50	27	22	40	12.4	7	18.00	-6	2	4	8	✓	13400	✓	1.18	GI208	CH050
	45T04R-S45XP1620-C	45	86.1	50	27	22	45	12.4	7	20.00	-6	2	4	8	✓	13400	✓	1.11	GI208	CH050
	45T04R-S50XP1622-C	45	82.4	50	27	22	50	12.4	7	22.00	-6	2	4	8	✓	13400	✓	1.04	GI208	CH050
	45T04R-S55XP1623-C	45	78.4	50	27	22	55	12.4	7	23.00	-6	2	4	8	✓	13400	✓	0.96	GI208	CH050
	45T04R-S60XP1625-C	45	74.2	50	27	22	60	12.4	7	25.00	-5	4	4	8	✓	13400	✓	0.82	GI208	CH050

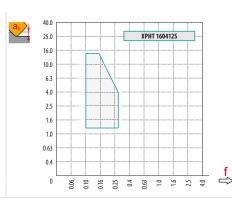

GI208	XPHT 1604


		Nm			10		
CH050	US 3509-T15	3.0	M 3.5	9	D-T07/T15	FG-15	HS 1230C

	2	XPHT 1	.6	
	W1	D1	L	S
1604	_(мм) 9.525	(MM) 4.40	(MM) 15.88	(MM) 4.76

Применение инструм	чента, начальнь	іе знач	ения сн	оро	сти ре:	зания	(Vc),	, пода	чи (f) і	и глуби	НЫ	і резан	ия (ар)	. Для д	ΙОП	олните	ельны)	расче	TOB	воспо	ользуй	гесь пр	оиложе	ием Са	ılculato
06	23524743	RE			Р				M				K				N				S			Н	
Обозначение		(MM)		vc /мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MH	f н) (мм/зуб	ар б) (мм)
	Q	\15°	ŹŲ	3	E																				
		7	Пози	ГИВН	ая гео	метри	я дл	я фре	зерова	ания фа	aco	K.													
XPHT 160412E	8215	1.2	2	25	0.10	15.0		135	0.09	15.0		210	0.10	15.0		-	-	-		-	-	-	-	_	-
	M6330	1.2	1	90	0.10	15.0		135	0.09	15.0		-	-	-		-	-	-		-	-	_	_	-	-
	M8330	1.2	2	20	0.10	15.0		130	0.09	15.0		205	0.10	15.0		-	-	-		-	-	-	_	-	_
	M8340	1.2	1	95	0.10	15.0		115	0.09	15.0		185	0.10	15.0		-	-	-		_	-	_	_	-	-
		0 <u>,1</u> 0 15°	Пози	TURU.		S Methy		a hne	senop:	ания фа	aco	ık													
	15°		110311	IVIDII	unico	wic i pvi	'' Д/'	л фрс	эсров	μινινι φι		11.													
XPHT 160412S	8215	1.2		10	0.12	15.0		125	0.11	15.0			0.12	15.0		-	-	-		-	-	-	-	-	-
	M8330	1.2	2	10	0.12	15.0		125	0.11	.5.0		.,,,	0.12	15.0		-	-	-		-	-	-	_	_	_
	M8340	1.2	1	90	0.12	15.0		110	0.11	15.0		180	0.12	15.0		-	-	-		-	-	-		_	-
	M9325	1.2		70	0.12	15.0		-	_			255	0.12	15.0		-	-	-		-	-	-		-	-
	M9340	1.2	2	45	0.12	15.0		145	0.11	15.0		-	_	-		-	-	-		-	-	-	_	-	-


	P4000 944	RE		Р			M			K			N			S			н	
Обозначение		(MM)	VC (м/мин	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MNF	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)	VC (M/MNI	f) (мм/зуб)	ар (мм)
6	Q	\15°	Поритир	F	MOTDIAG	nna dna	220000	uua ha	ocov uz z	2507001	(2V I42 III	DOTHI IV	CHH2DO	D						
XPHT 160408F-FA	HF7	0.8	Позитив	— —	—	для фре	_	ния фо	—		- I	■ 255		15.0	_	_	_	_	_	_



0000000	XPHT 16 E	XPHT 16 S	XPHT 16-FA
RE	1.2	1.2	0.8
BS	-	_	-

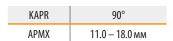
a。/ DC		0.10			0.15			0.20			0.25			0.30			0.35			0.40		0.	50 - 1.	00
\triangleleft												_	f ⇒											
15°	0.61	0.98	1.34	0.50	0.80	1.10	0.43	0.69	0.95	0.39	0.62	0.85	0.35	0.56	0.78	0.33	0.52	0.72	0.31	0.49	0.67	0.27	0.44	0.60
25°	0.37	0.60	0.82	0.31	0.49	0.67	0.26	0.42	0.58	0.24	0.38	0.52	0.22	0.35	0.48	0.20	0.32	0.44	0.19	0.30	0.41	0.17	0.27	0.37
30°	0.32	0.51	0.70	0.26	0.41	0.57	0.22	0.36	0.49	0.20	0.32	0.44	0.18	0.29	0.40	0.17	0.27	0.37	0.16	0.25	0.35	0.14	0.23	0.31
35°	0.28	0.44	0.61	0.23	0.36	0.50	0.19	0.31	0.43	0.17	0.28	0.38	0.16	0.25	0.35	0.15	0.24	0.32	0.14	0.22	0.30	0.12	0.20	0.27
40°	0.25	0.39	0.54	0.20	0.32	0.44	0.17	0.28	0.38	0.16	0.25	0.34	0.14	0.23	0.31	0.13	0.21	0.29	0.12	0.20	0.27	0.11	0.18	0.24
45°	0.22	0.36	0.49	0.18	0.29	0.40	0.16	0.25	0.35	0.14	0.23	0.31	0.13	0.21	0.28	0.12	0.19	0.26	0.11	0.18	0.25	0.10	0.16	0.22
50°	0.21	0.33	0.45	0.17	0.27	0.37	0.15	0.23	0.32	0.13	0.21	0.29	0.12	0.19	0.26	0.11	0.18	0.24	0.10	0.17	0.23	0.09	0.15	0.20
55°	0.19	0.31	0.42	0.16	0.25	0.35	0.14	0.22	0.30	0.12	0.20	0.27	0.11	0.18	0.25	0.10	0.17	0.23	0.10	0.15	0.21	0.09	0.14	0.19
60°	0.18	0.29	0.40	0.15	0.24	0.33	0.13	0.21	0.28	0.12	0.18	0.25	0.11	0.17	0.23	0.10	0.16	0.21	0.09	0.15	0.20	0.08	0.13	0.18
75°	0.16	0.26	0.36	0.13	0.21	0.29	0.12	0.19	0.25	0.10	0.17	0.23	0.09	0.15	0.21	0.09	0.14	0.19	0.08	0.13	0.18	0.07	0.12	0.16
X.V		1.35			1.27			1.22			1.19			1.16			1.13			1.11			1.00	

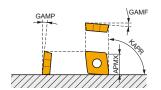
	a _p	DC	DCX	X.V	f _{min} ⇔	$\overset{f_{\text{max}}}{\Longrightarrow}$
15°	7	35.0	90.6	1.16	0.43	0.70
25°	12	35.0	87.3	1.16	0.20	0.32
30°	14	35.0	85.1	1.17	0.16	0.25
35°	16	35.0	82.4	1.17	0.13	0.20
40°	18	35.0	79.4	1.17	0.11	0.16
45°	20	35.0	76.0	1.18	0.09	0.14
50°	22	35.0	72.4	1.18	0.08	0.12
55°	23	35.0	68.4	1.20	0.08	0.11
60°	25	35.0	64.1	1.20	0.07	0.09
25°	12	45.0	97.3	1.18	0.23	0.34
30°	14	45.0	95.0	1.18	0.18	0.26
35°	16	45.0	92.4	1.19	0.15	0.21
40°	18	45.0	89.5	1.19	0.12	0.17
45°	20	45.0	86.0	1.20	0.11	0.15
50°	22	45.0	82.4	1.21	0.09	0.13

\triangleleft	a _p	DC	DCX	X.V	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$
55°	23	45.0	78.4	1.22	0.09	0.11
60°	25	45.0	74.1	1.23	0.08	0.10
75°	28	45.0	60.1	1.31	0.07	0.08

Фрезы с углом в плане 15° необходимо использовать с высокой подачей. Значение подачи следует выбирать по таблице.

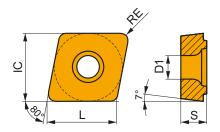
F-SCC





Фреза для обработки Т-образных пазов с пластинами ССМХ

Конструкция фрезы имеет внутренний подвод СОЖ. Односторонние пластины ССМХ с максимальной глубиной резания от 11 мм до 18 мм имеют 2 режущие кромки. Фреза подходит для обработки пазов, Т-образных пазов, внутренних уступов.

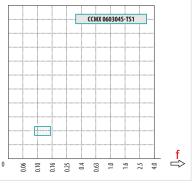


	Обозначение	DC	BD	OAL	DCON MS	LU	CW	X			max.		∫ kg		
		(MM)	(MM)	(мм)	(MM)	(MM)	(MM)								
	25F1R030B25-SCC06-C	25	12	86	25	25	11.00	1	2	-	28100	✓	0.26	GI148	SQ213
DIN 1835B	32F1R038B32-SCC08-C	32	16	98	32	33	14.00	1	2	-	19100	✓	0.50	GI149	SQ212
27 10350	40F2R046B32-SCC09-C	40	20	105	32	41	18.00	2	4	-	14900	\checkmark	0.56	GI150	SQ212

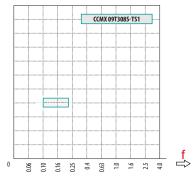
GI148	CCMX 060304
GI149	CCMX 08T308
GI150	CCMX 09T308

		Nm			
SQ212	US 3007-T09P	2.0	M 3	7.3	Flag T09P
SQ213	US 2506-T07P	1.2	M 2.5	6.3	Flag T07P

		ССМХ		
	IC (MM)	D1	L (mm)	S (MM)
0603	6.350	2.80	6.40	3.50
08T3	8.030	3.50	8.10	4.40
09T3	9.525	3.50	9.70	3.97


												•													
	P4230 894	RE		P)				M				K				N			S	5			Н	
Обозначение		(MM)	(1	vc ′мин) (м	f лм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/s	с (м)	f м/зуб)	ар (мм)	VC (M/M/	f н) (мм/зу	ар i) (мм)
	2000,	<u>12</u> \15°	ξÛ		S																				
			Спец	альна	ая гео	метр	ия ,	для чи	ІСТОВОГ	0 и по	луч	ІИСТОВ(ого фре:	зерова	ани	ıя Т-об∣	разных	пазов.							
CCMX 060304S-TS	M8330	0.4		40 C	0.10	_		140	0.09	_		225	0.10	_		_	_	-	-	-	_	-	_	_	_
	M8340	0.4		15 C	0.10	_		125	0.09	_		200	0.10	_		-	_	-	-	-	_	-	_	_	_
CCMX 08T308S-TS	M8330	0.8		75 C	0.10	_		165	0.10	_		260	0.10	_		-	_	-	-	-	_	-	_	_	_
	M8340	0.8		45 C	0.10	_		145	0.10	-		230	0.10	_		-	-	-	-	-	_	-	_	-	_
CCMX 09T308S-TS	M8330	0.8		70 C	0.10	-		160	0.10	-		255	0.10	_		-	_	-	-	-	_	_	_	_	_
	M8340	0.8		40 C	0.10	-		140	0.10	-		225	0.10	-		_	-	-	-	-	-	-	_	-	-

0000000	CCMX 06-TS1	CCMX 08-TS1	CCMX 09-TS1
RE	0.4	0.8	0.8
BS	-	-	-



a。/ DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00

~	a _e	= 1	a _e	= 2	a _e	= 3	a _e	= 4	a _e	= 5	a _e	= 8	a _e :	= 10
DC	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{\text{max}}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	f _{max} →
25	0.25	0.40	0.18	0.29	0.15	0.24	0.13	0.21	0.12	0.19	0.09	0.15	0.09	0.14
32	0.28	0.45	0.20	0.32	0.17	0.27	0.14	0.23	0.13	0.21	0.10	0.17	0.09	0.15
40	0.32	0.51	0.23	0.36	0.18	0.30	0.16	0.26	0.14	0.23	0.12	0.19	0.10	0.17

~	ae	= 12	a _e :	= 16	a _e :	= 20	a _e :	= 25	a _e :	= 32	a _e :	= 40
DC	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$	f _{min} ⇔	$\stackrel{f_{max}}{\Longrightarrow}$
25	0.08	0.13	0.07	0.12	0.07	0.11	0.08	0.13	-	-	-	-
32	0.09	0.14	0.08	0.13	0.07	0.12	0.07	0.11	0.08	0.13	_	_
40	0.10	0.15	0.09	0.14	0.08	0.13	0.07	0.12	0.07	0.11	0.08	0.13

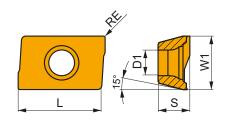
Для фрезерования Т-образных пазов

Для фрезерования уступов и обратных уступов

Для фрезерования уступов

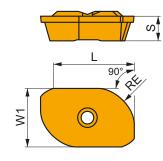
DC		APMX	a _{emax}
25	1	11	6.4
32	1	14	8.0
40	2	18	9.7

ДРУГИЕ ПЛАСТИНЫ

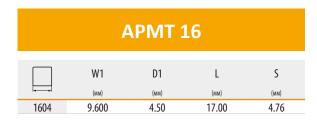

ДРУГИЕ ПЛАСТИНЫ – НАВИГАТОР

ДРУГИЕ ПЛАСТИНЫ – НАВИГАТОР

ADKT 15 W1 D1 L S (MM) (MM) (MM) (MM) 1505 9.525 4.40 15.55 5.60

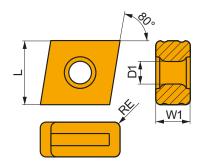


Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

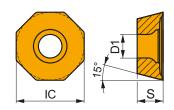

25	PROPERTY.	RE		Р				M				K			N			S			Н	
Обозначение		(MM)	VC (M/MHH)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC	f (мм/зуб)	ар (мм)	VC	f (мм/зуб)	ар (мм)	VC (M/MMN)	f (мм/зуб)	ар (мм)
	0,1	23°		ная гео	S метри	ЯД	ля пол	учисто	вой об	бра	ботки.											
ADKT 1505PDER-M	M8330	0.8	235	0.20	5.0		140	0.18	5.0		220	0.20	5.0	-	_	_	55	0.16	4.0	_	_	_
	M8340	0.8	210	0.20	5.0		125	0.18	5.0		195	0.20	5.0	_	-	-	50	0.16	4.0	-	-	_
	M9325	0.8	290	0.20	5.0		_	_	_		275	0.20	5.0	_	_	_	_	_	_	_	_	_


	AD	KX 15	
	W1	L	S
Ħ	(мм)	(MM)	(MM)
15T3	9.525	12.60	3.97

PRAMET

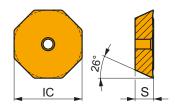

	PECAN SH	RE			Р			Λ	M				K			N			S				Н	
Обозначение				VC	f	ар	,	vc	f	ap		VC	f	ap	VC	f	ap	VC	f	ар		VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)	(M/	мин) (и	мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	()	м/мин)	(мм/зуб)	(MM)
)	20°		†	E																			
	7		По	ЗИТИВН	ная гео	метрия	для ч	чисто	вой и	получ	ИС	товой	обрабо	тки.										
ADKX 15T308ER-F	M8330	8.0		245	0.10	10.0	1	45 (0.09	10.0		_	-	-	_	_	_	60	0.07	8.0		_	-	_
	M8345	8.0		170	0.10	10.0	1	00 (0.09	10.0		-	-	-	_	_	_	40	0.07	8.0		_	-	_
ADKX 15T330ER-F	M8330	3.0		280	0.10	10.0	1	65 (0.09	10.0		-	_	-	_	_	_	70	0.07	8.0		_	_	_
	M8345	3.0		200	0.10	10.0	1 .	20 (0.09	10.0		-	_	-	_	_	_	50	0.07	8.0		_	_	_
ADKX 15T340ER-F	M8330	4.0		280	0.10	10.0	1	65 (0.09	10.0		-	_	-	_	_	_	70	0.07	8.0		_	-	_
	M8345	4.0		200	0.10	10.0	1 .	20 (0.09	10.0		-	_	_	_	_	_	50	0.07	8.0		_	-	_
ADKX 15T360ER-F	M8330	6.0		280	0.10	10.0	1	65 (0.09	10.0		-	_	-	_	-	_	70	0.07	8.0		-	-	_

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator. P S M K Н RE Обозначение ар ap ap 0,15 ` 20° Позитивная геометрия для чистовой обработки. APMT 1604PDER-F ■ 290 0.15 2.0 ■ 170 0.14 2.0 **□** 275 0.15 2.0 - - - **□** 70 0.11 1.6 M8330 0,15 `₁23° Позитивная геометрия для чистовой и получистовой обработки. **APMT 1604PDER-FM** M8330 ■ 285 0.16 2.0 ■ 170 0.14 2.0 **□** 270 2.0 0.13 0.16 70 1.6 M8345 **205** 0.16 2.0 **120** 0.14 2.0 **5**0 0.13 1.6 0,15 \20° Позитивная геометрия для черновой обработки. APMT 1604PDER-R M8330 **255** 0.16 5.0 240 0.16 5.0 M8345 **185** 0.16 5.0 S 0,17 \23° Позитивная геометрия для черновой обработки. APMT 1604PDSR-R M8330 255 0.18 5.0 M8345 180 0.18



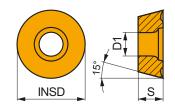
Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

2.5	F4534344	RE		Р			M			K			N				S			Н	
Обозначение		(MM)		с f иин) (мм/зуб)	ар (мм)	VC (M/MI		ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(1	vc /мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,25	15°	ŹŴ	T			,			, i			,								
CNM 563	M8330	1.2	Униве ■ 18	рсальная 85 0.30	геомет 10.0	рия.	_	_	175	0.30	10.0	_	_	_		_	_	_	_	_	_
	M8340	1.2		20 0.30	10.0	-	_		205	0.30	10.0	_	_	_		_	_	_	_	_	_


	ODI	VIT 05	
	IC	D1	S
	(MM)	(MM)	(MM)
0504	12.700	4.40	4.76

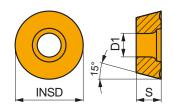
PRAMET

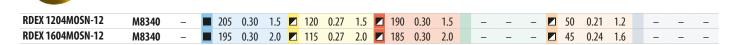
	PRESERVE	RE		Р			M				K			N			S			Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	()	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc _I /мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)
	0,	<u>1</u> .10°	*	S																	
	150		Позитив	ная гео	метрия	для пол	учисто:	зой об	брабо	отки.											
ODMT 0504ZZN	M8340	_	1 95	0.25	1.5	_	_	_		185	0.25	1.5	_	_	_	_	_	-	_	_	_



Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

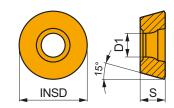
	P4/2003H9	RE			Р			M				K				N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M			ар (м)	VC (м/мин)	f (мм/зуб)	ар (мм)	(1	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MV		ар (мм)	VC (M/MI		ар) (мм)
	0,2	- 12°	1			S																	
	15°	7-	Поз	итивн	ая геом	метрия	I ДЛЯ Ч	истово	ой и по	лучи	істовой	обрабо	тки.										
OFKR 0704SN-M	M8330	-		235	0.25	1.5	1 4	0.2	23 1	.5	220	0.25	1.5		-	-	-	_	-	-	-	-	-
	M8340	-		215	0.25	1.5	1 2	5 0.2	23 1.	.5	200	0.25	1.5		_	-	-	_	-	-	_	-	-


	R	DET	
	INSD (mm)	D1 (_{MM})	S (mm)
0802	8.0	3.40	2.38
1003	10.0	4.40	3.18
12T3	12.0	4.40	3.97

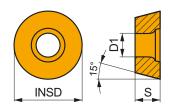


	17								•		•							,				
0.5	PHANASA	RE		P				M				K			N			S			Н	
Обозначение			VC	f	ap		VC	f	ap		VC	f	ap									
		(мм)	(м/мин	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)
	0,05		НFC Позитив	S	метрия	я дл	1я чис	товой о	брабо	OTKI	۸.											
RDET 0802MOSN	M8340	_	335	0.15	0.5		200	0.14	0.5		315	0.15	0.5	_	_	_	80	0.12	0.4	_	_	_
RDET 1003MOSN	M8340	_	310	0.15	1.0		185	0.14	1.0		290	0.15	1.0	_	-	_	75	0.12	0.8	_	_	_
RDET 12T3MOSN	M8340	_	280	0.20	1.5		165	0.18	1.5		265	0.20	1.5	_	-	-	70	0.14	1.2	-	_	_

	R	DEX	
	INSD	D1	S
	(MM)	(MM)	(MM)
1204	12.0	4.40	4.76
1604	16.0	5.50	4.76

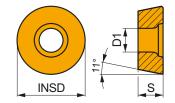


	esceses RE	Р	M	K	N	S	Н
Обозначение		vc f ap					
	(мм)	(м/мин) (мм/зуб) (мм)	(м/мин) (мм/зуб) (мм)	(м/мин) (мм/зуб) (мм)	(м/мин) (мм/зуб) (мм)	(м/мин) (мм/зуб) (мм)	(м/мин) (мм/зуб) (мм)
	0,1 20°	HFC S					
	110	Позитивная геометрия	для чистовой обработ	гки.			


	RD	HX 20	
	INSD	D1	S
	(MM)	(мм)	(MM)
2006	20.0	5.20	6.35

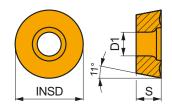
PRAMET

0.0	PHARMY	RE			Р			ı	M				K				N			S				Н	
Обозначение		(MM)	(A	vс ı/мин)	f (мм/зуб)	ар (мм)	(M/N		f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M		зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	, -	0,20	1	-	HFC	T																			
	20°		Геом	етрия	я с ней	гральн	ІЫМ ПЄ	ред	дним у	глом ,	ДЛЯ	я чисто	вой об	оаботк	и.										
RDHX 2006MOT	M8310	_		240	0.35	3.0	-	-	_	_		225	0.35	3.0		_	_	_	-	-		-	45	0.15	1.0
	M8325	-		180	0.35	3.0	-	-	_	-		_	_	-		-	_	-	-	-		-	-	-	_



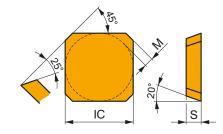
Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	124/201349	RE		Р			M			K			N			S			ı	Н	
Обозначение			V		ap	VC	f	ap	VC	f	ap	vc	f	ap	vc	f	ap	V		f	ap
	15,0,	(MM) 15 _\10°	HFC		(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(M/N	unj ((мм/зуб)	(MM)
RPET 1204MOSN	8215	-	Позит	івная гео 5 0.20	метри 1.5		товой о 0.18			0.20	1.5	_	_	_	80	0.14	1.2	_	-	_	_
	M8330	-	3 2	0.20	1.5	190	0.18	1.5	300	0.20	1.5	-	-	-	80	0.14	1.2	-	-	-	-
	M8340	-	2 9	5 0.20	1.5	175	0.18	1.5	280	0.20	1.5	-	-	_	70	0.14	1.2	-	-	-	_


	RPI	EW 12	
	INSD	D1	S
 	(мм)	(MM)	(MM)
1204	12.0	4.40	4.76

PRAMET

	PRESSE	RE			Р			M				K				N				S			н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(vc м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	0,	14	_	FC	S	тральн	ым пег	едним	/глом	лл	ія чисто	вой об	паботк	ш.										
RPEW 1204MOSN	M8330 M8340	_ _		285 265	0.20	1.5		_ _	_ _		270 250	0.20	1.5		-	<u>-</u>	_ _		_ _ _	_ _	_ _	55 -	0.15	1.0

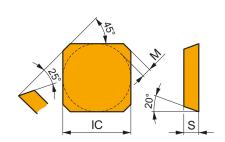


0.5	PRESCA	RE			Р				M				K			N			S			Н	
Обозначение		, ,		/C	f	ap		VC	f	ap		vc	f	ap									
		(MM)	(M	мин) ((мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
	0,1	0° \ 15°	HF	_ \	S																		
		1	Пози	ивна	я геол	иетри	я дл	ІЯ ЧИС	товой с	брабо	TKI	И.											
RPEX 1204MOSN-12	M8330	_	2	35	0.30	1.5		140	0.27	1.5		220	0.30	1.5	_	-	-	55	0.21	1.2	-	-	_
	M8340	-	2	15	0.30	1.5		125	0.27	1.5		200	0.30	1.5	-	-	-	50	0.21	1.2	-	-	_

	S	EEN	
	IC	М	S
	(MM)	(MM)	(MM)
1203	12.700	2	3.18
1504	15.875	2	4.76

M9340

PRAMET


Применение инструк	иента, начальнь	ые знач	ения	і скор	ости ре	зания ((vc), под	цачи (f)	и глуби	ΗЫ	і резан	ия (ар)	. Для д	0П	олните	2льны	(расче	T0B	ВОСП	ользуй	гесь п	рил	ожені	ıем Cal	culato
	PKPKYS	RE			Р			M				K				N				S				Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/ми	f н) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)
	Q		2	Û	†	F		·								·				·					
	1		Гео	метрі	ия с ней	тральн	ным пер	едним	углом д	для	чисто	вой и г	юлучис	T0	вой об	работ	ΚИ.								
SEEN 1203AFFN	M8330	_		270	0.15	2.0	I 160	0.14	2.0		255	0.15	2.0		_	_	_		-	_	-		-	-	_
	M8340	-		245	0.15	2.0	1 45	0.14	2.0		230	0.15	2.0		-	_	-		_	-	-		-	-	_
	20°,	0,1			*	S																			
			Гео	метрі	ия с ней	тральн	ным пер	едним	углом д	цля	я получ	истово	ой и чер	HC	вой об	бработ	ки.								
SEEN 1203AFSN	8215	_		255	0.20	2.0	_	_	_		240	0.20	2.0		_	_	_		_	_	_		50	0.15	1.0
	M8330	_		255	0.20	2.0	_	_	_		240	0.20	2.0		_	_	-		_	_	-		50	0.15	1.0
	M8340	_		230	0.20	2.0	_	_	_		215	0.20	2.0		_	_	_		-	_	-		-	-	-
	M9315	_		340	0.20	2.0	_	_	_		320	0.20	2.0		_	_	-		-	_	-		65	0.15	1.0
	M9325	_		315	0.20	2.0	_	_	_		295	0.20	2.0		_	_	_		_	_	_		60	0.15	1.0

285 0.20 2.0 - -

0.5	RE	Р	М	K	N	S	Н
Обозначение	KE (MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зvб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зvб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)
	20,	W W S				(mining times) of (min)	Common from a far

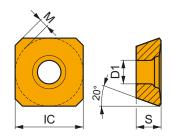
		Геометрия с неитральн	ным передним углом для получистовои и черно	вои обработки.	
SEEN 1504AFSN	M8330 -	2 40 0.20 3.0	2 25 0.20 3.0		 ■ 45 0.15 1.0
	M8340 -	225 0.20 3.0	∠ 210 0.20 3.0		
	M9315 -	320 0.20 3.0	■ 300 0.20 3.0		 ■ 60 0.15 1.0
	M9325 –	300 0.20 3.0	2 85 0.20 3.0		<u> </u>

	S	EER	
	IC	М	S
l++l	(мм)	(MM)	(мм)
1203	12.700	2	3.18
1204	12.700	2	4.76
1504	15.875	2	4.76

PRAMET

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

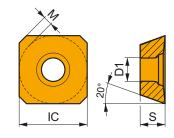
25	PYZMAN	RE		P			M			K			N			9	5			Н	
Обозначение		(мм)	VC (M/MUH	f) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MUH)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		иин) (и	f лм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ap
Tale San	<u>Q</u> .	√15°		†	E	(M/MHD)	(mm/syu)	(mm)	(m/mnn)	(mm/syu)	(mm)	(M/MHH)	(mm/syu)	(mm)	(m)	wini (i	nm/3y0)	(mm)	(м/ мип)	(mm/3y0)	(mm)



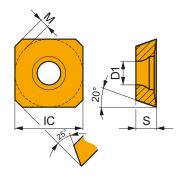
SEER 1203AFEN ■ 265 0.24 2.5 ■ 155 0.22 2.5 ▼ 250 0.24 2.5 - - - ▼ 65 0.22 2.0 -

		Геометрия д	пя попучис	товой и	чепнов	ой обп	аботки											
1123 - 115	15° - 0,15 15°		S															
SEER 1504AFEN	M8330 –	250 0.	27 3.5	150	0.24	3.5	235	0.27	3.5	_	-	-	60	0.24	2.8	-	-	-
	M8340 –	2 45 0.	24 2.5	1 45	0.22	2.5	230	0.24	2.5	_	-	_	60	0.22	2.0	_	_	-
J2211 1205/11211	MODDO	200 0.	ZT Z.J	100	0.22	2.5	230	0.27	2.5				UJ	0.22	2.0			

SEER 1203AFSN	M8330	_	265	0.25	2.5	155	0.23	2.5	250	0.25	2.5	-	_	_	65	0.20	2.0	_	_	_
	M8340	_	240	0.25	2.5	140	0.23	2.5	225	0.25	2.5	_	_	_	60	0.20	2.0	_	_	_
	M9325	-	315	0.25	2.5	_	-	_	295	0.25	2.5	-	-	-	-	-	_	_	_	-
	M9340	-	285	0.25	2.5	170	0.23	2.5	-	-	_	-	-	_	70	0.20	2.0	_	_	_
SEER 1204AFSN	M8330	-	265	0.25	2.5	155	0.23	2.5	250	0.25	2.5	-	-	_	65	0.20	2.0	_	_	_
SEER 1504AFSN	M8330	_	255	0.25	3.5	150	0.23	3.5	240	0.25	3.5	-	_	-	60	0.20	2.8	_	_	_
	M8340	-	230	0.25	3.5	135	0.23	3.5	215	0.25	3.5	-	-	_	55	0.20	2.8	_	_	-
	M9325	-	305	0.25	3.5	-	-	_	285	0.25	3.5	-	-	_	_	_	-	_	_	_



применение инструк	чента, начальнь	не знач	ени	ія скорс	сти ре	зания	(VC), пода	IЧИ (I <i>)</i> И	плуои	HD	і резан	ия (ар)	. для д	UII	ОЛПИПС	ЛОПОІЛ	расч	CIUE	BUCII	ользуи	iece iii	עטונוענ	спи	civi Caic	uiatu
	P4280384	RE			P				M				K				N				S				Н	
Обозначение		(MM)		vc (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc /мин)	f (мм/зуб)	ар (мм)
		10°		†	E																					
			По	ОЗИТИВІ	ная гео	метри	ия д	ля уни	версал	ьного і	прі	именеі	. RNH													
SEET 1204AFEN	M8330	_		265	0.24	2.5		155	0.22	2.5		250	0.24	2.5		_	_	-		65	0.22	2.0		_	_	_
	/ - 0, '	<u>15</u> 10°	7		S																					
	15°		По	озитиві	ная гео	метри	1Я Д	ля уни	версал	ьного	прі	именеі	ния.													
SEET 1204AFSN	8215	_		265	0.23	2.5		155	0.21	2.5		250	0.23	2.5		_	_	_		65	0.21	2.0		_	_	_
	M8330	-		265	0.24	2.5		155	0.22	2.5		250	0.24	2.5		_	-	_		65	0.22	2.0		_	-	_
	M8340	_		240	0.25	2.5		140	0.23	2.5		225	0.25	2.5		_	_	_		60	0.23	2.0		_	_	_
	M9325	_		340	0.20	2.5		_	-	_		320	0.20	2.5		_	_	_		_	-	_		_	_	_
	M9340	_		290	0.23	2.5		170	0.21	2.5		-	_	_		_	_	_		70	0.21	2.0		_	_	_


SEET 12-FA IC D1 M S (MM) (MM) (MM) (MM) (MM) 1204 12.700 5.50 2 4.76

PRAMET

0.0	PSCPSE	RE		Р				M				K				N			S				Н	
Обозначение			١	c f	ap		VC	f	ap		VC	f	ap		VC	f	ар	VC	f	ар		VC	f	ap
		(MM)	(M/i	ин) (мм/зу	б) (мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(N	і/мин)	(мм/зуб)	(MM)
61	2	20°	+	F																				
			Позит	ивная ге	еометри	1Я Д.	ля чис	товой і	и полу	чис	стовой	обрабо	тки ці	веті	ных сп	лавов.								
SEET 1204AFFN-FA	HF7	-	-		-		-	-	-		_	-	_		330	0.18	3.0	_	-	-		-	-	-
	M0315	-	-		-		_	-	_		-	-	-		780	0.18	3.0	_	-	-		-	-	-

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

06	ESESSENCES.	RE		Р			M			K			N			S			Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ap (MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ap (MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MM	f) (мм/зуб)	ap (MM)

SEEW 1204AFSN

8215

M8330

M8340

M9325

250

225

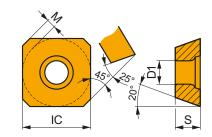
305

245 0.20

0.20 2.5

0.20

0.20



Позитивная геометрия для универсального применения.

SEET 12T3M-PM	M8330	_	265	0.25	2.0	155	0.23	2.0	250	0.25	2.0	_	_	_	65	0.20	1.6	_	_	_
	M8340	_	245	0.25	2.0	145	0.23	2.0	230	0.25	2.0	_	_	_	60	0.20	1.6	_	_	_
	M9325	-	325	0.25	2.0	-	-	-	305	0.25	2.0	-	-	_	-	-	-	-	-	-
	M9340	_	290	0.25	2.0	170	0.23	2.0	_	_	_	_	_	_	70	0.20	1.6	_	_	_

	S	EEW 12	2	
	IC	D1	М	S
	(MM)	(MM)	(MM)	(MM)
1204	12.700	5.50	2	4.76

PRAMET

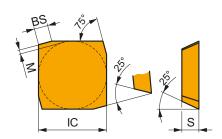
Применение инструмент	а, начальны	е знач	ения скорс	ости ре:	зания (vc), пода	чи (f) и	ı глубі	ины	резан	ия (ар)	. Для д	дог	олнит	ельных	расче	гов вос	пользуй	тесь пр	риложе	ение	м Calc	ulator.
	DOMESTIC AND ADDRESS OF THE PARTY OF THE PAR	RE		P			M				K				N			S			-	Н	
Обозначение			VC	f	ap	vc	f	ар		VC	f	ap		VC	f	ар	vc		ap		c	f	ар
		(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(M/M)	н) (мм/зуб)	(MM)	(M/I	ин) ((мм/зуб)	(MM)
	(+	E																			
			Геометри	ія с ней	тральн	іым пере	едним у	/глом	для	I ЧИСТО	вой и п	олучи	ICTO	вой об	работн	ίИ.							
SEEW 1204AFEN	M8330	_	2 65	0.15	2.5	_	-	-		250	0.15	2.5		_	-	-	_	_	_	-	-	-	-
	M8340	-	2 40	0.15	2.5	_	-	-		225	0.15	2.5		-	-	-	_	_	-	-	-	-	-
	20°	1_	Геометри	S	тральн	іым пере	едним у	/глом	для	і получ	истово	ой обра	або	тки.									

235 0.20

230 0.20 2.5

210 0.20 2.5

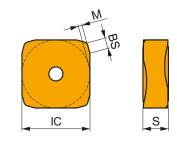
285 0.20 **5**0


60

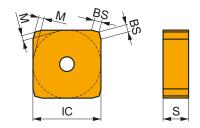
45 0.15 1.0

0.15 1.0

0.15 1.0

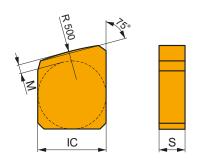


0.5	PHARASPE	RE			Р			M				K			N			S			Н	
Обозначение				VC	f	ар	VC	f	ap		VC	f	ap	VC	f	ap	VC	f	ар	VC	f	ap
		(MM)		м/мин)	(MM/3y6)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
			†		F																	
			Пози	тивна	ая геол	иетрия	для чис	товой и	1 получ	ИC	товой	обрабо	тки.									
SFCN 1203EFFR	H10	_		-	-	-	_	-	_		_	-	-	405	0.12	3.0	-	-	-	-	_	-
	M0315	_		_	_	_	_	_	_		_	_	_	765	0.12	3.0	_	_	_	_	_	_


		SNHF		
	BS	IC	M	S
	(MM)	(мм)	(мм)	(MM)
1204	2.00	12.700	1	4.76
1504	1.40	15.875	1	4.76

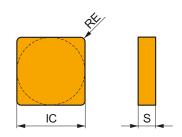
PRAMET

	PANAMA	RE		F)				М				K			N			S			н	
Обозначение				vc	f	ар		VC	f	ap		VC	f	ap	VC	f	ар	vc	f	ap	VC	f	ap
		(MM)	(M.	мин) (м	им/зуб)	(MM)	((м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)	(м/мин)	(мм/зуб)	(MM)	(м/ми	н) (мм/зуб	(MM)	(м/мин)	(мм/зуб)	(MM)
0.7	0,1	\12°	1		S																		
		7	Позит	ивная	я геол	иетрия	Д ЛЯ	я чист	товой и	1 полу	чис	товой	обрабо	отки.									
SNHF 1204ENSR-M	M8330	-	2	35 (0.15	4.0		_	_	_		220	0.15	4.0	_	_	-	-	_	_	_	_	_
	M8340	-	2	30 ().15	4.0		_	-	_		215	0.15	4.0	-	-	-	_	_	-	-	-	_
SNHF 1504ENSR-M	M8330	_	2	25 ().15	6.0		-	-	-		210	0.15	6.0	_	-	-	_	_	_	_	-	_
	M8340	-	2	20 (0.15	6.0		-	-	-		205	0.15	6.0	_	-	-	_	_	-	-	-	-

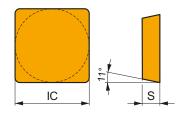

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

1 17	•				•		٠,	,		, , ,							,				
	P42.240 SH4	RE		P			M			K			N				S			Н	
Обозначение		(мм)	VC (м/ми	f н) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(1	vс и/мин)	f (мм/зуб)	ар (мм)	vc /мин)	f (мм/зуб)	ар (мм)
•	Q		₹Û}	E																	
			Стандар	эн кънто	гативна	я геоме	трия.														
CNUM 120/ENEM	0245		27/	0.15	<i>(</i> 0				260	0.15	<i>(</i> 0									0.15	1.0

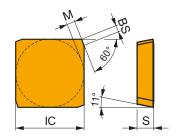
SNHN 1204ENEN	8215	_	275	0.15	6.0	_	_	_	260	0.15	6.0	_	_	-	_	_	_	55	0.15	1.0
	M8330	_	270	0.15	6.0	_	-	-	255	0.15	6.0	-	_	-	_	-	_	50	0.15	1.0
	M8340	_	245	0.15	6.0	_	_	-	230	0.15	6.0	-	_	-	_	-	_	-	-	-
	M9325	_	340	0.15	6.0	_	_	-	320	0.15	6.0	-	_	-	_	-	_	65	0.15	1.0
	S26	_	110	0.15	6.0	_	-	-	_	-	-	-	-	-	_	_	_	-	-	-
SNHN 1504ENEN	8215	_	260	0.15	9.0	_	-	-	245	0.15	9.0	-	-	-	_	-	_	50	0.15	1.0
	M8330	_	260	0.15	9.0	_	_	-	245	0.15	9.0	-	_	-	_	-	_	50	0.15	1.0
	M8340	_	235	0.15	9.0	_	_	-	220	0.15	9.0	-	_	-	_	-	_	_	-	-
	S26	_	105	0.15	9.0	_	-	_	_	-	-	-	-	-	_	_	_	-	-	-


	SI	NKX	
	IC	M	S
	(mm)	(MM)	(MM)
1204	12.700	1	4.76
1504	15.875		4.76

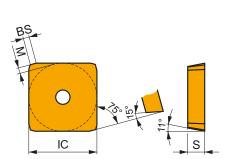
•	PRAKSY	RE			Р			M				K			N			S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	vc мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
			•	W	F																	
			Ста	ндарт	ная нег	ативна	я геоме	трия с г	10ДЧИL	цан	ющей і	кромко	й.									
SNKX 1204ENFN	H10	-		-	-	-	_	-	-		115	0.15	6.0	_	-	-	_	-	_	-	_	-
SNKX 1504ENFN	H10	-		-	_	-	-	-	_		110	0.15	9.0	_	-	-	-	_	_	-	_	_



	IPE/MISHI	RE			Р			M				K				N			S			Н	
Обозначение				VC	f	ap	vc	f	ар		VC	f	ap		VC	f	ap	VC	f	ар	VC	f	ap
		(мм)		(м/мин)	(мм/зуб)	(мм)	(м/мин) (мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(мм)
	Q			E					- 6 - .														
SNUN 120408	M8330	0.8	Inel		0.13	4.5	-	я может	_ _	NC	245	0.13	4.5	:ни	ы, —	-	_	_	-	_	50	0.15	1.0
SNUN 120412	M8330	1.2		275	0.13	4.5	_	-	_		260	0.13	4.5		_	-	_	-	_	_	55	0.15	1.0
	S26	1.2		110	0.13	4.5	_	-	_		-	_	-		_	-	_	_	_	_	_	-	_
SNUN 150412	M8330	1.2		255	0.15	6.0	_	_	_		240	0.15	6.0		_	_	_	-	_	_	50	0.15	1.0


	SPGN	
	IC (MM)	S (MM)
0903	9.525	3.18
1203	12.700	3.18
1504	15.875	4.76

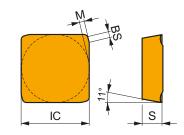
	DATA-90 / DAT	RE			Р				M				K				N				S			Н	
Обозначение				VC	f	ap	П	VC	f	ap		VC	f	ap		VC	f		ар	VC	f	ap	VC	f	ap
		(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб) (мм)		(м/мин)	(мм/зуб)	(MM))	(м/мин) (MM/	зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
				Епетри	ія с ней	ітраль	НЫМ	пере	едним	углом	1, K	оторая	может	быть	ь ИСП	0ЛЬ30	вана	для	точени	я.					
SPGN 090308	M8340	0.8		225	0.15	2.0		_	_	-	Z	210	0.15	2.0)	-	_	-	-	_	_	_	-	_	_
SPGN 120304	M8330	0.4		195	0.15	4.0		_	_	_		185	0.15	4.0)	_	_	-	-	_	-	_	_	_	_
	M8340	0.4		175	0.15	4.0		_	_	_		165	0.15	4.0)	-	-	-	-	-	_	_	_	_	_
SPGN 120308	M8330	0.8		230	0.15	4.0		-	_	_		215	0.15	4.0)	-	-	-	-	-	-	_	_	-	-
SPGN 150412	M8330	1.2		225	0.20	5.0		_	_	_		210	0.20	5.0)	_	_		-	_	_	_	_	_	_



Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

Обозначение	escenes RE		Р			M			K				N				S		Н			
	(MM)	VС (м/ми	f 1) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	(VC (м/мин)	f (мм/зуб)	ар (мм)	(vc (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (M/MM	f и) (мм/зуб)	ар (мм)	
	0,5	*	*	S																		
Геометрия с нейтральным передним углом для черновой обработки.																						
SPGN 2506DZSR	M8326 -	1 10	0.50	12.0	_	_	_		100	0.50	12.0		-	_	-	_	_	_	_	_	-	
	M8346 -	90	0.50	12.0	_	_	-		_	_	_		_	_	-	-	_	_	_	_	_	

		SPKN		
	IC	M	S	BS
	(MM)	(MM)	(MM)	(MM)
1203	12.700	1	3.18	1.60
1504	15.875	1	4.76	1.70

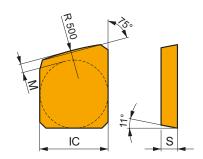


	Ус f ар (м/мин) (мм/зуб) (мм)	H vc f ap (м/мин) (мм/зуб) (мм)
vc f ap ap	· ·	
	(м/мин) (мм/зуб) (мм)	(м/мин) (мм/зуб) (мм)
Геометрия с нейтральным передним углом для чистовой и получистовой обработки.		
SPKN 1203EDER H10 ■ 110 0.15 4.0		
M8330 - ■ 255 0.15 4.0 ■ 240 0.15 4.0		
M8340 - ■ 230 0.15 4.0 ■ 215 0.15 4.0		
SPKN 1504EDER H10 ■ 100 0.20 5.0		
M8330 - ■ 235 0.20 5.0 ■ 220 0.20 5.0		
M8340 - ■ 210 0.20 5.0 ■ 195 0.20 5.0		
0.13 С Сометрия с нейтральным передним углом для получистовой обработки.		
SPKN 1203EDSL M8330 -	[4 5 0.15 1.0

применение инструм	спіа, пачальнь	ос эпач	спин	скорс	сти ре	у кинь	/C), I	подач	1И (1) И	ПЛУО	IIIDI	pesar	ия (ар,	г. для до	UIIU	אווווווו	ЛОПОЛ	Срасче	IUB	BOCIIC	льзуит	CCD II	рили	жени	CIVI Calc	.uiatui.	
0.5	F4CM343	RE			Р			ı	M				K				N				S			Н			
Обозначение		(мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(N	vc и/мин)	f (мм/зуб)	ар (мм)		vc (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)	
	20°),13_	Геог	Д	S	тральн	ым і	перед	дним у	глом	для	получ	истово	ой обраб	бот	ки.											
SPKN 1203EDSR	8215	_		240	0.20	4.0		_	_	_		225	0.20	4.0		_	_	_		_	_	_		45	0.15	1.0	
	H10	_		_	_	-		_	_	_		100	0.20	4.0		_	_	_		_	_	_		_	_	_	
	M8330	_		240	0.20	4.0		_	_	_		225	0.20	4.0		_	_	_		_	_	_		45	0.15	1.0	
	M8340	_		215	0.20	4.0		_	_	_		200	0.20	4.0		_	_	_		_	_	_		_	_	_	
	M9325	_		290	0.20	4.0		_	_	_		275	0.20	4.0		_	_	_		_	_	_		55	0.15	1.0	
	S26	_		95	0.20	4.0		_	_	_		_	_	-		_	_	_		_	_	_		_	_	_	
	20°),16	Пра	Восто	S	ı (EDSR)	ил	евост	горонн	яя (Е[OSL)	геоме	трия с	нейтрал	ЛЬН	ІЫМ П	ередн	им угл	0M I	іля по	лучист	овой	обра	іботкі	л.		
SPKN 1504EDSL	M8340	_		205	0.25	5.0		_	_	_		190	0.25	5.0		_	_	_		_	_	_		_	_	_	
SPKN 1504EDSR	8215	-		220	0.25	5.0		-	-	-		205	0.25	5.0		-	_	_		-	-	_		40	0.15	1.0	
	H10	-		-	_	-		-	_	-		95	0.25	5.0		-	_	_		-	_	-		-	_	_	
	M8330	_		220	0.25	5.0		-	_	-		205	0.25	5.0		_	_	_		_	_	_		40	0.15	1.0	
	M8340	_		205	0.25	5.0		_	_	_		190	0.25	5.0		_	_	-		_	_	_		_	-	_	
	M9315	-		285	0.25	5.0		-	_	-		270	0.25	5.0		-	-	-		-	_	-		55	0.15	1.0	
	M9325	_		270	0.25	5.0		-	-	-		255	0.25	5.0		-	-	-		-	-	-		50	0.15	1.0	
	S26	_		90	0.25	5.0		-	_	-		-	-	-		-	-	-		-	-	-		_	-	-	

		SPKR		
	IC	L	M	S
1203	(MM) 12.700	(MM) 12.70	(мм) 1	_(мм) 3.18
1504	15.875	15.88	1	4.76

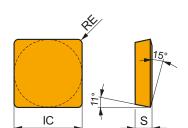
PRAMET



	PACH SPI	RE	P				M			K			1	N		S				Н		
Обозначение		(мм)	VC (м/мин	f) (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин	f (мм/зуб)	ар (мм)	(M/N	с лин) (г	f мм/зуб)	ар (мм)	VC (M/MI		ар 6) (мм)		vс (м/мин)	f (мм/зуб)	ар (мм)
	0,1	_ 15°		S																		
	5°		Геометр	ия для г	толучис	товой и	чернов	вой обр	оаботки.													
SPKR 1203EDSR	M8330	-	2 65	0.20	4.0	1 55	0.18	4.0	250	0.20	4.0	-	-	_	-	_	_	_		_	_	_
	M8340	-	240	0.20	4.0	1 40	0.18	4.0	225	0.20	4.0	-	-	-	-	-	-	-		-	-	_
	M9340	_	295	0.20	4.0	175	0.18	4.0	_	_	-	-	-	_	-	_	-	_		_	-	_
		25 115°		S																		
	5°		Геометр	ия для г	толучис	товой и	чернов	вой обр	оаботки.													
SPKR 1504EDSR	M8330	-	2 45	0.25	5.0	1 45	0.25	5.0	230	0.25	5.0	-	-	_	-	-	-	-		_	-	_
	M8340	_	225	0.25	5.0	1 35	0.25	5.0	2 10	0.25	5.0	-	-	-	-	-	_	-		-	_	_

PRAMET

PRAMET



Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

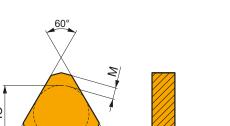
		D.F.		Р			М			K				N				S			Н	
Обозначение		RE (mm)	VC (M/MUH	f) (мм/зуб)	ар (мм)	VC (м/мин)	f	ар (мм)	V (M/N	r f	ар уб) (мм)		VC (м/мин)	f	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc f мин) (мм/з	а вуб) (м
	Q.		W	F																		
			Геометр	ия с ней	ітральн	іым пер	едним у	/глом и	1 подч	ищаюц	ей кром	икой	і́ для п	0ВЫШ(ения ка	ачест	гва о	бработ	ки.			
SPKX 1203EDFR	H10	_	_	_	-	_	_	_	1 (0.2	0 4.0		_	_	_		_	_	_	-		-
SPKX 1504EDFR	H10	_	_	_	_	_	_	_	9	5 0.2	5 5.0		_	_	_		_	_	_			

	SPUN	
	IC (mm)	S (mm)
1203	12.700	3.18
1504	15.875	4.76
1904	19.050	4.76
2506	25.400	6.35

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	PREAM SHA	RE			Р			M				K				N				S			Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/ми	f) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	Q			Е	а с пей	тпапьи	ым пег	мина	VEHOM	ĸn	TODAS A	10WeT	быть ис	cnc	IUP30B	חת בעב	ія точеі	סווב						
5PUN 120304	M8330	0.4		195	0.15	4.0		_	углом _. _	, NU	Ċ	0.15	4.0	CIIC	— —	ипа дл —		ТИЛ	· 		_	_	_	_
SPUN 120308	H10	0.8		_	_	_	_	_	_		95	0.15	4.0		_	_	_		_	_	_	_	_	_
	M8330	0.8		230	0.15	4.0	_		_			0.15	4.0		_	_			_		_	_		_
	S26	0.8		95	0.15	4.0					213	0.15	т.0											
SPUN 120312	M8330	1.2	Н	245	0.15	4.0	_				230	0.15	4.0		_				_			_		_
				E			ым пер	едним	углом					спс	льзов	ана дл	ія точен	ЯИН						
SPUN 150412	M8330	1.2		225	0.20	5.0	_	_	_		210	0.20	5.0		_	_	_		_	_	_	_	_	_
SPUN 190408	M8330	0.8		210	0.20	6.0	_	_	_		195	0.20	6.0		_	_	_		_	_	_	_	_	_
SPUN 190412	M8330	1.2		220	0.20	6.0						0.20	6.0											

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

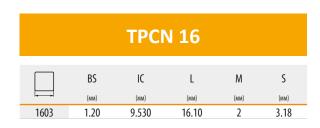

	PRESMINA	RE			Р			N	1				K				N				S		ı	н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	(M/M		f м/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	(A	vc и/мин)	f (мм/зуб)	ар (мм)	vc /мин) (f (мм/зуб)	ар (мм)
	, - C),4_	1		*	S																			
	20°		Гес	ометри	я с ней	тральн	ым пе	редн	им уг	лом,	K01	торая і	иожет	быть и	спо	льзов	ана для	точеі	ния.						
SPUN 250616S	M8326	1.6		115	0.40	12.0	-		-	_		105	0.40	12.0		-	-	_		_	-	-	_	-	_
SPUN 250620S	M5326	2.0		145	0.40	12.0	-		_	-		135	0.40	12.0		-	-	-		_	-	-	_	-	_
	M8326	2.0		120	0.40	12.0	_		_	-		110	0.40	12.0		_	_	_		_	-	-	-	_	_
	M8346	2.0		100	0.40	12.0	_		_	_		-	_	_		_	-	-		_	-	-	_	_	_
	S26	2.0		45	0.40	12.0	_		_	-		-	-	_		_	_	_		_	_	-	_	_	_

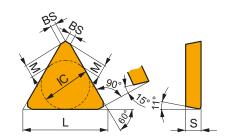
TNJF

IC L M S

(MM) (MM) (MM) (MM) (MM)

1204 12.700 22.00 2 4.76



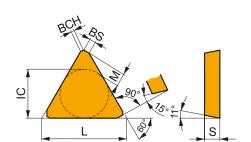

PRAMET

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	P4283.84	RE		Р			M			K			N			S				Н	
Обозначение		(MM)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	()	vc и/мин)	f (мм/зуб)	ар (мм)
	Q	\15°	E																		
TNJF 1204ANEN	M8330		Позитив	ная кон 0 15		ция со стр 160			755												

PRAMET

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

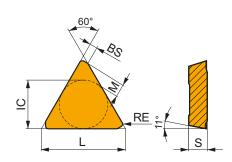

0.5	RE	Р	M	K	N	S	н
Обозначение	(MM)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ap (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)	vc f ар (м/мин) (мм/зуб) (мм)
	0,1	S S			·	·	
	200	Специальная геометр	ия для дисковых фрез.				

TPCN 1603PDSN	M8330	_	■ 195 0.20 −	_	_	_	185 0.20	_	_	_	-	_	_	_	_	_	_
	M8340	-	■ 175 0.20 −	-	_	_	165 0.20	_	-	-	-	_	-	-	_	-	_

		TF	PKN			
	IC (MM)	L (MM)	M (MM)	S (MM)	BCH	BS (MM)
1603 2204	9.530 12.700	16.50 22.00	2 4	3.18 4.76	1.20 1.20	1.30 1.50

S26

75 0.20 4.0

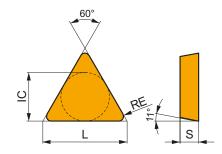


Применение инструм	иента, начальнь	ые знач	ения скор	ости ре	зания (vc), под	цачи (f)	и глуб	инь	і резан	іия (ар)). Для д	цоп	олните	2льны)	с расчет	ов восг	іользуі	ітесь п	рило	ожени	ıем Calc	ulator.
	192,240,584	RE		Р			M				K				N			S				Н	
Обозначение			vc	f	ap	VC	f	ap		VC	f	ap		VC	f	ар	VC	f	ap		vc	f	ap
	<u></u>	(MM)	(м/мин)	(мм/зуб)	(мм)	(м/ми	н) (мм/зуб)	(мм)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(mm/3y6)	(мм)	(м/мин) (мм/зуб) (мм)		(м/мин)	(мм/зуб)	(MM)
			Геометрі	ия с ней	і́тральн	іым пер	оедним	углом	ДЛЯ	я чисто	вой и г	толучи	сто	вой об	работі	ки.							
TPKN 1603PDER	M8330	-	195	0.15	4.0	_	-	-		185	0.15	4.0		_	-	-	-	-	-		-	-	-
	M8340	-	175	0.15	4.0	_	-	-		165	0.15	4.0		_	-	-	_	-	-		-	-	-
TPKN 2204PDER	8215	_	190	0.15	5.5	_	_	_		180	0.15	5.5		_	_	-	_	_	-		_	-	_
	M8330	_	1 90	0.15	5.5	_	_	_		180	0.15	5.5		_	_	-	-	_	-		_	_	_
	M8340	-	170	0.15	5.5	_	_	_		160	0.15	5.5		_	_	-	_	_	-		_	_	_
	,	0,16		S																			
	20°		Геометрі	ия с ней	і́тральн	іым пер	оедним	углом	ДЛЯ	я получ	истово	ой обра	або	тки.									
TPKN 1603PDSR	M8330	_	1 85	0.20	4.0	_	_	-		175	0.20	4.0		_	_	-	_	_	_		35	0.15	1.0
	M8340	_	165	0.20	4 N	_	_	_		155	0.20	4.0		_	_	_	_	_				_	

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

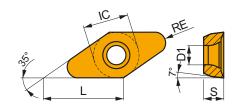
	THE PARTY OF	RE		Р			M				K				N			S			Н	
Обозначение		(мм)	(M/I	с f ин) (мм/зуб	ар) (мм)		rc f иин) (мм/	: а зуб) (м		VC (м/мин)	f (мм/зуб)	ар (мм)	(VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)
	/ - -	0,16	₹Û,	S																		
	20°		Геоме	грия с не	йтралы	НЫМ П	ередни	м угло	м дл	я получ	нистово	ой обра	боті	ки.								
TPKN 2204PDSR	H10	_	-		_	-			- Z	80	0.20	5.5		_	_	_	_	_	_	_	_	_
	M5315	_	2 23	5 0.20	5.5	-			- Z	220	0.20	5.5		_	_	_	_	_	_	45	0.15	1.0
	M8310	_	1 9	5 0.20	5.5	-			- Z	185	0.20	5.5		_	_	_	_	_	_	35	0.15	1.0
	M8330	_	1 7	5 0.20	5.5	-	-	-	- Z	165	0.20	5.5		_	_	_	_	_	_	35	0.15	1.0
	M8340	_	1 6	0.20	5.5	-	-	-	- 2	150	0.20	5.5		_	_	_	_	_	_	_	_	_
	M9325	_	2 2	0.20	5.5			-	- Z	205	0.20	5.5		_	_	_	_	_	_	40	0.15	1.0
	S26	_	7	5 0.20	5.5				- 1	_	_	_		_	_	_	_	_	_	_	_	_

		TPK	R		
	IC	L	M	S	BS
1603 2204	9.530 12.700	16.50 22.00	(мм) 2 4	3.18 4.76	1.40 1.40


PRAMET

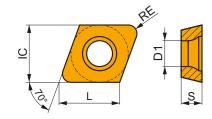
Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	PKENNISHI	RE			Р				M				K			N			S			1	н	
Обозначение		(MM)	(A	vc /мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)	V (M/N	с (f (мм/зуб)	ар (мм)
	√ - 0,1	_ .15°	1		S																			
	5°		Геом	етри	я для г	юлучи	исто	овой и	чернов	зой об	pa6	ботки.												
TPKR 1603PDSR	M8330	-		85	0.20	4.0		110	0.18	4.0		175	0.20	4.0	_	_	-	_	_	_	-	-	_	_
	M8340	-		65	0.20	4.0		95	0.18	4.0		155	0.20	4.0	_	_	-	_	_	_	-	-	_	_
TPKR 2204PDSR	M8330	_		75	0.20	5.5		105	0.18	5.5		165	0.20	5.5	_	-	-	_	_	_	-	-	_	_
	M8340	_		60	0.20	5.5		95	0.18	5.5		150	0.20	5.5	_	-	_	_	_	_	-	-	_	_
	M9325	_		220	0.20	5.5		_	_	_		205	0.20	5.5	_	_	_	_	_	_	-	-	_	_
	M9340	_		95	0.20	5.5		115	0.18	5.5		-	_	-	-	-	_	-	-	_	-	-	-	_



Применение инструм	лента, начальнь	іе значе	ения	скорс	ости ре:	зания (ч	/с), под	ачи (f)	и глуб	ИНЬ	і резан	ия (ар)). Для д	опол	ните	ельных	расчето)B B00	польз	уйтес	ь при	ложен	ием Cal	culator.
	P4/28/38/4	RE			Р			M				K				N			S				Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VС (м/ми	f н) (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		vc /мин)	f (мм/зуб)	ар (мм)	VC (M/MV			ар	VC (M/MM	f) (мм/зуб)	ар (мм)
4	Q		Гео	Е	ія с ней	тральн	ым пер	оедним	углом	, KO	торая	иожет (быть ис	ПОЛЬ	530B	ана для	точени	я.						
TPUN 110304	H10	0.4		_	-	-	_	_	_		90	0.10	0.8		_	_	_	_	_		-	_	_	_
	M8330	0.4		-	_	-	_	_	_		150	0.10	1.2		_	_	-	-	-		- 7	30	0.15	1.0
TPUN 110308	M8330	0.8		_	-	-	_	_	_		155	0.18	1.2		_	_	-	-	_		- 2	30	0.15	1.0
TPUN 160304	8215	0.4		155	0.15	4.0	_	_	-		145	0.15	4.0		-	_	-	_	-		-	_	_	-
	H10	0.4		_	-	-	_	_	-		65	0.15	4.0		-	-	-	-	-		-	_	-	-
	M8330	0.4		155	0.15	4.0	_	-	-		145	0.15	4.0		-	-	-	_	-		-	_	-	-
	S26	0.4		65	0.15	4.0	_	_	-		_	-	-		-	-	-	_	_		-	_	-	_
TPUN 160308	8215	8.0		185	0.15	4.0	_	_	-		175	0.15	4.0		_	-	-	_	-			_	_	_
	H10	8.0		-	-	-	_	-	-		80	0.15	4.0		-	-	-	_	-		-	_	-	-
	M8330	0.8		-	-	-	_	-	-		155	0.18	1.5		-	-	-	_	-		- 2	30	0.15	1.0
	S26	8.0		75	0.15	4.0	_	-	-		-	-	-		-	-	-	_	-		-	_	-	-
TPUN 160312	M8330	1.2		-	-	-	_	_	-		155	0.20	1.5		-	-	-	_	_		- 2	30	0.15	1.0
TPUN 220408	8215	8.0		170	0.20	5.0	_	_	-		160	0.20	5.0		-	-	-	-	-		-	_	-	-
	M8330	8.0		170	0.20	5.0	-	-	-		160	0.20	5.0		-	-	-	-	-		- 1	_	-	-
	S26	8.0		70	0.20	5.0	-	-	-		-	-	-		-	-	-	-	-		- 1	_	-	-
TPUN 220412	M8330	1.2		-	-	-	-	_	_	Ė	155	0.20	2.0		-	-	-	-	-		- 2	30	0.15	1.0

IC D1 L S (MM) (MM) (MM) (MM) 2205 12.700 5.20 22.00 5.50



Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

0.5	CHARLES	RE			Р			M				K				N			S			Н	
Обозначение				VC	f	ар	vc	f	ap		vc	f	ap		VC	f	ap	VC	f	ар	VC	f	ap
		(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)		(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)	(м/мин)	(мм/зуб)	(MM)
		23°	1	1	1	F																	
			По	ЗИТИВІ	ная гео	метрия	для пол	учисто:	вой и ч	чер	оновой	обрабо	отки цв	етн	ных сп	лавов.							
VCGT 220515F-FA	HF7	1.5		_	-	-	_	-	_		_	_	- 1		255	0.24	0.4	_	_	_	-	_	_
VCGT 220520F-FA	HF7	2.0		_	-	-	_	-	-		-	-	-		255	0.30	0.5	-	_	-	-	-	-
VCGT 220530F-FA	HF7	3.0		_	_	-	_	_	_		-	_	-		210	0.48	1.0	_	_	_	_	_	_

		XDHW	,	
	IC (MM)	D1	L (мм)	S (MM)
0702 10T3	6.500 10.000	2.95 3.95	6.90 10.60	2.38 3.97

PRAMET

Применение инструмента, начальные значения скорости резания (vc), подачи (f) и глубины резания (ар). Для дополнительных расчетов воспользуйтесь приложением Calculator.

	P47383384	RE			P			M				K			N	I			S				Н	
Обозначение		(MM)		VC (м/мин)	f (мм/зуб)	ар (мм)	VC (м/мин)	f (мм/зуб)	ар (мм)		VC (м/мин)	f (мм/зуб)	ар (мм)		/C мин) (мл		ар (мм)	VC (M/M)		ар (мм)		vc ⁽ мин)	f (мм/зуб)	ар (мм)
	Q_				E																			
			Ге	ометри	ія с ней	тральнь	ым пере	дним у	глом д	цля (фрезе	ровани	ия пазов											
XDHW 070210EN	M8310	1.0		310	0.10	1.0	-	_	-		290	0.10	1.0	-	-	-	-	_	-	-	6	60	0.15	1.0
	0, /20°	05		٥	S																			
	20		Гео	ометри	ія с ней	тральнь	ым пере	дним у	глом д	цля (фрезе	ровани	ия пазов											
XDHW 070210SN	M8310	1.0		310	0.10	1.0	_	_	-		290	0.10	1.0	-	-	_	- 1	_	-	-	6	60	0.15	1.0
	M8325	1.0		230	0.10	1.0	-	_	-		-	_	-	-	_	_	- 1	-	_	-		-	_	-
XDHW 10T310SN	M8310	1.0		275	0.15	1.0	_	-	-		260	0.15	1.0	-	-	-	-	_	_	-	5	55	0.15	1.0
	M8325	1.0		210	0.15	1.0	_	_	-		_	_	-	-	-	_	- 1	-	-	-		-	_	-

ФРЕЗЫ СО СМЕННЫМИ ПЛАСТИНАМИ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

КЛАССИФИКАЦИЯ ОБРАБАТЫВАЕМЫХ MATEPИAЛOB DORMER PRAMET

Группы обрабатываемых материалов «WMG» используются для простого и надежного выбора режущего инструмента с оптимальными режимами резания для конкретной заготовки. Dormer Pramet разделяет основные материалы заготовок на шесть групп по цвету:

- Синий: конструкционные стали (Р группа)
- Желтый: нержавеющие стали (М группа)
- Красный: чугун (К группа)
- Зеленый: цветные сплавы (N группа)
- Коричневый: жаропрочные и титановые сплавы (\$ группа)
- Серый: твердые материалы (Н группа)

Каждая из этих групп делится на подгруппы с учетом состава и структуры материала. Так, например, группа конструкционных сталей Р делится на четыре подгруппы:

- Р1 автоматные стали
- Р2 углеродистые стали
- Р3 легированные стали
- Р4 инструментальные стали

Окончательное деление учитывает свойства материала заготовки: твердость и предел прочности. Это делается для более точной рекомендации по выбору инструмента и режимов резания.

Таблица на следующей странице дает описание каждой группы обрабатываемых материалов с обозначениями.

	~	NOR	Y15Pb,			4FNOR		68	2CrMo,		0A, GB	89
Примеры материалов	A11, A12 (AISI 1108, EN 15S22, DIN 1.0723, SS 1922, ČSN 11120, BS 210A15, UNE F.210F, GB Y15, AFNOR 10F1, UNI CF10S20)	A30, A35 (AISI 1211, EN 11SMn30, DIN 1.0715, SS 1912, ČSN 11109, BS 230M7, UNE F.2111, GB Y15, AFNOR S250, UNI CF9SMn28)	AC14, AC40 (AISI 12L13, EN 11SMnPb30, DIN 1.0718, SS 1914, ČSN 12110, BS 210M16, UNE F.2114, GB Y15Pb, AFNOR S250Pb, UNI CF10SPb20)	СГТКП, СГ2ПС, СТ3СП (AISI 1015, EN C15, DIN 1.0401, SS 1350, ČSN 11301 , BS 080A15, UNE F.111, GB 15, AFNOR C18RR, UNI Fe360)	Сталь 40, Сталь 45 (AISI 1030, EN C30, DIN 1.0528, SS 1550, ČSN 12031, BS 080M32, UNE F.1130, GB 30, AFNOR AF50C30, UNI Fe590)	Сталь 58, Сталь 60 (AISI 1060, EN C60, DIN 1.0601, SS 1655, ČSN 12061, BS 080A62, UNE F513, GB 60, AFNOR 1C60, UNI C60)	15F, 15X (AISI 5015, EN 16M03, DIN 1.5415, SS 2912, ČSN 15020, BS 1501-240, UNE F.2601, GB 16Mo, AFNOR 15D3, UNI 16M03KW)	16XCH, 20XФA, 40X (AISI 4140, EN 42CrMo4, DIN 1.7225, SS 2244, ČSN 15142, BS 708M40, UNE F.8232, GB 42CrMo, AFNOR 42CD4, UNI 42CrMo4)	60C2A, 50XΦA (AISI 4140, EN 42CrMo4, DIN 1.7225, SS 2244, ČSN 15142, BS 708M40, UNE F.8232, GB 42CrMo, AFNOR 42CD4, UNI 42CrMo4)	Y8F, Y10, Y12A (AISI D2, EN X155CrVM012-1, DIN 1.2370, SS 2736, ČSN 19573, BS BD2, UNE F.520A, GB Cr12M01V1, AFNOR Z160CDV12, UNI X155CrVM0121KU)	XB4Φ, 6X4M2ΦC, XBΓ (AISI D2, EN X155CrVMo12-1, DIN 1.2370, SS 2736, ČSN 19573, BS BD2, UNE F.520A, GB Cr12Mo1V1, AFNOR Z160CDV12, UNI X155CrVMo121KU)	75XCMΦ, 90XMΦ (AISI D2, EN X15SCrVMo12-1, DIN 1.2370, SS 2736, ČSN 19573, BS BD2, UNE F.520A, GB Cr12Mo1V1, AFNOR Z160CDV12, UNI X15SCrVMo121KU)
*	1.33	1.49	1.53	1.14	1.00	0.89	0.92	0.74	0.63	0.55	0.47	0.38
WMG (Группы обрабатываемых материалов)	С повышенным содержанием серы; твердость < 240 НВ	С повышенным содержанием серы и фосфора; твердость < 180 НВ	С повышенным содержанием серы, фосфора и свинца; твердость < 180 HB	Содержание углерода <0,25%; твердость < 180 НВ	Содержание углерода <0,55%; твердость < 240 НВ	Содержание углерода >0,55%; твердость < 300 НВ	Отожженные; твердость < 180 НВ	Закаленные и отпущенные; твердость 180 — 260 НВ	Закаленные и отпущенные; твердость 260 — 360 НВ	Отожженные; твердость < 26 НRC	Закаленные и отпущенные; твердость 26 — 39 НRC	Закаленные и отпущенные; твердость 39 — 45 НRC
WMG	1.11	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	P4.3
Подгруппа		Автоматные стали (углеродистые стали с увеличенной обрабатываемостью резанием)			Нелегированные стали (низко-, средне- и высокоуглеродистые стали)			Легированные стали (углеродистые стали со степенью легирования ≤10 %)			Инструментальные стали Р4 (твердые стали для инструмента, штампов и пресс-форм)	
		₾.			a	e e	., 0	a			a	
Группа ISO						Конструкционные стали (содержание	легирующих элементов ≤ 10%; твердость < 45HRC)					
						c	_					

	401, AFNOR Z8C12,	130S17, UNE F.31S4, GB	BS 410S21, UNE F.3117,	425C11, UNE F.3402, GB	.3405, AFNOR Z44C14, UNI	.49, BS 305S17, UNE F.3513, GB	SS 309S24, UNE F.3312, GB	40, UNE F.3211, AFNOR	2562, ČSN 17265, BS 318513,	N 17465 , BS 301S13, UNE
Примеры материалов	04X17T, 08X13 (AISI S429, EN X7Cr14, DIN 1.4001, SS 2326, BS 434S17, UNE F.3401, AFNOR Z8C12, UNI X6Crīī12)	08X18F6, 12X17 (AISI 446, EN X10CrAl24, DIN 1.4762, SS 2322, ČSN 17113, BS 430S17, UNE F.3154, GB 10Cr17, AFNOR Z10CAS24, UNI X16Cr26)	15X11MΦ, 20X13 (AISI 430F, EN X14CrMoS17, DIN 1.4104, SS 2383, ČSN 17140, BS 410S21, UNE F.3117, AFNOR Z10CF17, UNI X10Cr517)	30X13, 40X13 (AISI 440C, EN X105CrMo17, DIN 1.4125, SS 2385, ČSN 17023, BS 425C11, UNE F.3402, GB 102Cr17Mo, AFNOR 2100CD17, UNI GX6CrNi 13 04)	65X13, 95X18 (AISI 420, EN X45Cr13, DIN 1.4034, ČSN 17029, BS 425C11, UNE F.3405, AFNOR 244C14, UNI X30Cr13)	02X18H11, 06X18H11 (AISI 304, EN X5CrNi18-12, DIN 1.4303, SS 2352, ČSN 17249, BS 305S17, UNE F.3513, GB 10Cr18Ni12, AFNOR 28CN18.12, UNI X7CrNi18 10)	08X18H10, 12X18H10T (AISI 309, EN X15CrNISI20-12, DIN 1.4828, ČSN 17251, BS 309S24, UNE F.3312, GB 1Cr23Ni13, AFNOR Z15CNS20.12, UNI 16CrNI23 14)	10X17H13M3T, 20X13H4F9 (AISI 5848, EN X45CrNiW18-9, DIN 1.4873, BS 331S40, UNE F.3211, AFNOR Z35CNWS14-4, UNI X45CrNiW 18 9)	03X22H6M2, 08X21H6M2T (AISI 329, EN X1-NICrMoCU25-20-5, DIN 1.4539, SS 2562, ČSN 17265, BS 318S13, UNE F.3552, GB 022Cr25NIMo2N, AFNOR Z1NCDU25.20)	03X21H21M4F6 (AISI 631 (17-7PH), EN X7CrNiAL17-7, DIN 1.4568, SS 2388, ČSN 17465 , BS 301S13, UNE F.3217, GB 07Cr17Ni7Al, AFNOR 29CNA17-07, UNI XS3CrMnNiN21 9)
7 8	1.22	1.03	1.08	0.89	0.75	1.00	0.86	7.00	0.75	0.64
WMG (Группы обрабатываемых материалов)	Твердость < 160 НВ	Твердость 160 — 220 НВ	М2.1 Отожженные, твердость < 200 НВ	Закаленные и отпущенные; твердость 200 — 280 НВ	После старения; твердость 280—380 НВ	Твердость < 200 НВ	Твердость 200 — 260 НВ	Твердость 260 — 300 НВ	Твердость < 300 НВ	Твердость 300 — 380 НВ
WW	M1.1	M1.2	M2.1	M2.2	M2.3	M3.1	M3.2	M3.3	M4.1	M4.2
Подгруппа	Ферритные нержавеющие стали	(неупрочняемые термооораюткои стали с повышенным содержанием хрома)		Мартенситные нержавеющие стали (упрочняемые термообработкой стали с повышенным содержанием хрома)			Аустенитные нержавеющие стали (с повышенным содержанием хрома и никеля)		Аустенитно-ферритные (дуплекс) или супераустенитные нержавеющие стали,	аустенитные дисперсионно твердеющие нержавеющие стали
	i	<u> </u>		M2			M3			M4
Группа ISO					Нержавеющие стали	(содержание хрома ≥ 11%)				
						E				

Группа ISO		Подгруппа	WMG	WMG (Группы обрабатываемых материалов)	~	Примеры материалов
			K1.1	Ферритный или феррито-перлитный; твердость < 180 НВ	1.35	C410, C415 (ASTM A48 Grade 20 (F11401), EN-JL-100, DIN GG-10 (0.6010), SS 0110, STN 422410, BS Grade 150, UNE FG10, GB HAT 100, AFNOR F110D, UNI G10)
	Σ	Серый чугун (с пластинчатым графитом)	K1.2	Феррито-перлитный или перлитный; твердость 180 — 240 НВ	1.00	CY20, CY25 (ASTM A48 Grade 30 (F12101), EN-JL-1030, DIN GG-20 (0.6020), SS 0120, STN 422420, BS Grade 220, UNE FG20, GB HT200, AFNOR Ft20D, UNI G20)
			K1.3	Перлитный; твердость 240—280 НВ	0.75	CH30, CH35 (ASTM A48 Grade 50 (F13501), EN-JL-1060, DIN GG-35 (0.6035), SS 0135, STN 422435, BS Grade 350, UNE FG35, GB HAT300, AFNOR Ft35D, UNI G35)
			K2.1	Ферритный; твердость < 160 НВ	1.39	K430-6, K435-10 (ASTM A602 Grade M3210 (F20000), EN-JM-1130, DIN GTS-35 (0.8135), SS 0815, BS B340/12, UNE Type A, AFNOR MN 35-10)
	72	Ковкий чугун (с компактным хлопьевидным графитом)	K2.2	Ферритный или перлитный; твердостъ 160 — 200 НВ	1.13	K445-7, K450-5 (ASTM A602 Grade M4504 (F20001), EN-JM-1040, DIN GTS-50-05 (0.8045), BS P50-05, AFN OR MB 45-7)
			K2.3	Перлитный; твердость 200 — 240 НВ	0.90	KH60-3, KY70-2 (ASTM A602 Grade M7002 (F20004), EN-JM-1140, DIN GTS-45 (0.8145), SS 0854, STN 422540, BS P 45-06, UNE Typ B, AFNOR MP 50-5, UNI GMN 45)
			K3.1	Ферритный; твердость < 180 НВ	1.23	B435, B440 (ASTM A536 Grade 60-40-18 (F32800), EN-JS-1030, DIN GGG-40 (0.7040), SS 0717, STN 422304, BS 420/12, UNE FGE 42-12, GB 0T 400, AFNOR FGS 400-12)
	₽	Высокопрочный чугун (с шаровидным графитом)	K3.2	Ферритный или перлитный; твердость 180—220 НВ	0.94	B450,B460 (ASTM A536 Grade 80-55-06 (F33800), EN-JS-1050, DIN GGG-50 (0.7050), SS 0727, STN 422305, BS 500/7, UNE FGE 50-7, GB QT 500-7, AFNOR FGS 500-7)
Чугун (содержание углерода > 2,14%)			K3.3	Перлитный; твердость 220 — 260 НВ	0.76	B470, B480 (ASTM A536 Grade 100-70-03 (F34800), EN-JS-1060, DIN GGG-60 (0.7060), SS 0732, STN 422306, BS 600/3, UNE FG70-2, GB QT 600-3, AFNOR FGS 600-3)
			K4.1	Аустенитный серый чугун; твердость < 180 НВ	1.14	ЧН11Г7Ш, ЧН15ДЗШ (ASTM A436 Type 1 (L-NiCuCr 15 6 2, F41000), EN-JL-3011, DIN GGL-NiMn 13 7 (0.6652), SS 0523, BS Grade F1, AFNOR FGL-Ni13Mn7)
			K4.2	Аустенитный высокопрочный чугун; твердость 180 — 240 НВ	0.86	ЧН19X3Ш, ЧН2ОД2Ш (ASTM A439 Type D-2B (S-NiCr 20 3, F43001), EN-JS-3021, DIN GGG-NiMn 23 4, SS 0776, BS Grade S2M, AFNOR FGS Ni23 Mn4)
	7	Аустенитный чугун	K4.3	Аустенитный высокопрочный чугун; твердость 240—280 НВ	0.63	4X22C (ASTM A897 Grade 110-70-11)
			K4.4	Аустенитный высокопрочный чугун; твердость 280 — 320 НВ	0.54	4X28 (ASTM A897 Grade 125-80-10, EN-JS-1100, DIN GGG-90 (5.3400))
			K4.5	Аустенитный высокопрочный чугун; твердость 320 — 360 НВ	0.45	4X32 (ASTM A897 Grade 2 (150-110-07), EN-JS-1110, DIN GGG-100 (5.3403))
			K5.1	Ферритный; твердость < 180 НВ	1.29	4BF30 (ASTM A842 Grade 300, EN-GJV-300, DIN GGV 30)
	K 5	Чугун с вермикулярным графитом	K5.2	Феррито-перлитный; твердость 180—220 НВ	0.97	4BF40 (ASTM A842 Grade 350, EN-GJV-350, DIN GGV 35 (5.2200))
			K5.3	Перлитный; твердость 220 — 260 НВ	0.75	4BF45 (ASTM A842 Grade 450, EN-GJV-450, DIN GGV 45)

Подгр иируемые а и ческие или и ческие или алы)	Подгруппа WMG (Группы обрабатываемых материалов) К _м с	Vистый алюминий и деформируемые 47, A35 (UNS A91200, EN AL99.6, DIN 3.0205, SS 4010, STN 424009, BS 1C, UNE L-3001, GB L5, AFNOR A4, твердость < 60 HB	N1.2 Деформируемые алюминиевые сплавы; 1.00 АД35, АМг2 (UNS A93004, EN AIMn0.5Mg0.5, DIN 3.0505, SS 4054, STN 424432, BS N31, UNE L-3831, GB LF2, твердость 60 — 100 HB AFNOR A-M1, UNI 3568)	N1.3 Деформируемые алюминиевые сплавы; 0.67 GB AIMg4.5Mn, AFNOR A-G4.5Mn, UNI P-AIMg4.4)	N2.1 TBepgoctь < 75 HB	N2.2 Твердость 75 — 90 НВ AK5M4, AM5 (UNS A02420, EN AlCu4Ni2Mg2, SS AlSi7MgFe, BS LM6, STN 424519, UNE Al-7SiMg, AFNOR A-S7G, UNI G-AISi7Mg)	N2.3 Твердость 90 — 140 HB 6-AIS:9Mg) AM4.5Kд, ВАЛ12 (UNS A03360, EN G-ALCu4NiMg2, SS ALS:10Mg, STN 424336, BS LM 30, AFNOR A-S10G, UNI G-AIS:9Mg)	N3.1 Леткообрабатываемые медные сплавы 0.70 М16, М3р (UNS C14700, EN CuPb1P, DIN 2.1498, STN 423214, BS C111, AFNOR CuZn3SPb2, UNI CuS(P0.01))	N3.2 обрабатываемостью, образующие короткую стружку 0.41 P-CuZn-40) P-CuZn-40 P-CuZn-40	N3.3 обрабатываемостью, образующие длинную стружку 6.21 БрА 9Ж4, БрНБТ (UNS C10100, EN CuAgo.1, DIN 2.1203, SS 5010, UNE CUSi3Mn1, AFNOR Cu-C2, UNI Cu-OF)	N4.1 Термопластичные полимеры O.70 Каutschuk, Latex, MF, MPF, PA, PAI, PC, PE, PEEK, PEI, PES, PET, PF, Phenolharze, PI, PMMA, Polyamide, Polyseter, Polyolefine, Polyolefine, Polysulfon, POM, PP, PPE, PPS, PS, PSU, PTFE, PU, PUR, PVDF, SAN, SI, Styrol, UF, Ureol)	и полусинтетические N4.2 Термореактивные полимеры Polyester, Polyimide, Polymethacrylimide, Polymethacrylimide, Polymethane) Polyester, Polyimide, Polymethacrylimide, Polymethane)	N4.3 Армированные полимеры или 0.29 Стеклопластик, углепластик, текстолит (СFK, GFK, GMT, Honeycomb, Kevlar, LFT, Organo, SMC)	
		Чистый алюмин твердос							Медные обрабать короткун					

	0,						ıloy,		>
Примеры материалов	BT1-0, Bт1-1 (UNS RSO2SO (Grade 1), EN Ti 99.6, DIN 3.7035, BS TA.2, UNE Ti-Po2, AFNOR T-40, AISI RSO2SO, 3.7025, T35, 2TA1, RSO400, 3.7035, 2TA2)	014, BT14 (UNS R56404 (Grade 29), EN Ti2Cu, DIN 3.7124, BS TA.21, UNE Ti-P11, AFNOR T-U2 , AISI TA6V, Ti-6Al-4V, Ti 10.2.3, Ti5553)	BT16, BT22 (UNS R54250 (Grade 38), EN TIAI6V4, DIN 3.7165, ČSN TIAI6VELI, BSTA. 13, UNE TI-P63, AFNOR T-A6V, AISI TA6V, TI-6AI-4V, TI 10.2.3, TI5553)	10X23H18, 08X16H13M2Б (UNS N08801 (Incoloy 801), EN X8 NICFAITi31–21, DIN 1.4959, BS NA 15, AFNOR Z8NC33–21, AISI A–286, Discaloy, Haynes 556, Iconel 909, Greek Ascolloy)	45X14H14B2M, 16X11H2B2MФ (UNS N19907, EN X6NICrī:MoVB25-15-2, DIN 1.4980, SS 2570, BS HR52, AFNOR Z6NCTDV25.15B, AISI A-286, Discaloy, Haynes 556, Iconel 909, Greek Ascolloy)	XH7010 (31/652), XH60BT (31/868), (UNS A09706 (Inconel 706), EN NICC25FeAI, DIN 2.4856, BS HR 6, ČSN Inconel 625, UNE F.3313, GB 1Cr16Ni35, AFNOR NC22FeDNB, AISI Inconel 718, 706 Waspalloy, Udimet 720, Inconel 625)	XH70BMTIO (3/1617), XH65BMTIO (UNS N07001, EN NICC20Co13Mo4Ti3AI, DIN 2.4654, BS HR 2, ČSN Waspaloy, AFNOR NCKD 20ATV, AISI Inconel 718, 706 Waspalloy, Udimet 720, Inconel 625)	JIK4 (UNS R30016 (Stellite 6b), EN CoCr20W15Ni, DIN 2.4964, AFNOR KC 20 WN, AISI Haynes 25, Stellite 21, Stellite 31)	K49X20B15H10 (UNS R30016 (Stellite 6b), EN GOCr20W15Ni, DIN 2.4964, AFNOR KC 20 WN, AISI Haynes 25, Stellite 21, Stellite 31)
*	1.94	1.72	1.44	1.33	1.17	1.00	0.83	0.78	0.67
WMG (Группы обрабатываемых материалов)	Твердость < 200 НВ	Твердость 200—280 НВ	Твердость 280 — 360 НВ	Твердость < 200 НВ	Твердость 200 — 280 НВ	Твердость < 280 НВ	Твердость 280—360 HB	Твердость < 240 HB	Твердость 240 — 320 НВ
WMG	51.1	51.2	51.3	52.1	52.2	33.1	53.2	1.32	54.2
Подгруппа		Чистый титан и титановые сплавы			maporipostrate cuitabal na ocnobe mediesa	Жалопполинь сппавы на основе никепа			maporipostrate cuidabal na ocrobe noodaliala
		51		5	75	S	3	3	.
ISO group				Жаропрочные и титановые сплавы	(сплавы с более высокой жаропрочностью и жаростойкостью в сравнении с	нержавеющими сталями)			
					S				

Примеры материалов	2 ЧХЗ, ЧЮХШ (UNS F45001, EN-GJS-1050-6, DIN 5.3406, SS 0512, BS Grade 2A)	0 HX16 (UNS F45003, EN-GJS-1400-1, DIN 5.3405, SS 0457, BS Grade 3D)	7 HC13 (UNS F45003, EN G-X260NICr4-2, DIN 0.9620, SS 0466, BS Grade S)	SXHB (AISI 4135, EN 34CrMo4, DIN 1.7220, SS 2234, STN 415131, BS 198, UNE F.1250, GB 35CrMo, AFNOR 35CD4, UNI 35CrMo4KB)	75XM (AISI 4135, EN 34CrMo4, DIN 1.7220, SS 2234, STN 415131, BS 198, UNE F.1250, GB 35CrMo, AFNOR 35CD4, UNI 35CrMo4KB)	11M5Φ, 9XBF (UNS T31501, EN 100MnCrW4, DIN 1.2510, SS 2140, STN 419413, BS BO1, UNE F.5220, GB 9CrWMn, AFNOR 90MWCrV5, UNI 95MNWCr5KU)	30XH2MA (UNST31501, EN 100MnCrW4, DIN 1.2510, SS 2140, STN 419413, BS B01, UNE F.5220, GB 9CrWMn, AFNOR 90MWCrV5, UNI 95MNWCr5KU)
~	1.52	0.90	0.77	1.00	0.82	0.64	0.54
WMG (Группы обрабатываемых материалов)	Твердость < 440 HB	Твердость < 55 НRC	Твердость > 55 НRC	Твердость < 51 НRC	Твердость 51 — 55 НRС	Твердость 55 — 59 НRC	Твердость > 59 НКС
WMG	H1.1	H2.1	H2.2	H3.1	Н3.2	H4.1	H4.2
Подгруппа	Н1 Закаленный и отпущенный чугун		яд закаленный чугун	Superior of the Country of the Count	Jakanehbir Claim Addin.		74 Sakanehhbie Clanu >>>>ikl
	I		-				-
Группа ISO				Твердые материалы (любые металлы и их сплавы ствердостью > 45 HRC)			
606				Ŧ			

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

Поправочный коэффициент C_{VCO} на скорость резания в зависимости от типа фрезы и условий обработки

(X.V			
Фрезы для обработки плоскостей с углом в плане 4560° и негативными пластинами (SHN06C, SHN09C, CHN09,)	1.15	1.00	0.85
Фрезы для обработки плоскостей с углом в плане 45° и позитивными пластинами (SOE06Z, SOE09Z, SOD05,)	1.15	1.00	0.85
Фрезы для обработки уступов с углом в плане 90° (SAD07D, SAD11E, SAD16E, SLN12, SLN16)	1.10	1.00	0.90
Копировальные торцевые фрезы (SRC10 – SRC20, SRD05 – SRD16,)	1.10	1.00	0.90
Копировальные концевые фрезы (K2-PPH, K2-SLC, K2-SRC, K3-CXP)	1.10	1.00	0.90
Дисковые фрезы (S90CN(XN), S90SN)	1.10	1.00	0.90
Длиннокромочные фрезы J(T)-CSD12X, J(T)-SAD11E, J(T)-SAD16E)	1.25	1.00	0.80
Фрезы для тяжелой обработки плоскостей (FSB22X, SPN13)	1.30	1.00	0.85
Фрезы для тяжелой обработки уступов (FTB27X)	1.25	1.00	0.85

Поправочный коэффициент C_{VCT} на скорость резания в зависимости от требуемой стойкости

мин	15	20	30	45	60	90	120
Операции общей обработки (чистовые и черновые операции)	1.23	1.13	1.00	0.89	0.81	0.72	_
Операции тяжелой обработки (тяжелые черновые операции)	_	_	1.23	1.13	1.00	0.89	0.81

Дополнительный поправочный коэффициент $C_{V\!C\!A}$ на скорость резания, учитывающий условия обработки

Условия обработки	C _{VcA}
Состояние заготовки (твердая корка после заготовительных операций литья или обработки давлением)	0.70
Нестабильные условия обработки	0.85
Обычные условия обработки	1.00
Стабильные условия обработки	1.20

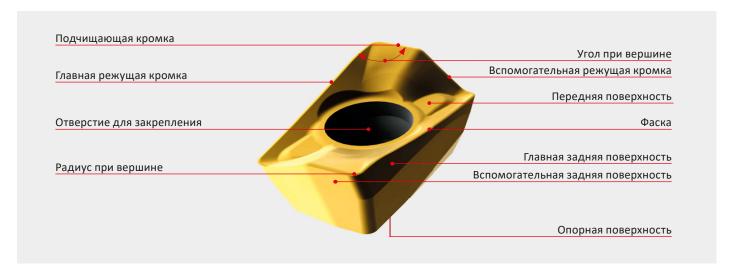
Поправочный коэффициент $C_{V\!cRCT}$ на скорость резания в зависимости от ширины фрезерования в % от диаметра фрезы

a。/ DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
(X.V	1.48	1.35	1.27	1.22	1.19	1.16	1.11	1.08	1.05	1.03	1.00	1.00	1.00	1.00

Поправочный коэффициент Cf_{zRCT} на подачу, компенсирующий изменение толщины стружки в зависимости от ширины фрезерования

a。/ DC	5 %	10 %	15 %	20 %	25 %	30 %	40 %	50 %	60 %	70 %	75 %	80 %	90 %	100 %
⇒x.f	2.20	1.60	1.35	1.20	1.10	0.95	0.85	0.75	0.85	0.95	1.00	1.00	1.00	1.00
(⊚) ⇒x.f	0.64	0.64	0.64	0.64	0.64	0.65	0.65	0.67	0.68	0.71	0.72	0.74	0.79	1.00

Результирующая скорость резания *vcc*

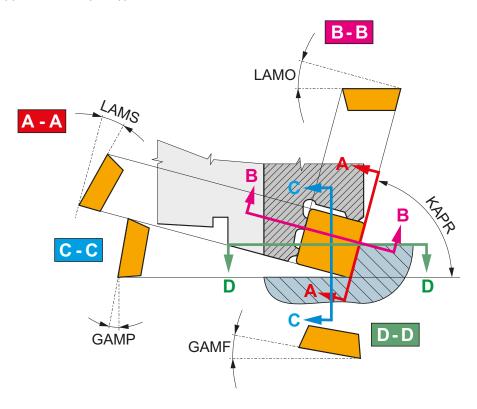

 $v_{cc} = v_c \cdot k_{vG} \cdot C_{vcO} \cdot C_{vcT} \cdot C_{vcA} \cdot C_{vcRTC}$

 $k_{{\it VG}}$ — коэффициент материала заготовки

v_c − начальное значение скорости резания

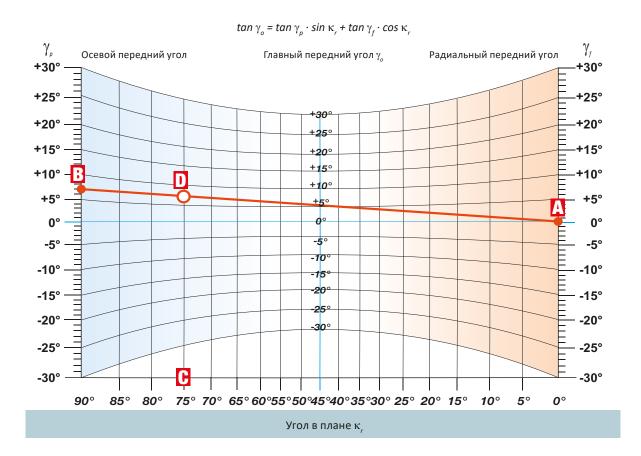
ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

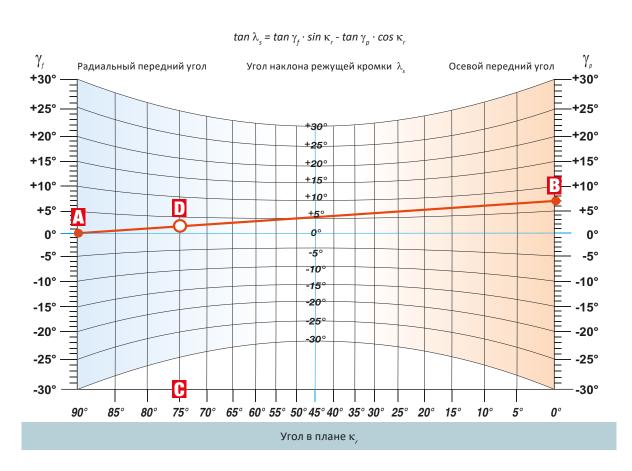
Элементы сменной пластины


Геометрия фрезы

Конструктивные (инструментальные) углы служат для основной ориентации положения пластины и имеют особое значение для конструкции корпуса фрезы. Геометрию фрезы определяют два передних угла: осевой передний угол GAMP (γ_p) и радиальный передний угол GAMF (γ_c).

Рабочие (функциональ́ные) углы — это главный угол в плане KAPR ($\kappa_{
ho}$), главный передний угол GAMO ($\gamma_{
ho}$) и угол наклона режущей кромки LAMS ($\lambda_{
ho}$).


- Главный передний угол $GAMO\left(\gamma_{o}\right)$ влияет на величину пластической деформации снимаемой стружки и, следовательно, на величину усилия резания и на уровень температуры в зоне резания. Чем больше угол $GAMO\left(\gamma_{o}\right)$, тем меньше усилие резания и потребляемая мощность. Следствием снижения величины угла $GAMO\left(\gamma_{o}\right)$ является возрастание усилий и температуры в зоне резания.
- Главный угол в плане KAPR ($\kappa_{_{r}}$) определяет толщину снимаемой стружки при выбранных подаче на зуб $f_{_{z}}$ и осевой глубине резания $a_{_{p}}$, что сказывается на усилиях резания, удельной нагрузке, износе и стойкости режущей кромки. Результатом уменьшения главного угла в плане KAPR ($\kappa_{_{r}}$) при постоянной подаче $f_{_{z}}$ является уменьшение толщины стружки h.
- Угол наклона режущей кромки LAMS (λ_s) вместе с главным углом в плане KAPR (κ_r) и передним углом GAMO (γ_s) определяет место "первого контакта" режущей кромки с заготовкой. Таким образом, он оказывает влияние на устойчивость режущей кромки к выкрашиванию, в частности при прерывистом резании. Одновременно он также влияет на направление схода стружки из зоны резания.


Конструктивные (инструментальные) углы фрезы

НОМОГРАММЫ ДЛЯ ОПРЕДЕЛЕНИЯ РАБОЧЕЙ ГЕОМЕТРИИ ФРЕЗЫ

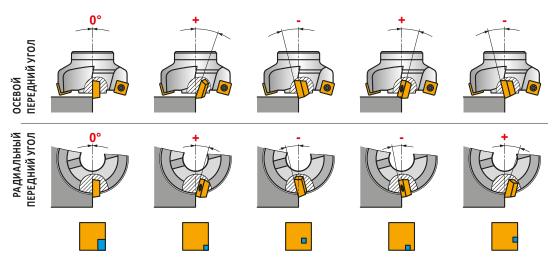
Номограммы для определения рабочей геометрии фрезы

НОМОГРАММЫ ДЛЯ ОПРЕДЕЛЕНИЯ РАБОЧЕЙ ГЕОМЕТРИИ ФРЕЗЫ

Выход режущей кромки из заготовки сопровождается с одной стороны резким снижением нагрузки на режущую кромку и температуры, а с другой стороны механическим ударом, вызванным релаксацией упругих деформаций, в особенности, поверхностных слоев.

Чтобы избежать резкого перепада температуры и неблагоприятной механической нагрузки на режущую кромку, желательно минимизировать толщину снимаемой стружки на выходе режущей кромки из заготовки. Однако она не должна быть слишком тонкой, потому что возникает опасность выкрашивания режущих кромок при отрыве частиц нароста, который образуется при снятии экстремально тонкой стружки, а также вероятность появления заусенца на заготовке.

В отличие от токарной обработки, где толщина снимаемой стружки в большинстве случаев является постоянной и зависит только от подачи и главного угла в плане, в процессе фрезерования эта величина изменяется постоянно (в течение одного оборота фрезы). Толщина стружки представляет собой одну из наиболее значимых величин для определения режимов резания при фрезеровании.

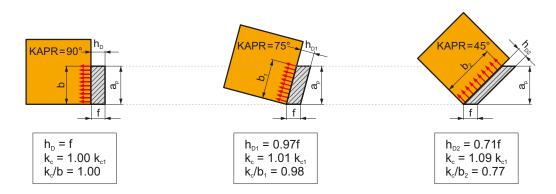

Ввиду значительного колебания толщины снимаемой стружки при различных методах фрезерования вводится, как правило, в расчет ее средняя величина $h_{\rm m}$.

Толщина стружки h меняется в течение одного оборота в зависимости от угла ϕ согласно зависимости $h_{\phi} = f_z \times sin \phi$ (кривая, изображающая эту зависимость, является синусоидой).

Максимальная толщина стружки, равная подаче на зуб f_z , достигается в зоне резания, расположенной в точке пересечения осевого сечения фрезы с припуском. Средняя величина толщины стружки h_m , которую снимает 1 зуб за 1 оборот, представляет собой высоту прямоугольника, а в качестве его ширины выступает радиальная глубина резания a_e . Величина средней толщины стружки h_m зависит от типа фрезы и от условий врезания, прежде всего от соотношения a_e/DC , подачи на зуб f_z и, естественно, от главного угла в плане $KAPR-\kappa_p$. Эта зависимость наглядно представлена на следующей странице.

ВЫБОР ИНСТРУМЕНТА

Геометрия фрезы

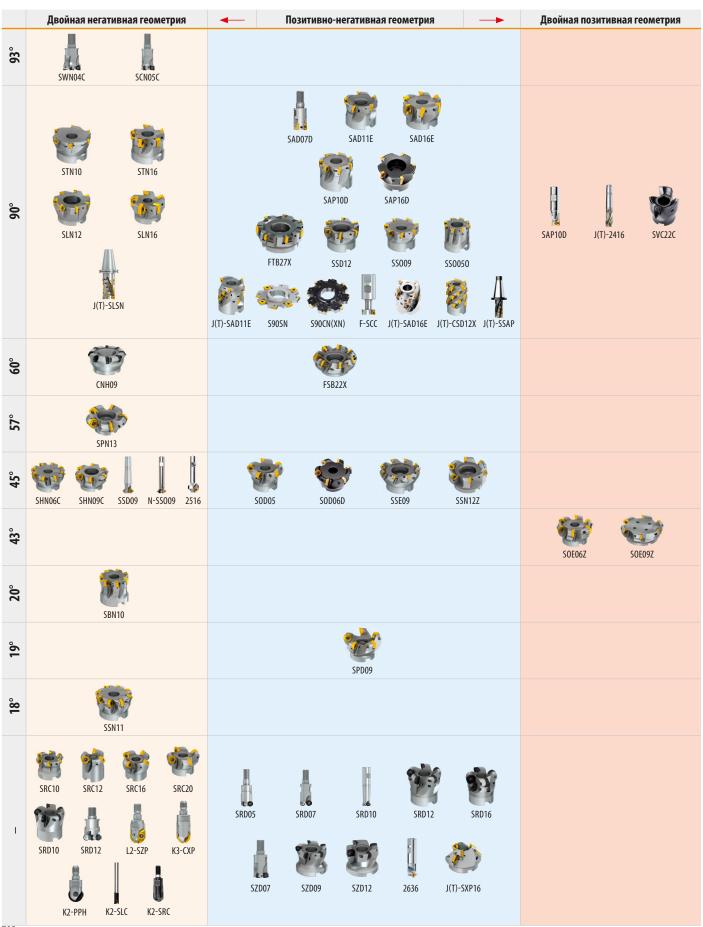


При выборе инструмента важно учитывать множество факторов, одним из которых является место первого контакта режущей кромки с материалом заготовки, которое следует по возможности удалять от вершины и главной режущей кромки пластины. Положение первого контакта зависит от базовой геометрии инструмента: углов $GAMO\left(\gamma_o\right)$, $LAMS\left(\lambda_s\right)$ и $KAPR\left(\kappa_p\right)$; а также от взаимного расположения фрезы и заготовки. Изображение сверху демонстрирует положение первого контакта для различных фрез в самом неблагоприятном случае, когда ширина фрезерования равна половине диаметра фрезы. Как видно, фрезы с двойной негативной геометрией в данном

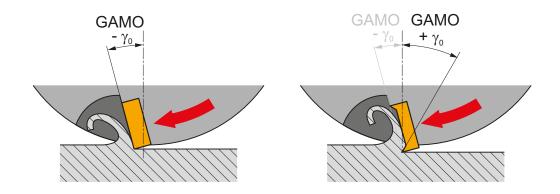
случае оказываются в наилучших условиях, тогда как фрезы с двойной позитивной геометрией находятся в тяжелых условиях — ударная нагрузка при первом контакте приходится на вершину инструмента.

Другим важным фактором будет удаление стружки. Фрезы с двойной негативной геометрией направляют стружку в зону резания, что затрудняет процесс обработки. Фрезы с двойной позитивной геометрией, напротив, более эффективно удаляют стружку из зоны резания. Поэтому оптимальным компромиссом будет комбинирование позитивных и негативных углов.

Угол в плане



При выборе фрезы с определенным углом в плане следует учитывать мощность, жесткость и динамические возможности оборудования, размер и тип оснастки. Например, при использовании мощного станка (50...100 кВт) с конусом шпинделя ISO 50 следует обрабатывать заготовки с максимальной глубиной резания и выбирать фрезы с углом в плане 58...90°. И напротив, при использовании оборудования малой мощности (до 10 кВт) с конусом шпинделя ISO 40 (НSK 63) глубина резания должна быть небольшой (2...3 мм), и оптимальным выбором инструмента будут фрезы с углом в плане 10...45° (в том числе высокоподачные фрезы или фрезы с круглыми пластинами). Компромиссным вариантом будет использование фрез с углом в плане 45°, которые способны обрабатывать заготовки

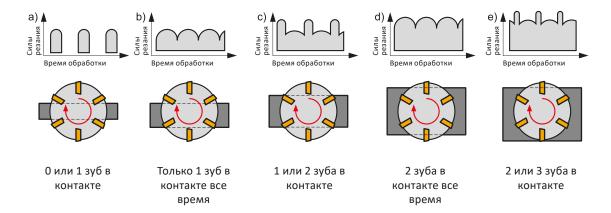

с достаточно большой глубиной резания, но с более высокой подачей (до 30%) в сравнении с фрезами, имеющими угол в плане 90°. Нагрузка при этом будет приблизительно одинаковой. При уменьшении угла в плане неминуемо снижается толщина стружки при одном значении подачи и увеличивается длина контакта материала заготовки и режущей кромки инструмента, меняется распределение сил резания и тепловой энергии. Чем меньше угол в плане инструмента, тем выше осевые силы резания, но при этом ниже радиальные силы резания. Снижение радиальных сил резания является преимущественным, так как позволяет снизить вероятность нежелательных отжатий и вибраций режущего инструмента.

ВЫБОР ИНСТРУМЕНТА

Классификация фрез Pramet по углу в плане и базовой геометрии (комбинации осевых и радиальных передних углов). Однако важно учитывать тот факт, что геометрия пластин может оказать влияние на данное распределение.

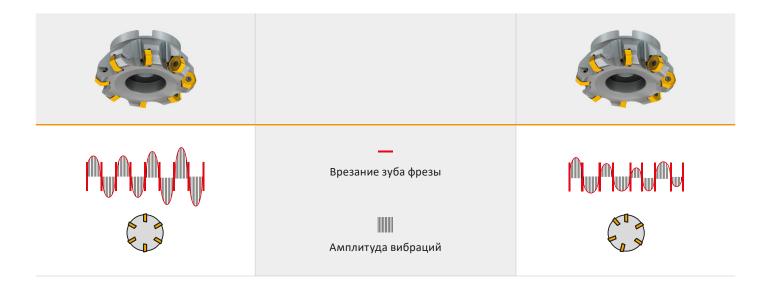
Комбинированная геометрия с учетом геометрии пластины

Приоритет использования фрез в зависимости от обрабатываемого материала заготовки. Более детальная информация по каждому типу фрез и геометриям пластин может быть найдена в соответствующем разделе каталога.


Условия			Выбор геометрии фрезы					
		Двойная негативная	Позитивно-негативная	Двойная позитивная				
	GAMP (A.R.)	-	+	+				
Геометрический параметр фрезы	GAMF (R.R.)	-	-	+				
	GAMO	-	+	+				
	Углеродистые и легированные стали (< 300 НВ)							
	Нержавеющие стали (< 300 HB)							
	Нержавеющие стали (> 300 НВ)							
Обрабатываемый	Чугун							
материал заготовки	Алюминиевые сплавы							
	Медные сплавы							
	Жаропрочные и титановые сплавы							
	Твердые стали (40 — 55 HRC)							

Количество зубьев фрезы

Количество зубьев фрезы определяет суммарную нагрузку в процессе резания, производительность и качество обработки.


Минутная подача	+	++	+++
Труднообрабатываемые материалы	+++	++	+
Требуемая мощность оборудования	+	++	+++
Шероховатость обработанной поверхности	+++	++	+

Шаг зубьев

Некоторые фрезы имеют переменный шаг зубьев, который не позволяет сформировать постоянные гармонические колебания, улучшая тем самым стабильность обработки и понижая вероятность появления вибраций. Фрезу с переменным шагом зубьев следует выбирать в случае обработки с высокой

вероятностью появления вибраций: фрезерование с большим вылетом инструмента, фрезерование с большой глубиной резания или фрезерование в нестабильных условиях с малой жесткостью.

ВЫБОР ГЕОМЕТРИИ РЕЖУЩИХ КРОМОК ПЛАСТИНЫ

При выборе сменной пластины следует уделять особое внимание микрогеометрии режущих кромок, на что указывают соответствующие пиктограммы каталога. Ниже представлены основные типы режущих кромок пластин.

Обзор конструкций режущих кромок пластин

Острые режущие кромки — рекомендуются для обработки цветных сплавов и полимеров. Острый режущий клин образует минимальную деформацию обрабатываемого материала в зоне резания, тем самым снижаются силы резания и вероятность наростообразования. Однако прочность режущих кромок будет ниже в сравнении с другими конструкциями.

Скругленные режущие кромки — за счет малого радиуса скругления (*RE*) повышается надежность и сопротивление механическому износу и выкрашиванию, а также снижается количество дефектов режущих кромок. Такая модификация применяется на всех пластинах без фасок для обработки большинства материалов заготовок.

Τ

K

P

Режущие кромки с фаской — фаска с шириной х и углом γ_x непосредственно на режущей кромке повышает прочность режущего клина, снижая вероятность выкрашивания и разрушения. В настоящий момент применяется редко, часто заменяется модификацией S.

Скругленные режущие кромки с фаской — в сравнении с модификацией Т проходят процесс улучшения в виде дополнительного скругления кромок с формированием фаски. Такая модификация еще больше повышает сопротивление режущего клина механическим повреждениям в процессе обработки.

Режущие кромки с двойной фаской — двойная фаска с шириной x_1 и x_2 , а также углами γ_{x1} и γ_{x2} дополнительно повышает прочность режущего клина и сопротивление механическим повреждениям в процессе обработки. Редко применяется на пластинах для фрезерования, только для самых тяжелых условий обработки.

Скругленные режущие кромки с двойной фаской — в сравнении с модификацией К проходят процесс улучшения в виде дополнительного скругления кромок сформированием двойной фаски. Такая модификация еще больше повышает сопротивление режущего клина механическим повреждениям в процессе обработки.

705

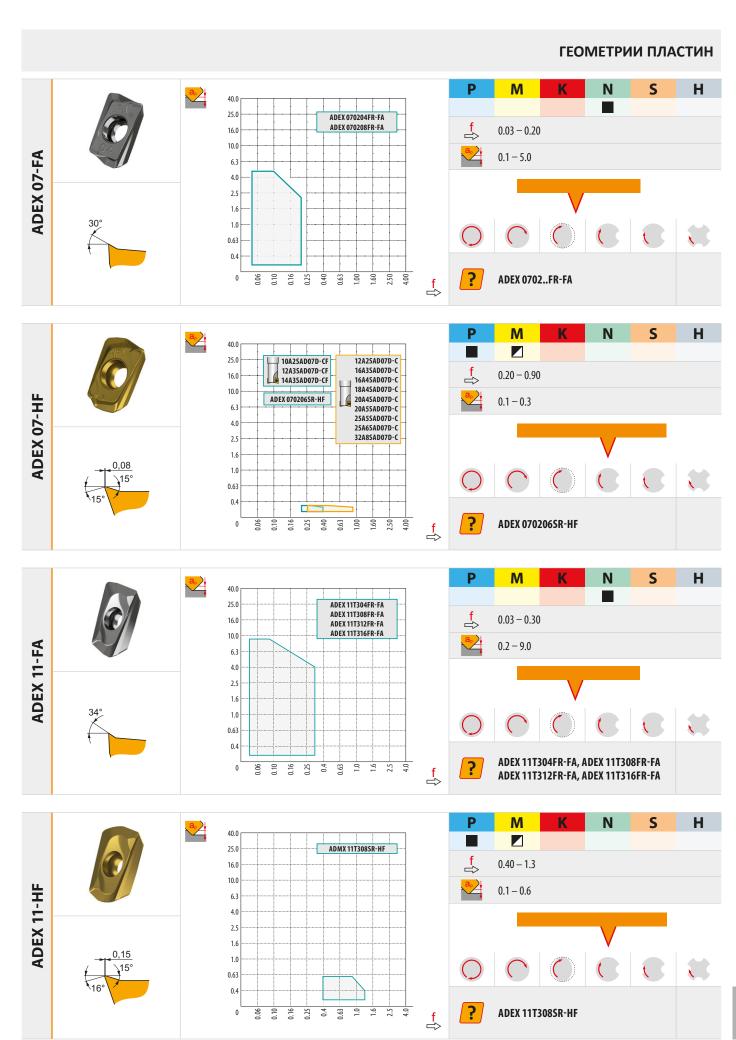
ГЕОМЕТРИИ ПЛАСТИН ДЛЯ ФРЕЗЕРОВАНИЯ – АЛФАВИТНЫЙ УКАЗАТЕЛЬ

Геометрия пластин для фрезерования

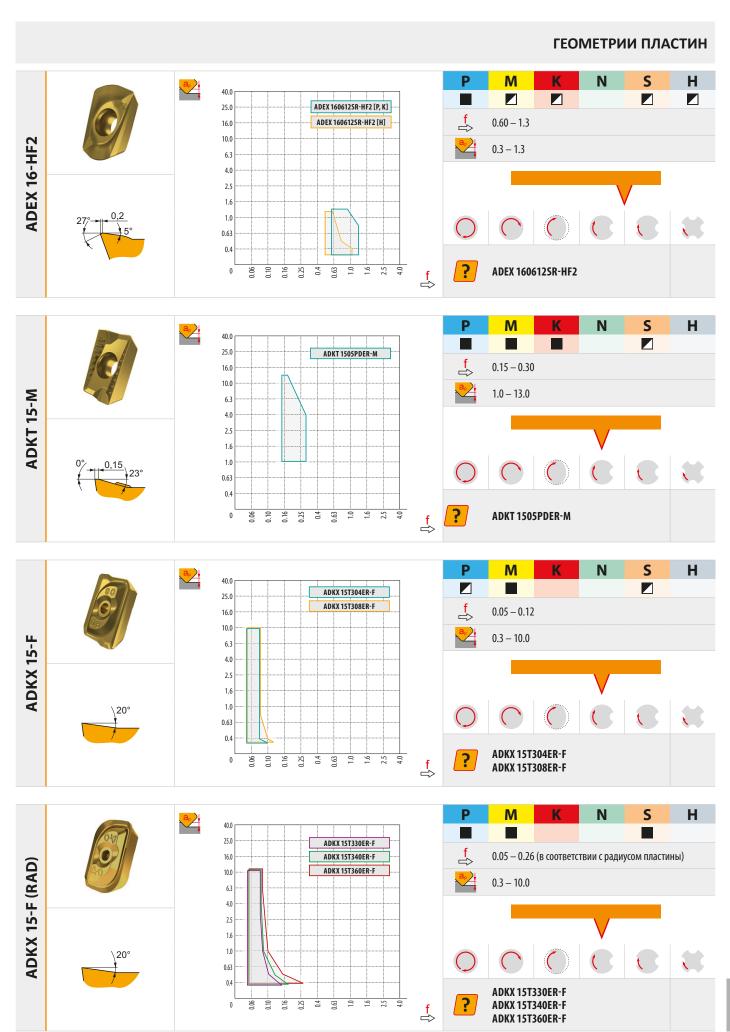
Таблицы ниже позволят выбрать геометрию пластины более точно с учетом групп обрабатываемых материалов, технологических особенностей обработки и режимов резания. При выборе геометрии необходимо учитывать тип корпуса фрезы.

Геометрия пластин	
для фрезерования	
A	
ADEX 07-FA	707
ADEX 07-HF	707
ADEX 11-FA	707
ADEX 11-HF	707
ADEX 11-HF2	708
ADEX 16-FA	708
ADEX 16-FM	708
ADEX 16-HF	708
ADEX 16-HF2	709
ADKT 15-M	709
ADKX 15-F	709
ADKX 15-F (RAD)	709
ADMX 07-F	710
ADMX 07-M	710
ADMX 11-F	710
ADMX 11-M	710
ADMX 11-MF	711
ADMX 11-MM	711
ADMX 11-R	711
ADMX 16-F	711
ADMX 16-M	712
ADMX 16-MF	712
ADMX 16-MM	712
ADMX 16-R	712
ANHX 10-F	713
APET 15EN	713
APET 15SN	713
APET 16-FA	713
APEW 15ER	713
APEW 15ER	714
APKT 10-FA	714
APKT 10-FA	714
APKT 16-GM	715
APKT 16-HM	715
APMT 16 ER-R	715
APMT 16 SR-R	715
APMT 16-F	716
APMT 16-FM	716
B	74.6
BNGX 10-HM	716
BNGX 10-M	716
BNGX 10-MM	717
(
CCMX-TS1	717
CNHQ 10	717
CNHX 05-WM	717
CNM 563	718
Н	
HNEF 09-F	718
HNEF 09-M	718
	710
HNEF 09-W	718
HNEF 09-W HNGX 06-F	719

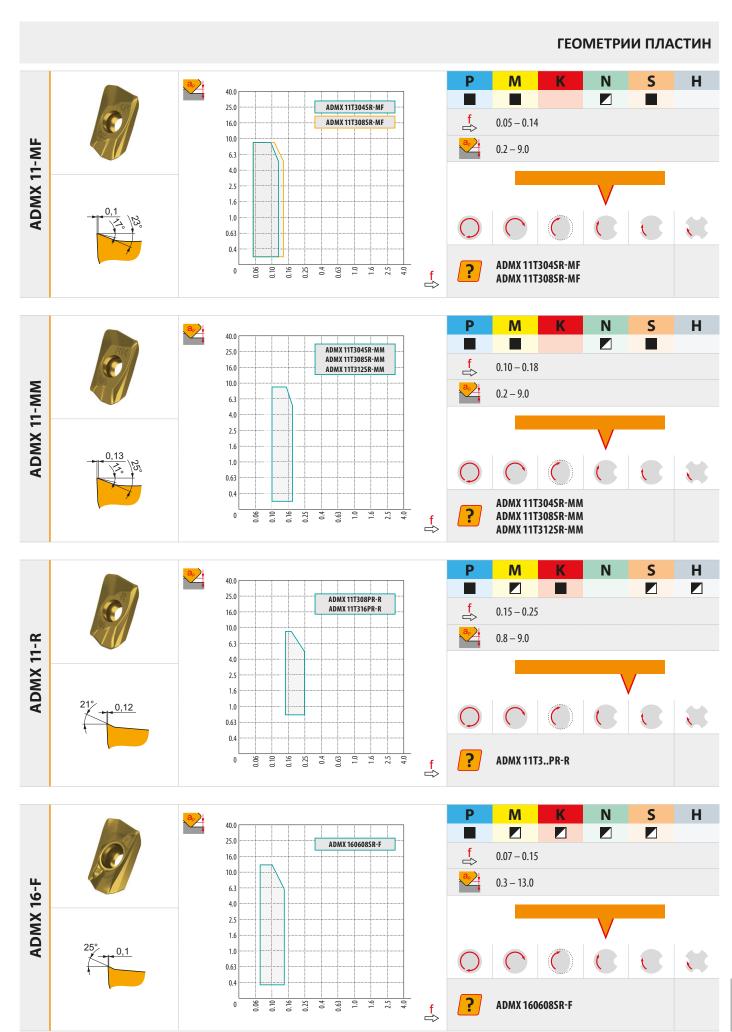
Геометрия пластин	Ш
для фрезерования	
HNGX 06-R	719
HNGX 09-F	719
HNGX 09-FF	720
HNGX 09-M	720
HNGX 09-R	720
HNMF 09-R	720
L	
LC 12-CH	721
LC 12-RE	721
LC -KP	721
LC -KPF	721
LNET 16-M	722
LNET 16-R	722
LNG(U)X 12-M	722
LNGU 16-FA	722
LNGU 16-M	723
LNGX 12-F	723
LNGX 12-FA	723
LNGX 12-MF	723
LNGX 12-MM	724
LNGX 12-R	724
LNMU 16-F	724
LNMU 16-M	724
LNMU 16-R	725
0	
ODEW 06	725
ODKT 05-F	725
ODK(M)T 05-FM	725
ODMT 05-R	726
ODMT 06	726
ODMX 06	726
OEHT 06-FA	726
0EHT 06-M	727
OEHT 06-MF	727
OEHT 06-MM	727
OEHT 09-M	727
OEHT 09-MM	728
OFKR 07-M	728
P	
PDKT 09-FM	728
PDKX 09-FM	728
PDMW 09	729
PDMX 09-M	729
PDMX 09-R	729
PNMQ 13	729
PNMU 13-M	730
PPH -CL1	730
PPH -CL4	730
PPHE-SM1	730
PPHF -CE1	731
PPHT-A2	731
R	
RC	731
RC-F	731

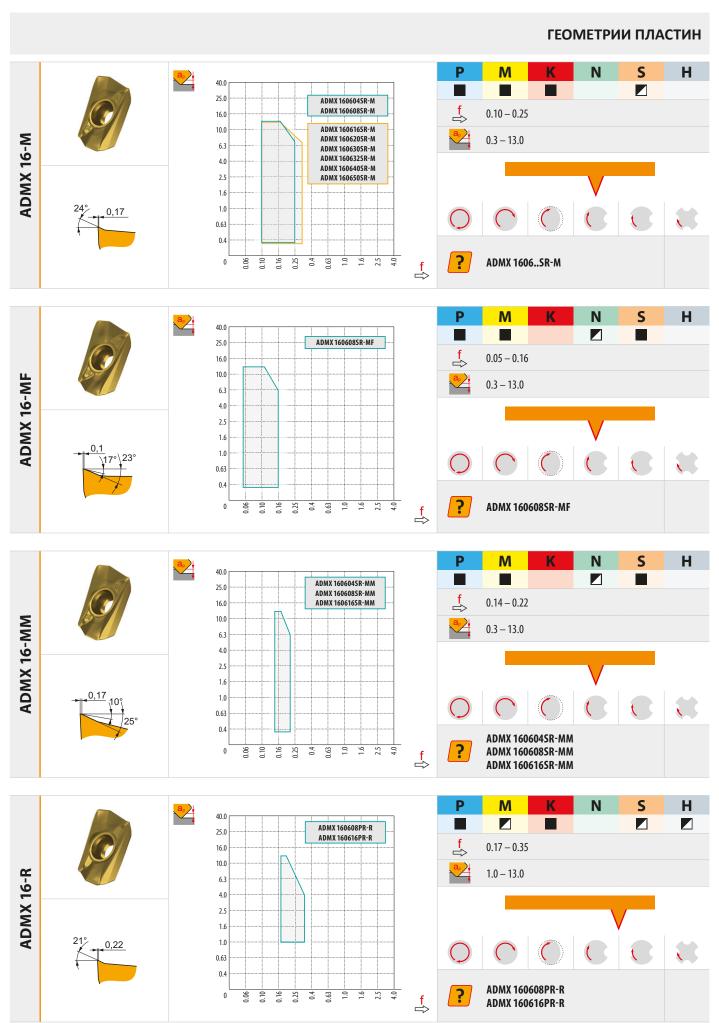

Геометрия пластин	
для фрезерования	
RCMT 12EN-R	732
RCMT-F	732
RCMT-M	732
RCMT-R	732
RCMT SN-R	733
RDET	733
RDEW	733
RDEX 12	733
RDEX 16	734
RDGT 07	734
RDGT 10	734
RDGT 12	734
RDGT 12-F	735
RDGT 12-FM	735
RDHT-FA	735
RDHX 05	735
RDHX MOT	736
RDMT 12	736
RDMT 12 RDMT -R	736
	736
RDMX	737
REHT -MM	737
RPET 12	737 737
RPET 15-M	
RPEW 12	738 738
RPEW 15	738
RPEX -12	738
S S	730
SBKX 22	739
SBMR 22	739
SBMR 22-R	739
SDEW 09EN	739
SDEW 09SN	740
SDEX 09-74	740
SDGX 12-FM	740
SDK(M)T 12-FM (IM)	740
SDKT 12-F (IM)	741
SDMT 12-F	741
SDMT 12-F (IM)	741
SDMT 12-M	741
SDMT 12-R	742
SDMT 12-R (IM)	742
SDMX 12-M	742
SEEN 12FN	742
SEEN SN	743
SEER EN	743
SEER SN	743
SEET 09	743
SEET 12EN	744
SEET 12SN	744
SEET 12-FA	744
SEET 12-PM	744
CEEW 13 EN	745

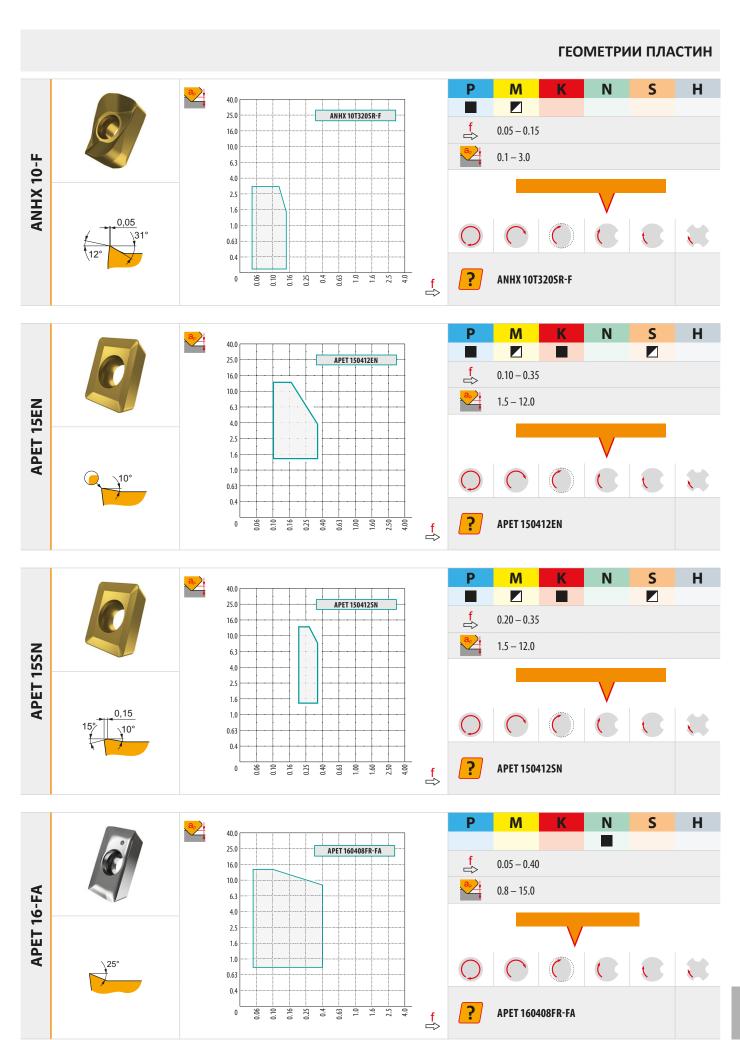
SEEW 12 EN

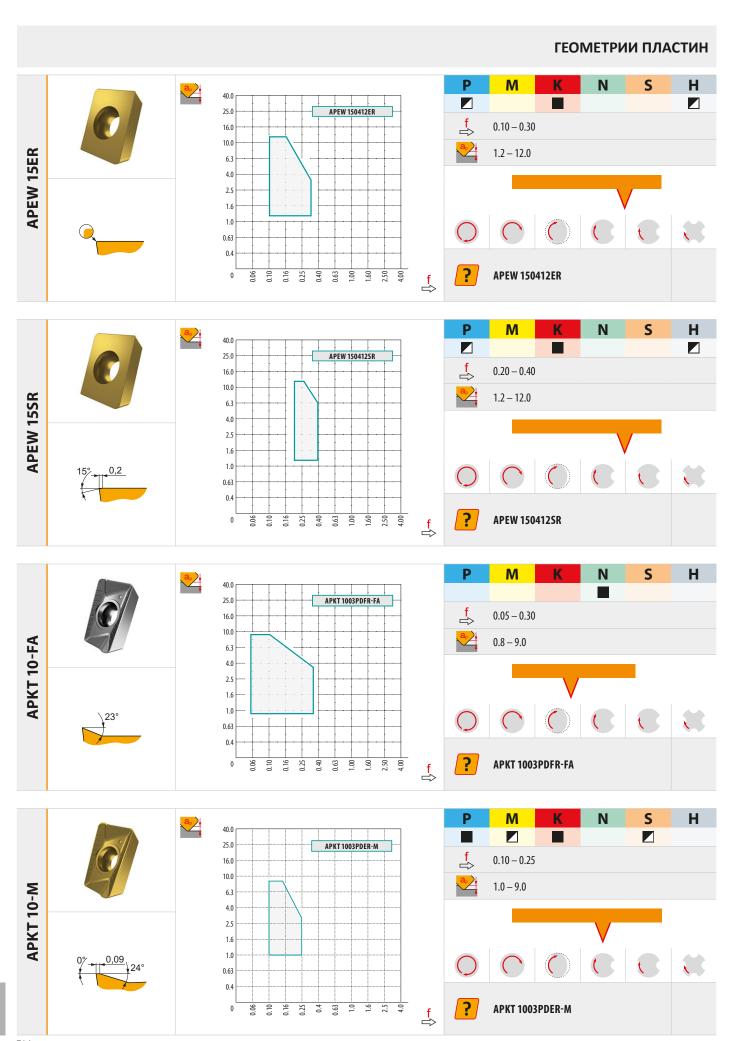

745

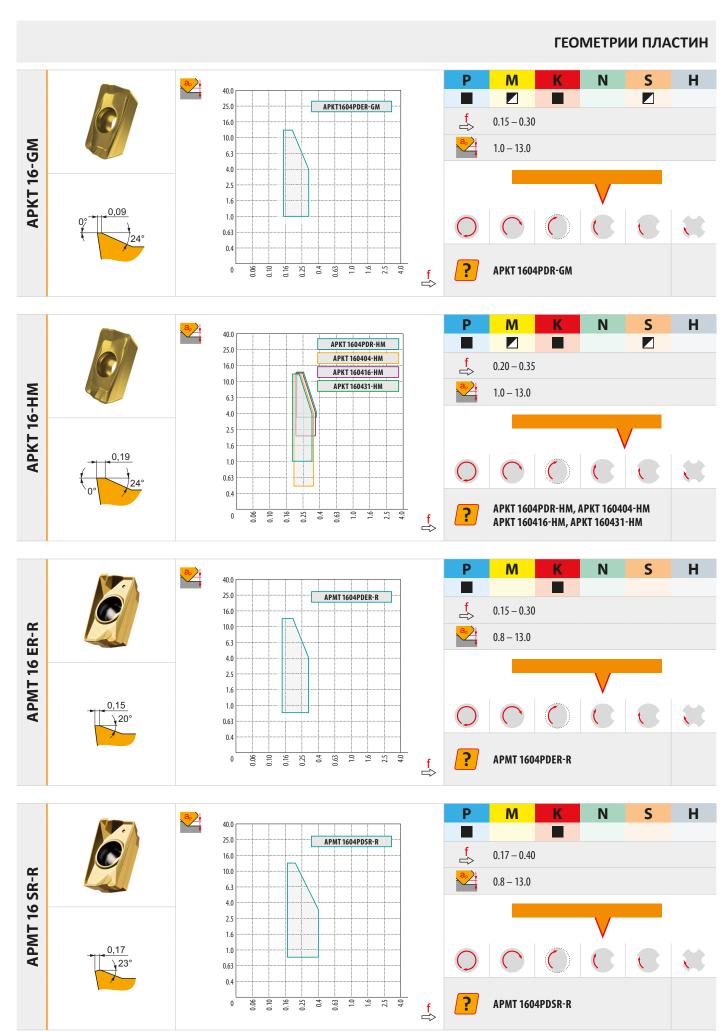
SEEW 12 SN 745 SEMT 09 745 SFCN 12 745 SNET 13-M 746 SNGX 11-M 746 SNGX 11-M 746 SNGX 11-M 746 SNGX 13-M 746 SNGX 13-M 747 SNHF -M 747 SNHF -M 747 SNHQ 12TN 748 SNHQ 12TN 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNK(M)T 12-M 748 SNKX 749 SNMT 12-R 749 SNUN 749 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-M 750 SPET 12S 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 TNGX 16-FM 754 TNGX 10-FA 754 TNGX 10-FA 755 TNGX 16-FA 756 TPKN SR 756 TPKN SR 756 TPKN SR 756 TPKN SR 756 TPKN SR 756	Геометрия пластин	Ш
SEMT 09 745 SFCN 12 745 SFCN 12 745 SNET 13-M 746 SNGX 11-M 746 SNGX 11-M 746 SNGX 11-M 746 SNGX 13-M 746 SNGX 13-M 747 SNHF -M 747 SNHF -M 747 SNHN 747 SNHQ 11 747 SNHQ 12TN 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNKX 749 SNMT 12-M 749 SNMT 12-M 749 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 755 SPEW 12EN 750 SPEW 12EN 750 SPEW 12E	для фрезерования	
SFCN 12 745 SNET 13-M 746 SNGX 11-M 746 SNGX 11-M 746 SNGX 11-MM 746 SNGX 13-M 746 SNGX 13-M 747 SNHF -M 747 SNHF -M 747 SNHF -M 747 SNHQ 12TN 748 SNHQ 12TN 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHX 749 SNMT 12-M 749 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 TNGX 16-FA 755 TNGX 10-FA 754 TNGX 10-FA 754 TNGX 10-FA 755 TNGX 16-FA 756 TPKN SR 756 TPKN SR 756 TPKN SR 756 TPKN SR 756 TPKN SR 756	SEEW 12 SN	745
SNET 13-M 746 SNGX 11-M 746 SNGX 11-M 746 SNGX 11-MM 746 SNGX 13-M 746 SNGX 13-M 747 SNHF -M 747 SNHF -M 747 SNHN 747 SNHQ 11 747 SNHQ 12TN 748 SNHQ 12TN 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNHX 749 SNMT 12-M 749 SNMT 12-M 749 SNMT 12-R 749 SNUN 749 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 12SN 750 SPEW 12SN 750 SPEW 1	SEMT 09	745
SNGX 11-M 746 SNGX 11-MM 746 SNGX 13-M 746 SNGX 13-R 747 SNHF -M 747 SNHF -M 747 SNHN 747 SNHQ 11 747 SNHQ 12TN 748 SNHQ 12EN 748 SNHQ 12EN 748 SNHQ 12TL 748 SNHQ 12TL 748 SNK(M)T 12-M 749 SNMT 12-R 749 SNMT 12-R 749 SNMT 12-R 749 SNMT 12-R 750 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 755 SPEW 12EN 750 SPEW 12EN	SFCN 12	745
SNGX 11-MM 746 SNGX 13-M 746 SNGX 13-M 746 SNGX 13-R 747 SNHF -M 747 SNHF -M 747 SNHN 747 SNHQ 11 747 SNHQ 12TN 748 SNHQ 12EN 748 SNHQ 12EN 748 SNHQ 12TRL 748 SNKX 749 SNMT 12-M 748 SNKX 749 SNMT 12-R 749 SNMT 09-M 750 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 755 SPEW 1752 SPEW 1753 SPUN 753 SPUN 753 SPUN 753 SPUN 753 SPUN 753 SPUN 753 THANGX 10-F 754 TNGX 10-F 755 TNGX 16-F 756 TPKN SR 756 TPKN SR 756 TPKN SR 756	SNET 13-M	746
SNGX 13-M 746 SNGX 13-R 747 SNHF -M 747 SNHN 747 SNHQ 11 747 SNHQ 12EN 748 SNHQ 12EN 748 SNKQ 12EN 748 SNKX 749 SNMT 12-M 748 SNKX 749 SNMT 12-R 749 SNMT 09-M 750 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12EN 750 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 751 SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR 753 753 T 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F <t< th=""><th>SNGX 11-M</th><th>746</th></t<>	SNGX 11-M	746
SNGX 13-R SNHF -M SNHF -M SNHN 747 SNHN 747 SNHN 11 747 SNHQ 11 748 SNHQ 12TN 748 SNHQ 12EN SNHQ 12TRL SNKX 749 SNMT 12-M SNMT 12-M SNMT 12-R SNUN 749 SOMT 09-M SOMT 09-M SOMT 09-M SOMT 09-P 750 SPET 12EN 750 SPET 12EN 750 SPET 12S SPEW 12SN 751 SPEW 12SN 751 SPEW 12SN T51 SPEW 12SN T52 SPEW 12SN T51 SPEW 12SN T50 SPEW 1	SNGX 11-MM	746
SNHF-M 747 SNHN 747 SNHN 747 SNHN 747 SNHQ 11 747 SNHQ 12TN 748 SNHQ 12EN 748 SNHQ 12EN 748 SNHQ 12TRL 748 SNKX 749 SNMT 12-M 749 SNMT 12-R 749 SNUN 749 SOMT 05-M 749 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 15SN 755 SPE	SNGX 13-M	746
SNHN 747 SNHQ 11 747 SNHQ 11 747 SNHQ 12TN 748 SNHQ 12EN 748 SNHQ 12EN 748 SNHQ 12TRL 748 SNKX 749 SNMX 749 SNMT 12-M 749 SOMT 05-M 749 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 15SN 755 SPEW 1	SNGX 13-R	747
SNHQ 11 747 SNHQ 12TN 748 SNHQ 12EN 748 SNHQ 12EN 748 SNHQ 12TRL 748 SNKQ 12TRL 748 SNKX 749 SNMX 749 SNMT 12-R 749 SOMT 05-M 749 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 15SN 75	SNHF -M	747
SNHQ 12TN 748 SNHQ 12EN 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNK(M)T 12-M 748 SNKX 749 SNMT 12-R 749 SNMT 12-R 749 SOMT 05-M 749 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 10SN 755 SP	SNHN	747
SNHQ 12EN 748 SNHQ 12TRL 748 SNHQ 12TRL 748 SNK(M)T 12-M 748 SNKX 749 SNMT 12-R 749 SNUN 749 SOMT 05-M 749 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 12SN 750 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 750 SPEW 12	SNHQ 11	747
SNHQ 12TRL 748 SNK(M)T 12-M 748 SNKX 749 SNKX 749 SNMT 12-R 749 SNUN 749 SOMT 05-M 749 SOMT 09-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 12SN 750 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 755 SPEW 12SN 750	SNHQ 12TN	748
SNK(M)T 12-M 748 SNKX 749 SNKX 749 SNKX 749 SNMT 12-R 749 SNUN 749 SOMT 05-M 749 SOMT 05-M 750 SOMT 09-M 750 SPET 12EN 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 751 SPEW 12SN 755 SPEW 12SN 750 SPEW 12SN 750 SPEW 1	SNHQ 12EN	748
SNIKX 749 SNMT 12-R 749 SNUN 749 SNUN 749 SOMT 05-M 749 SOMT 05-M 750 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 751 SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR(L) 753 SPUN 753 SPUN 753 SPUN 753 SPUN 753 TTBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN ER 756 TPKN SR 756 TPKN SR 756 TPKR 756 TPKR 756 TPKR 756	SNHQ 12TRL	748
SNMT 12-R 749 SNUN 749 SOMT 05-M 749 SOMT 05-M 750 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12SN 751 SPEW 12SN 751 SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR(L) 753 SPUN 753 SPUN 753 SPUN 753 SPUN 753 TTHMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPKR 756	SNK(M)T 12-M	748
SNUN 749 SOMT 05-M 749 SOMT 05-M 750 SOMT 09-MI 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPGN 751 SPGN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR(L) 753 SPUN 753 SPUN 753 SPUN 753 T TBMR 27 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 755	SNKX	749
SOMT 05-M 749 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-M 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPGN 751 SPGN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDSR(L) 753 SPUN 753 SPUN 753 SPUN 753 T TBMR 27 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN SR 756 TPKN SR 756 TPKN SR 756 TPUN 757	SNMT 12-R	749
SOMT 09-M 750 SOMT 09-MI 750 SOMT 09-MI 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 751 SPEW 12EN 751 SPEW 12EN 751 SPGN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKN EDER(L) 753 SPUN 753 SPUN 753 TTBMR 27 753 TTBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN SR 756 TPKN SR 756 TPUN 757	SNUN	749
SOMT 09-MI 750 SOMT 09-P 750 SPET 12EN 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 751 SPEW 12SN 751 SPGN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKN EDER(L) 752 SPKN 25 753 SPUN 753 SPUN 753 SPUN 753 T TBMR 27 753 T CMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN SR 756 TPKN SR 756 TPUN 757	SOMT 05-M	749
SOMT 09-P 750 SPET 12EN 750 SPET 12S 751 SPEW 12EN 751 SPEW 12EN 751 SPEW 12SN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKN EDER(L) 753 SPUN 753 SPUN 753 SPUN 753 T TBMR 27 753 T CMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN SR 756 TPKN SR 756 TPUN 757	SOMT 09-M	750
SPET 12EN 750 SPET 12S 751 SPEW 12EN 751 SPEW 12SN 751 SPGN 751 SPGN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKN EDER(L) 753 SPUN 753 SPUN 753 SPUN 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	SOMT 09-MI	750
SPET 12S 751 SPEW 12EN 751 SPEW 12SN 751 SPGN 751 SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKN EDER(L) 753 SPUN 753 SPUN DS 753 T T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 16-F 755 TNGX 16-M 755 TNJF 12 755 TNJF 12 755 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	SOMT 09-P	750
SPEW 12EN 751 SPEW 12SN 751 SPGN 751 SPGN 751 SPGN 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKN EDER(L) 753 SPUN 753 SPUN 753 SPUN 753 SPUN 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-FA 756 TPKN ER 756 TPKN ER 756 TPKN SR 756 TPUN 757	SPET 12EN	750
SPEW 12SN 751 SPGN 751 SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKR 752 SPKX 753 SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 16-F 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	SPET 12S	751
SPGN 751 SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKR 752 SPKX 753 SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	SPEW 12EN	751
SPGN DZ 752 SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKR 752 SPKX 753 SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPUN 757	SPEW 12SN	751
SPKN EDSR(L) 752 SPKN EDER(L) 752 SPKR 752 SPKX 753 SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 16-FA 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPUN 757	SPGN	751
SPKN EDER(L) 752 SPKR 752 SPKR 752 SPKX 753 SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-F 754 TNGX 10-F 755 TNGX 16-F 755 TNGX 16-F 755 TNGX 16-F 755 TNGX 16-M 75 TNGX 16-M 75 TNGX 16-M 75 TNGX 16-M 75 TNGX 16-M 75 TNGX 16-M 7	SPGN DZ	752
SPKR 752 SPKX 753 SPUN 753 SPUN 753 SPUN 25 753 T TBMR 27 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-FA 755 TNGX 16-FA 756 TPKN GR 756 TPKN GR 756 TPUN 757	SPKN EDSR(L)	752
SPKX 753 SPUN 753 SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-FA 755 TNGX 16-FA 756 TPKN GR 756 TPKN GR 756 TPUN 757	SPKN EDER(L)	752
SPUN 753 SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-FA 755 TNGX 16-FA 755 TNGX 16-FA 755 TNGX 16-FA 755 TNGX 16-FA 755 TNGX 16-M 755 TNGX 16-M 755 TNF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKN 756 TPKN 757	SPKR	752
SPUN 25 753 T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-M 754 TNGX 16-FA 755 TNGX 16-FA 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKN 756 TPKN 757	SPKX	753
T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-M 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	SPUN	753
T TBMR 27 753 TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-M 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	SPUN 25	753
TCMT 16-FM 754 TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-M 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPUN 757	Т	
TNGX 10-F 754 TNGX 10-FA 754 TNGX 10-M 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	TBMR 27	753
TNGX 10-FA 754 TNGX 10-M 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPUN 757	TCMT 16-FM	754
TNGX 10-M 754 TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPKN 757	TNGX 10-F	754
TNGX 16-F 755 TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPKN 757	TNGX 10-FA	754
TNGX 16-FA 755 TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPUN 757	TNGX 10-M	754
TNGX 16-M 755 TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPKR 756 TPKN 756 TPKN 757	TNGX 16-F	755
TNJF 12 755 TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	TNGX 16-FA	755
TPCN 16 756 TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	TNGX 16-M	755
TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	TNJF 12	755
TPKN ER 756 TPKN SR 756 TPKR 756 TPUN 757	TPCN 16	756
TPKR 756 TPUN 757	TPKN ER	
TPUN 757	TPKN SR	756
	TPKR	756
	TPUN	
V	V	
	VCGT 22-FA	757
	W	
	WNHX 04-WM	757

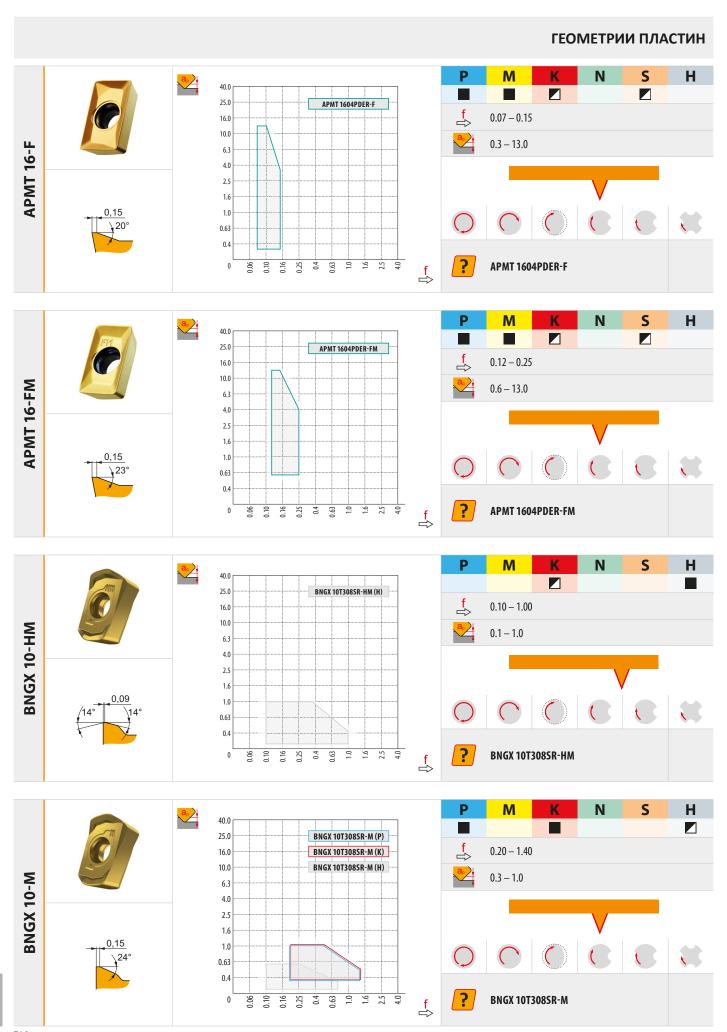

XDHW EN 757 XDHW SN 758 XDHW SN 758 XEHT 758 XNGX ANSN 758 XNGX 13 758 XNHQ TN 759 XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16-FA 759 XPHT 16-FA 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-FM 761		
XDHW SN 758 XEHT 758 XNGX ANSN 758 XNGX 13 758 XNHQ TN 759 XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16-FA 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-F 761 ZP ER-FM 761 ZP ER-FM 761	Геометрия пластин для фрезерования	
XEHT 758 XNGX ANSN 758 XNGX 13 758 XNHQ TN 759 XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16S 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-FM 761	XDHW EN	757
XNGX ANSN 758 XNGX 13 758 XNHQ TN 759 XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16-FA 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-FM 761	XDHW SN	758
XNGX 13 758 XNHQTN 759 XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16S 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-FM 761	XEHT	758
XNHQTN 759 XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16S 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XNGX ANSN	758
XP ER-FM 759 XPHT 16E 759 XPHT 16-FA 759 XPHT 16S 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XNGX 13	758
XPHT 16E 759 XPHT 16-FA 759 XPHT 16S 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XNHQTN	759
XPHT 16-FA 759 XPHT 16S 760 Z Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XP ER-FM	759
XPHT 16S 760 Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XPHT 16E	759
Z ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XPHT 16-FA	759
ZDCW 07 760 ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	XPHT 16S	760
ZDCW 09 760 ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	Z	
ZDEW 12 760 ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	ZDCW 07	760
ZP ER-F 761 ZP ER-FM 761 ZP ER-M 761	ZDCW 09	760
ZP ER-FM 761 ZP ER-M 761	ZDEW 12	760
ZP ER-M 761	ZP ER-F	761
	ZP ER-FM	761
ZP ER-R 761	ZP ER-M	761
	ZP ER-R	761

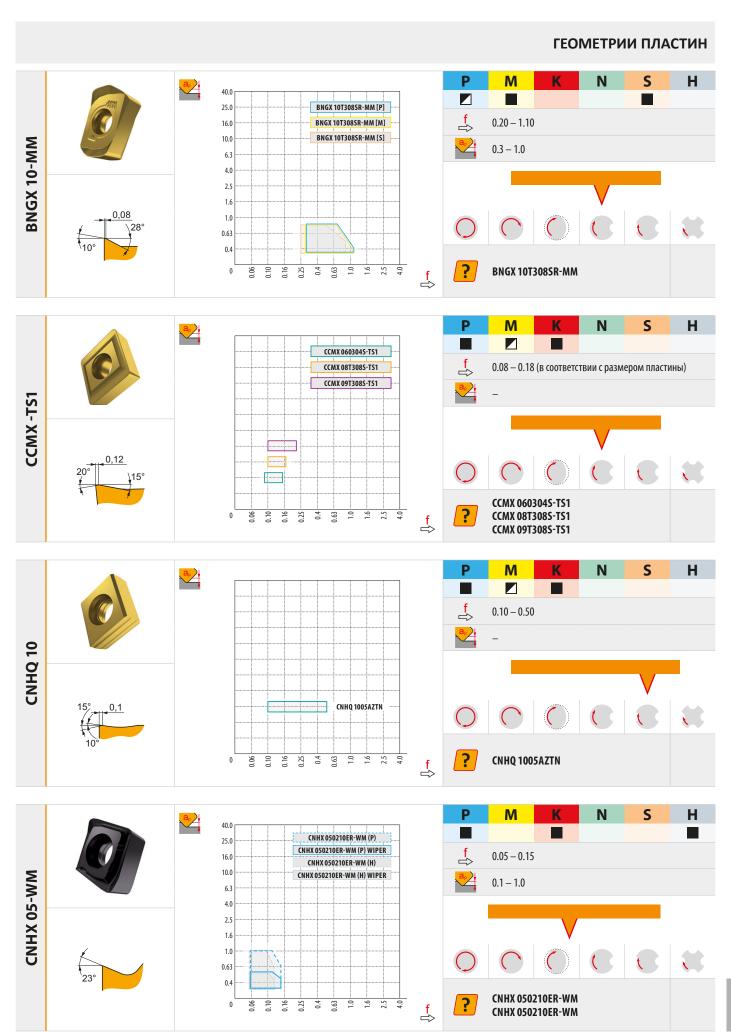


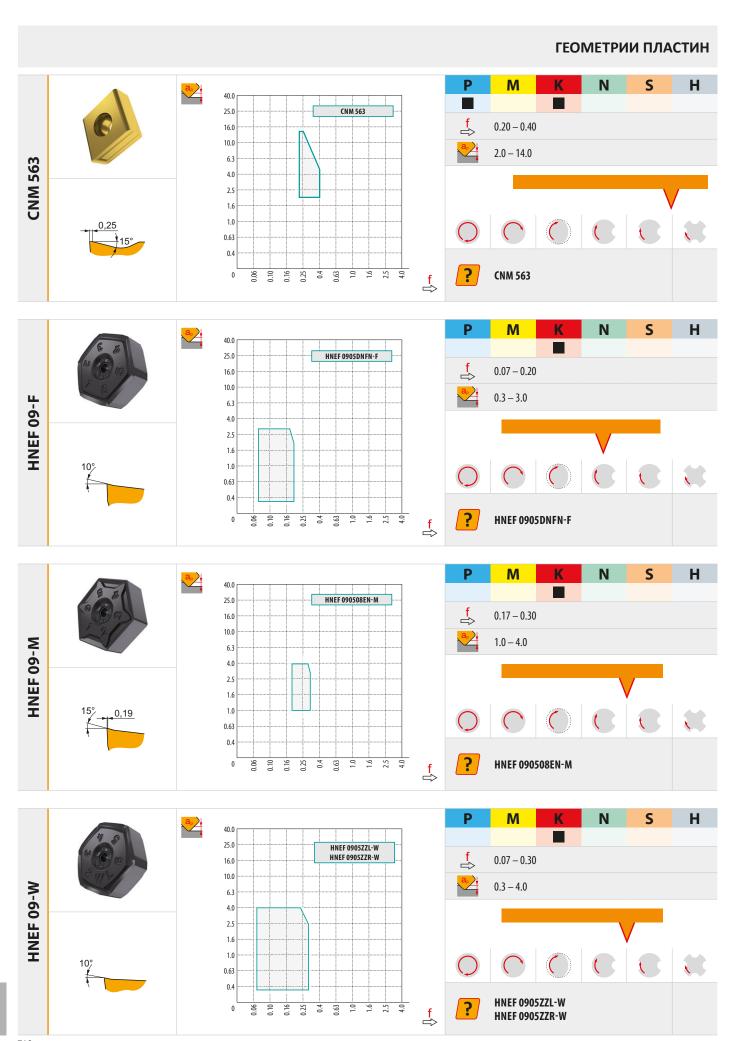

ГЕОМЕТРИИ ПЛАСТИН M S Н ADMX 11T308SR-HF2 (P, K) ADMX 11T308SR-HF2 (H) 0.40 - 1.316.0 ADEX 11-HF2 10.0 0.2 - 0.64.0 2.5 1.6 1.0 0.63 ADEX 11T308SR-HF2 0.10 0.16 0.25 0.4 0.63 1.0 1.6 2.5 4.0 S M 40.0 25.0 ADEX 160604FR-FA ADEX 160608FR-FA 0.05 - 0.3516.0 ADEX 160616FR-FA ADEX 160630FR-FA 10.0 **ADEX 16-FA** 0.3 - 13.04.0 2.5 1.6 0.63 0.4 ADEX 160604FR-FA, ADEX 160608FR-FA 0.25 0.4 0.63 $\stackrel{\mathsf{f}}{\leftrightharpoons}$ ADEX 160616FR-FA, ADEX 160630FR-FA S Н M 40.0 25.0 ADEX 160608SR-FM 0.10 - 0.2516.0 10.0 **ADEX 16-FM** 0.3 - 13.06.3 4.0 2.5 1.0 0.63 0.4 0.4 0.63 0.25 **ADEX 160608SR-FM** $\stackrel{\mathsf{f}}{\Rightarrow}$ S Н M ADEX 160612SR-HF 0.60 - 1.316.0 10.0 **ADEX 16-HF** 0.3 - 1.36.3 4.0 2.5 1.6 1.0 0.63 **ADEX 160612SR-HF** 0.63 1.6

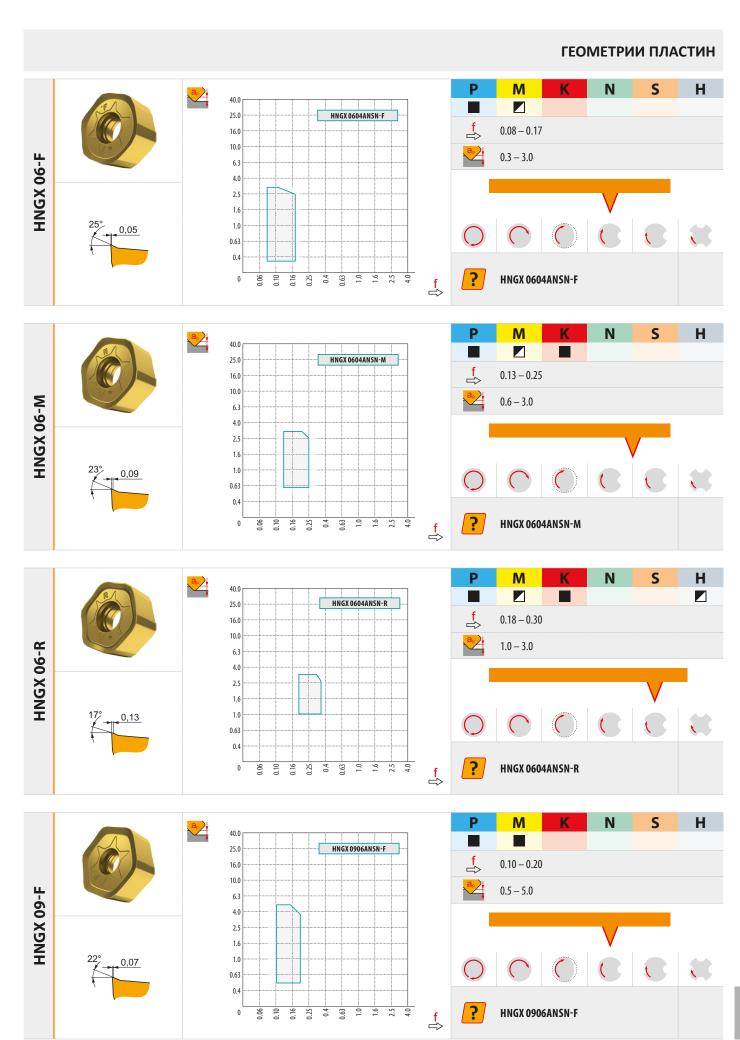


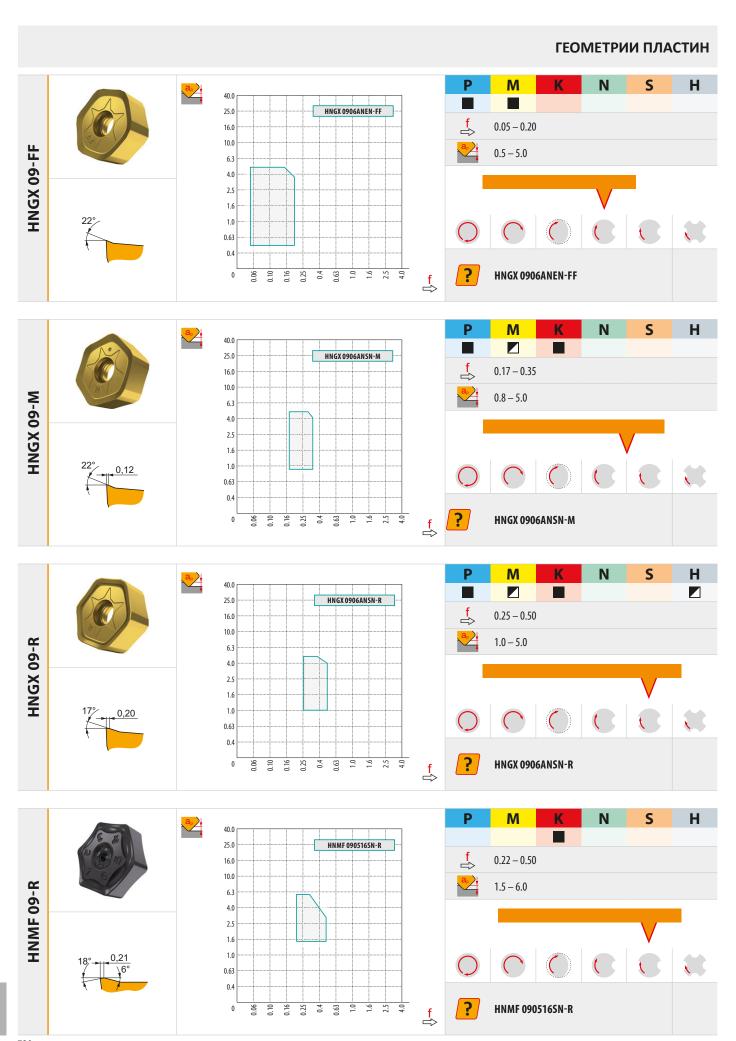

ГЕОМЕТРИИ ПЛАСТИН M N S Н ADMX 0702025R-F ADMX 0702045R-F 0.02 - 0.1016.0 ADMX 0702085R-F ADMX 07-F MEW 10.0 0.1 - 5.06.3 4.0 2.5 1.6 1.0 0.63 ADMX 070202SR-F ? ADMX 070204SR-F 0.16 0.25 0.40 0.63 1.00 $\stackrel{\mathsf{f}}{\Rightarrow}$ ADMX 070208SR-F S M Ν 40.0 ADMX 0702025R-M 25.0 ADMX 070204SR-M 0.03 - 0.1216.0 ADMX 070208SR-M ADMX 0702125R-M 10.0 ADMX 0702165R-M ADMX 07-M 0.1 - 5.0ADMX 0702205R-M 6.3 4.0 2.5 0.63 0.4 ADMX 070202SR-M, ADMX 070204SR-M 90.0 0.10 0.16 0.25 0.40 0.63 1.00 ADMX 070208SR-M, ADMX 070212SR-M $\stackrel{\mathsf{f}}{\Rightarrow}$ ADMX 070216SR-M, ADMX 070220SR-M S Н M N 40.0 25.0 ADMX 11T304SR-F 0.07 - 0.1216.0 10.0 **ADMX 11-F** 0.2 - 9.06.3 4 0 2.5 1.0 0.63 0.4 ADMX 11T304SR-F 0.4 0.63 0.25 $\stackrel{\mathsf{f}}{\Rightarrow}$ **ADMX 11T308SR-F** S M Н 40.0 ADMX 11T302SR-M 25.0 ADMX 11T304SR-M 0.10 - 0.2216.0 ADMX 11T308SR-M ADMX 11T310SR-M 10.0 **ADMX 11-M** ADMX 11T312SR-M 0.2 - 9.06.3 ADMX 11T316SR-M ADMX 11T320SR-M 4.0 ADMX 11T325SR-M ADMX 11T330SR-M 2.5 1.6 1.0 0.63 0.00 0.16 0.25 0.4 0.63 1.6 **ADMX 11T3..SR-M**

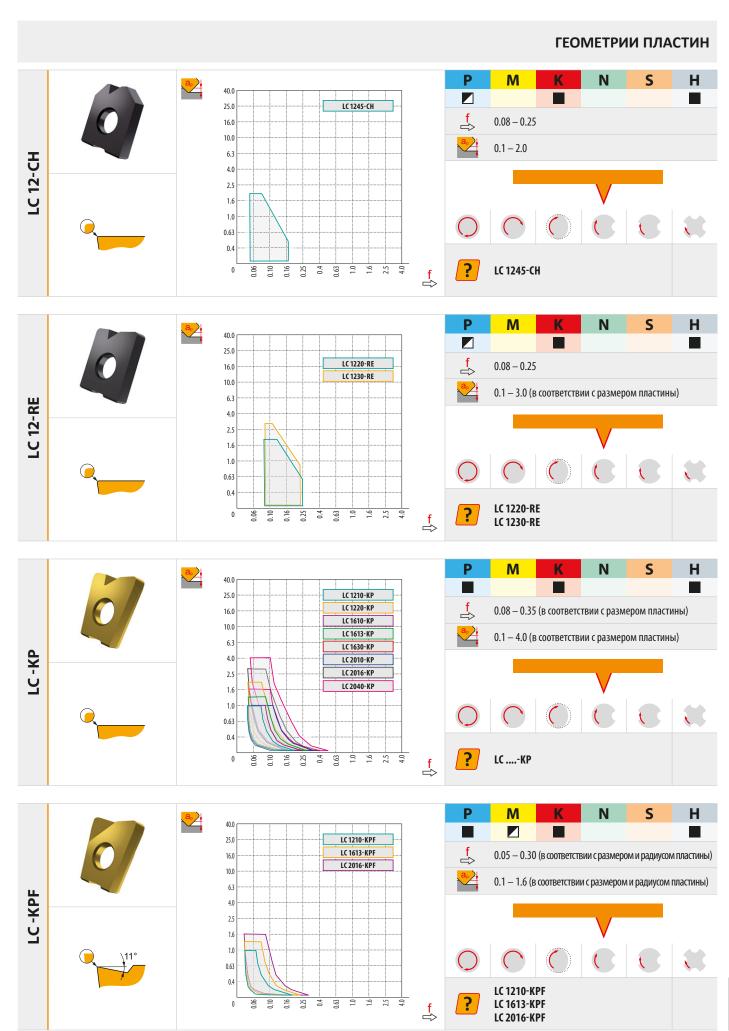


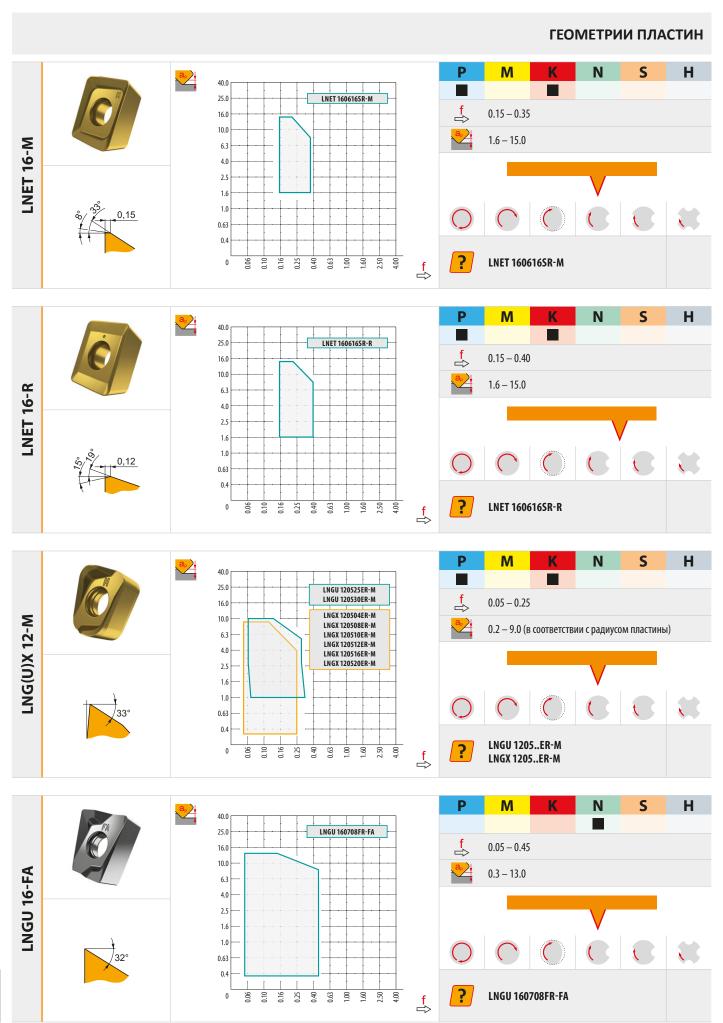


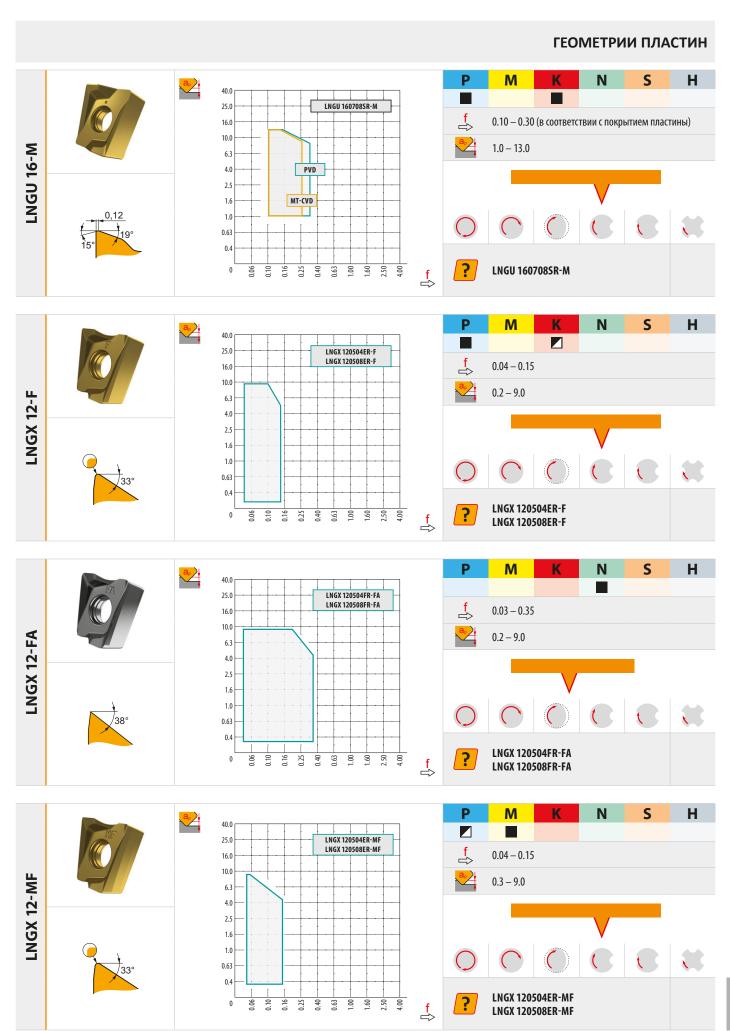


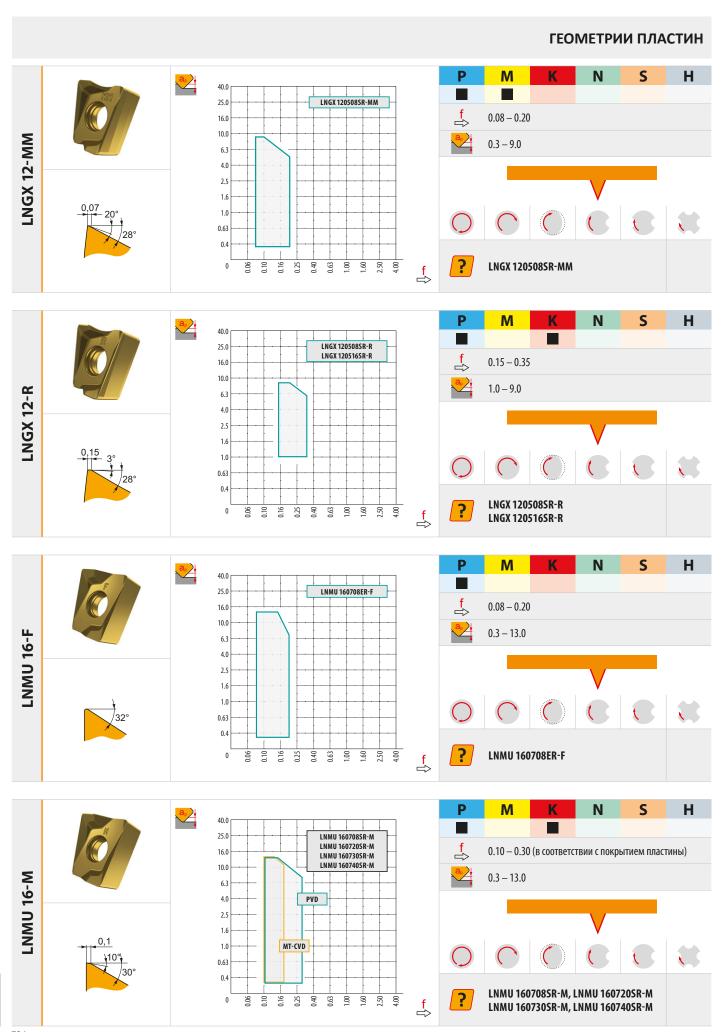


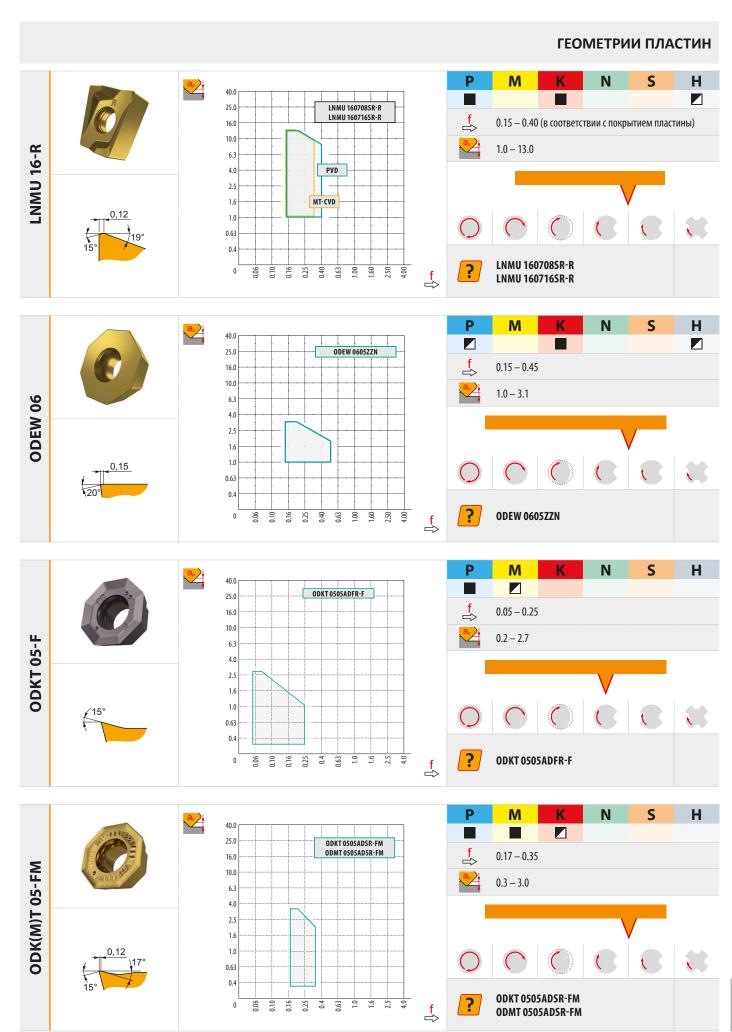


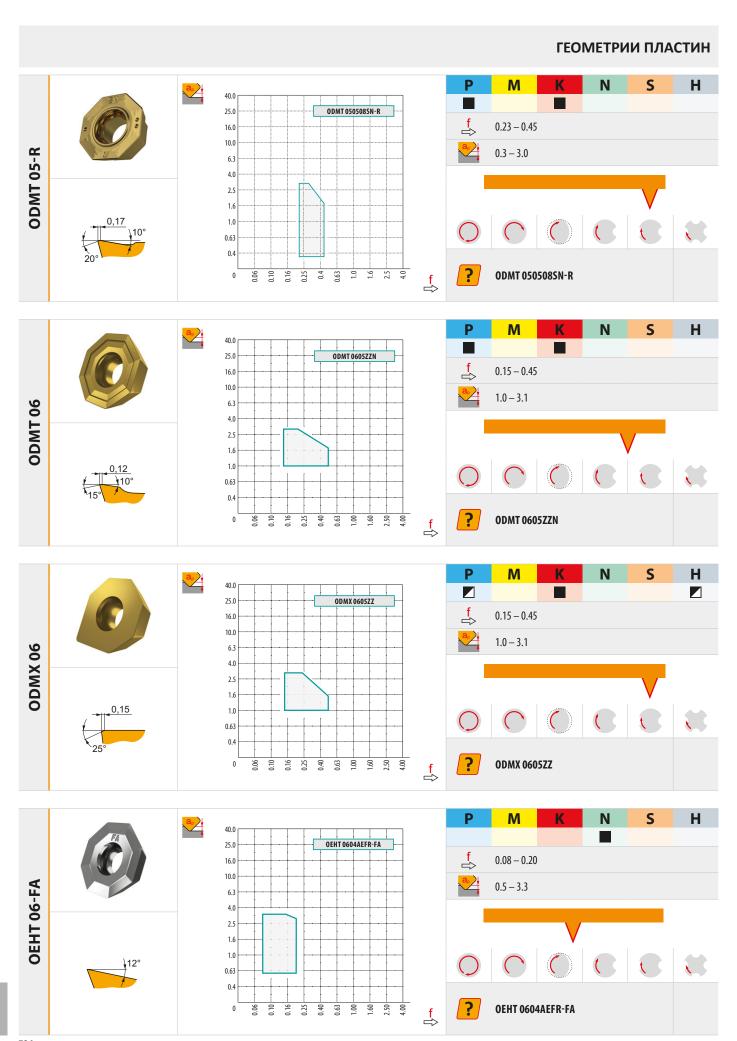


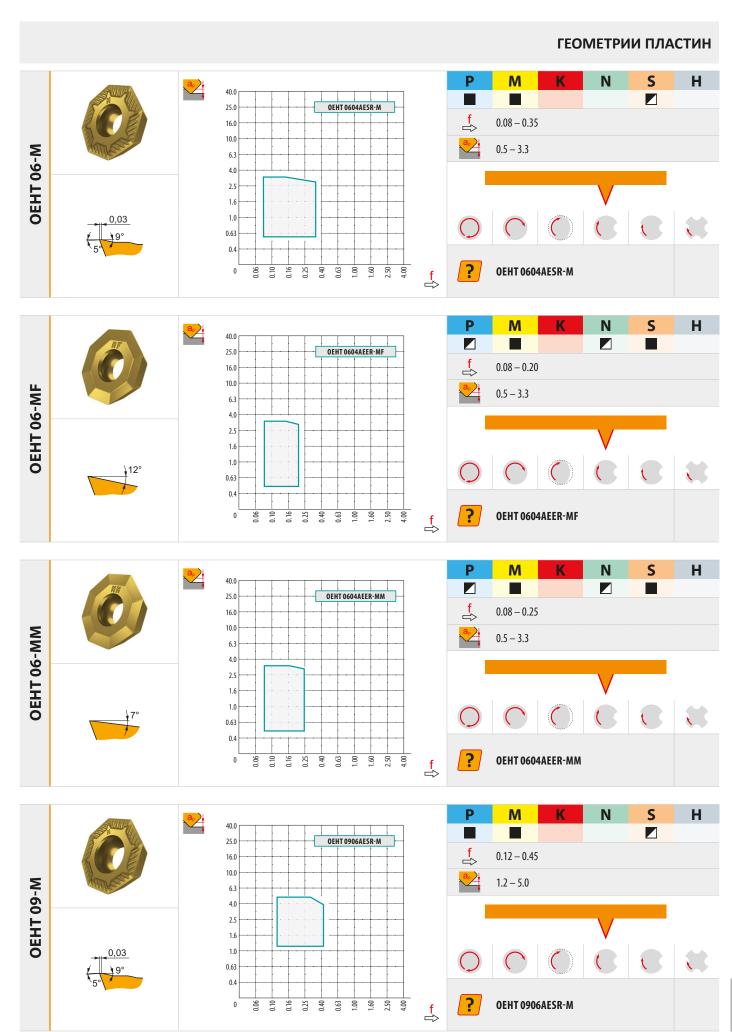


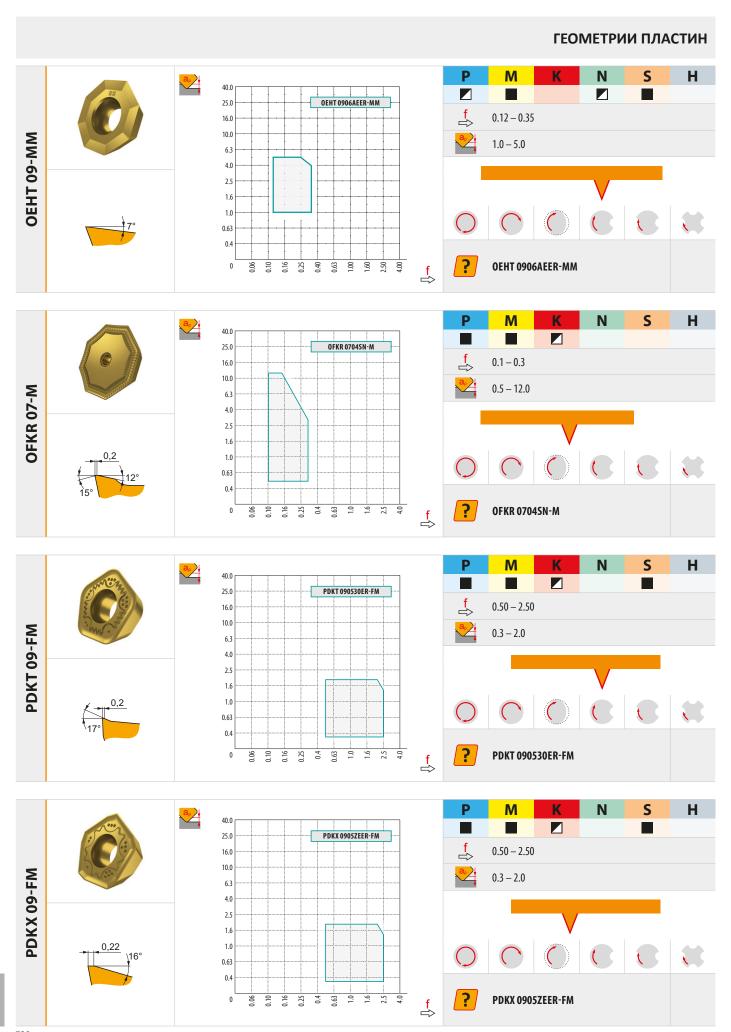


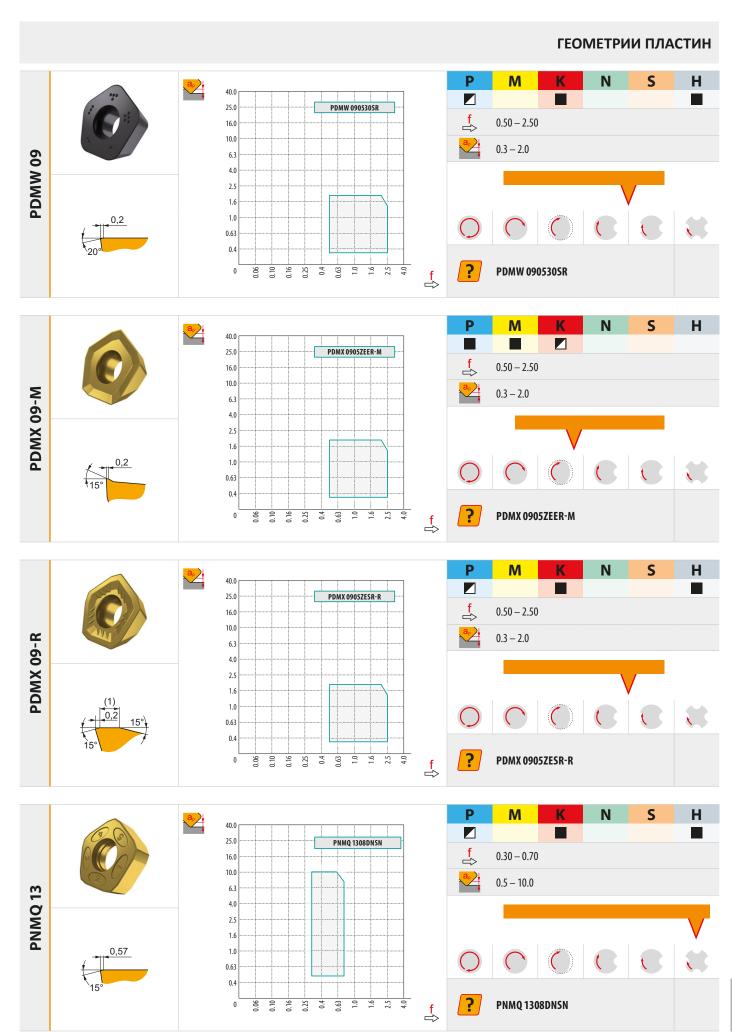


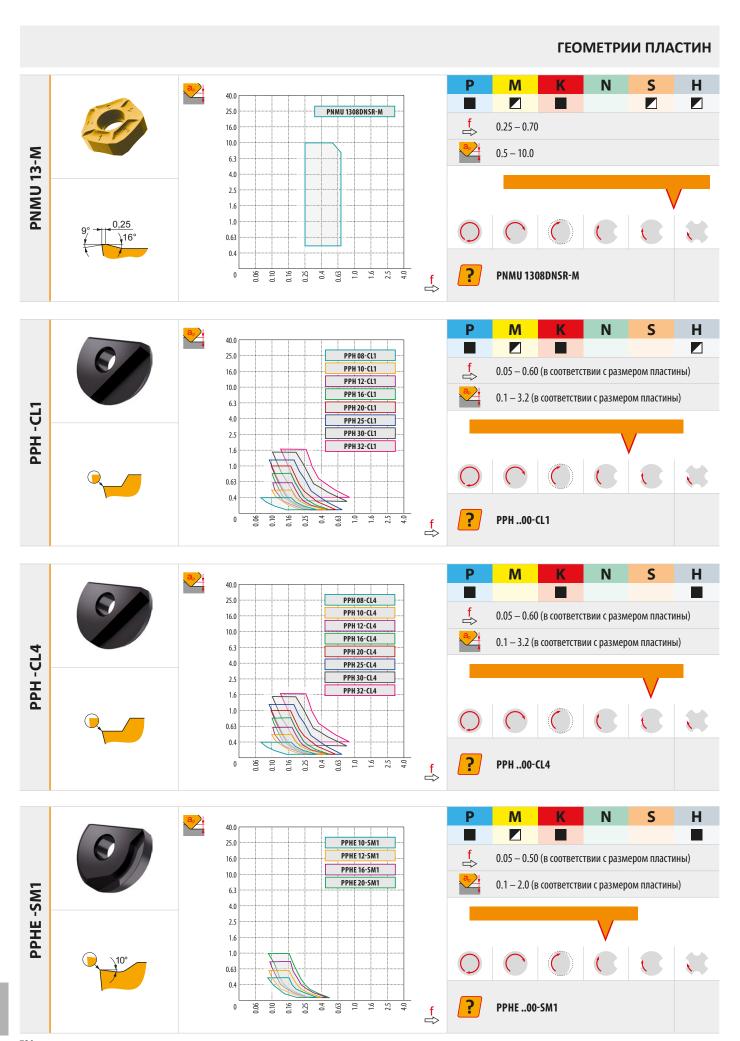


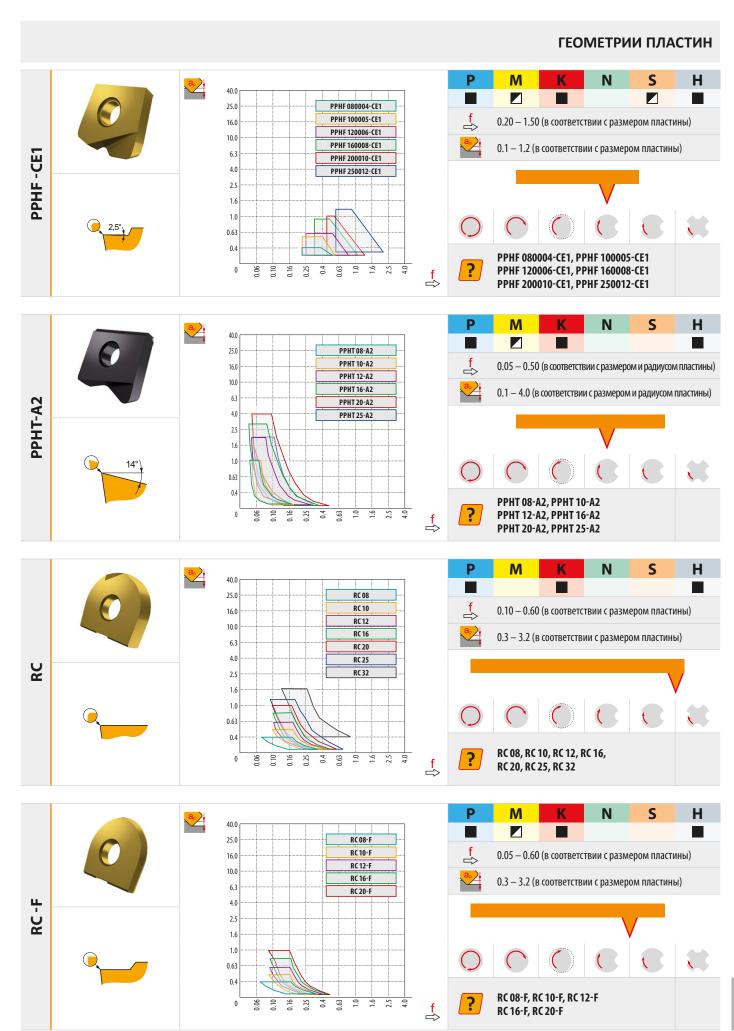


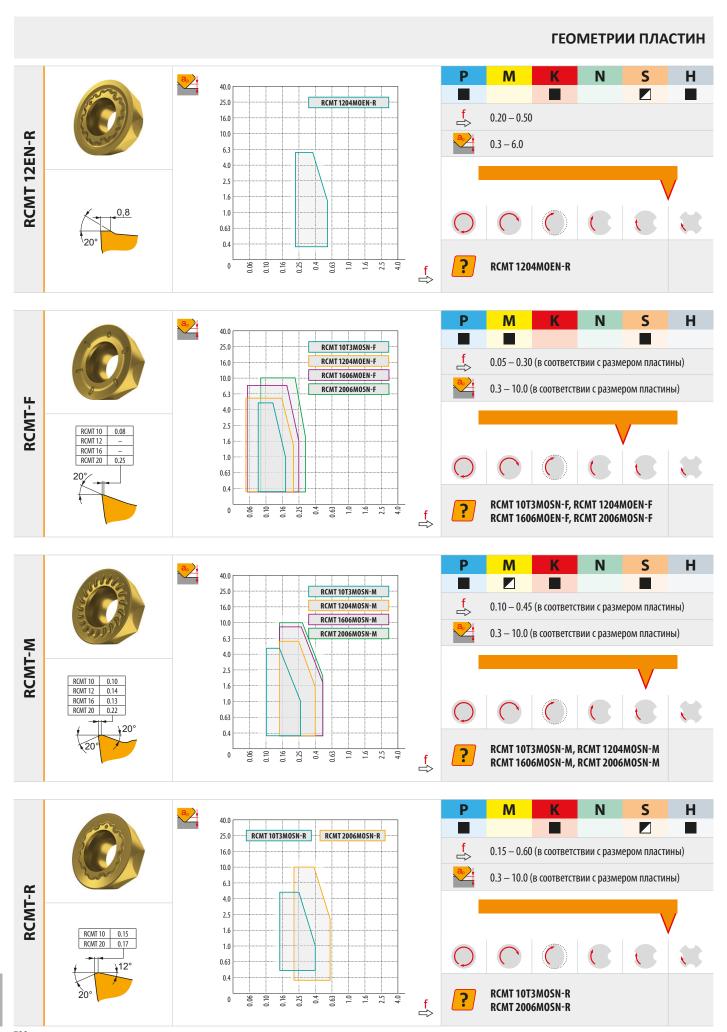


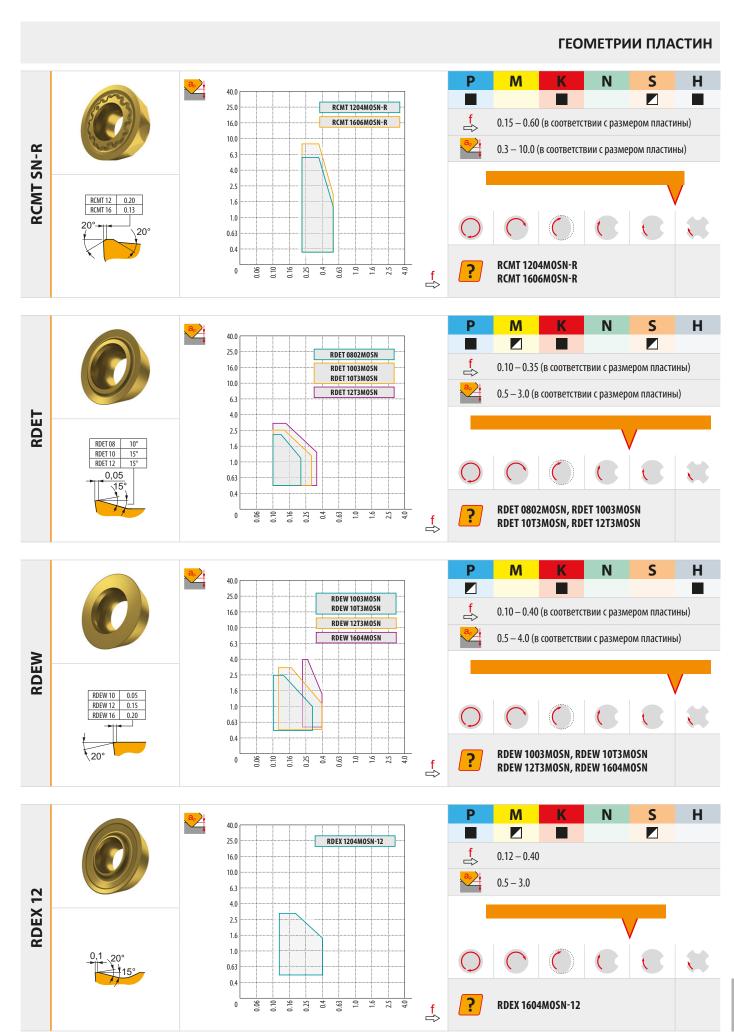


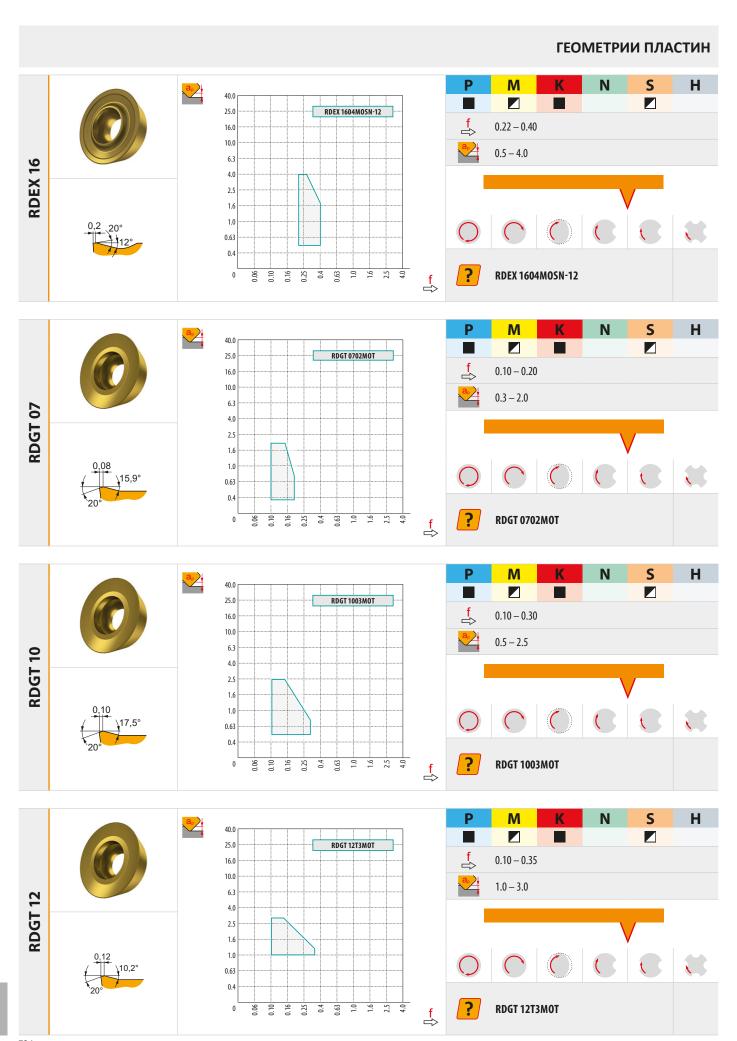


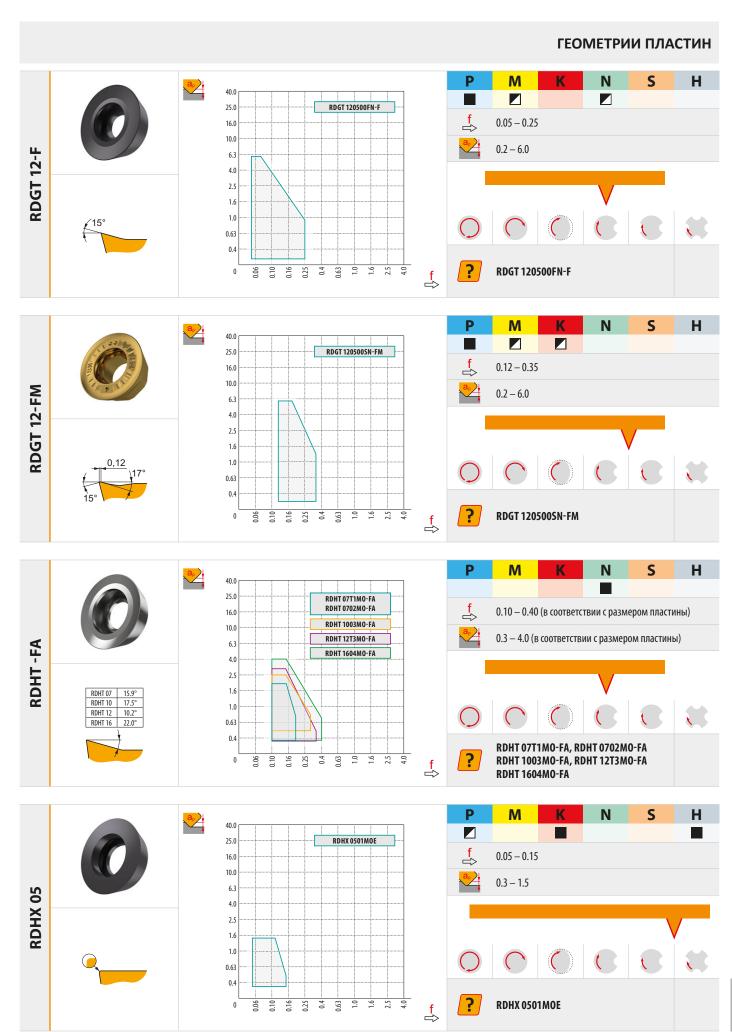


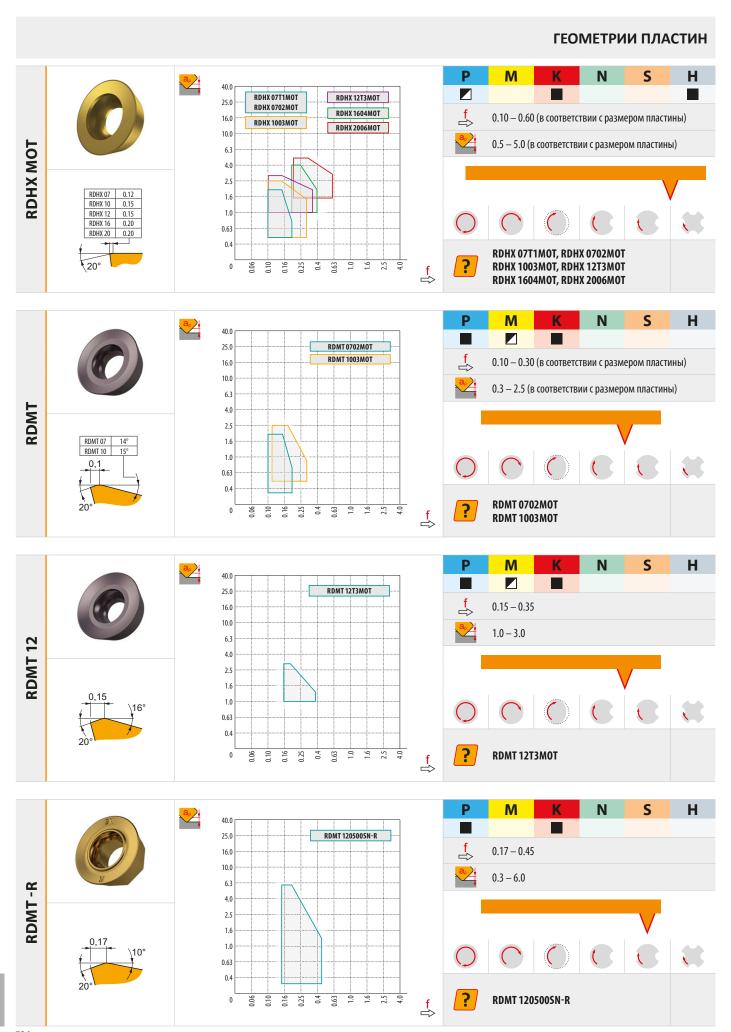


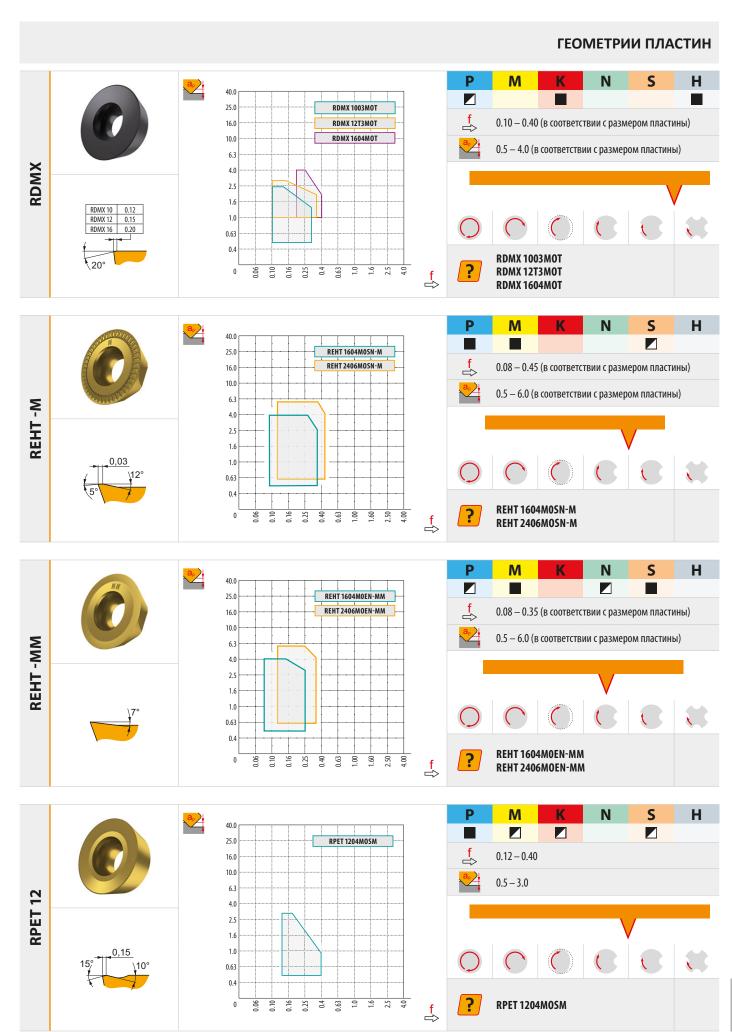


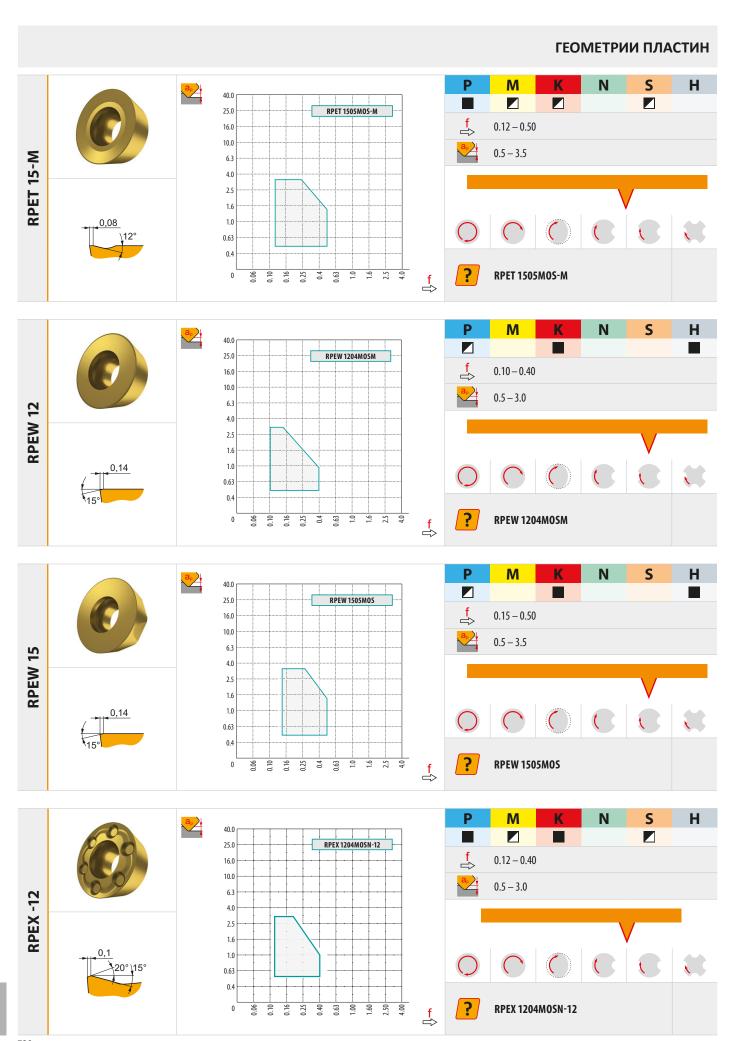


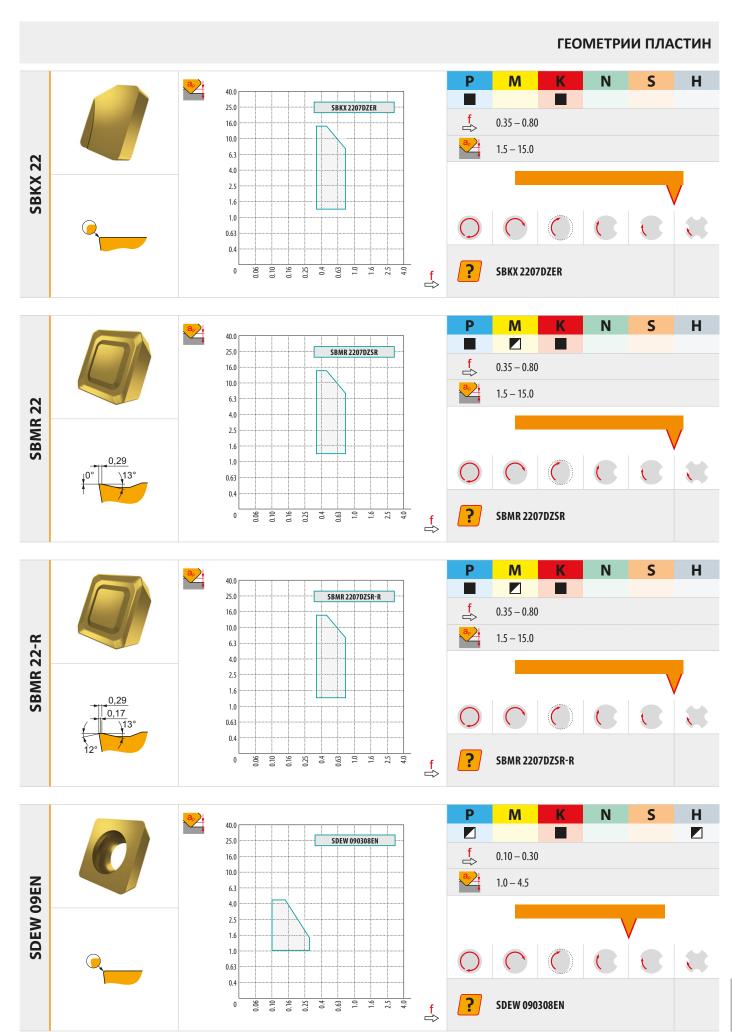


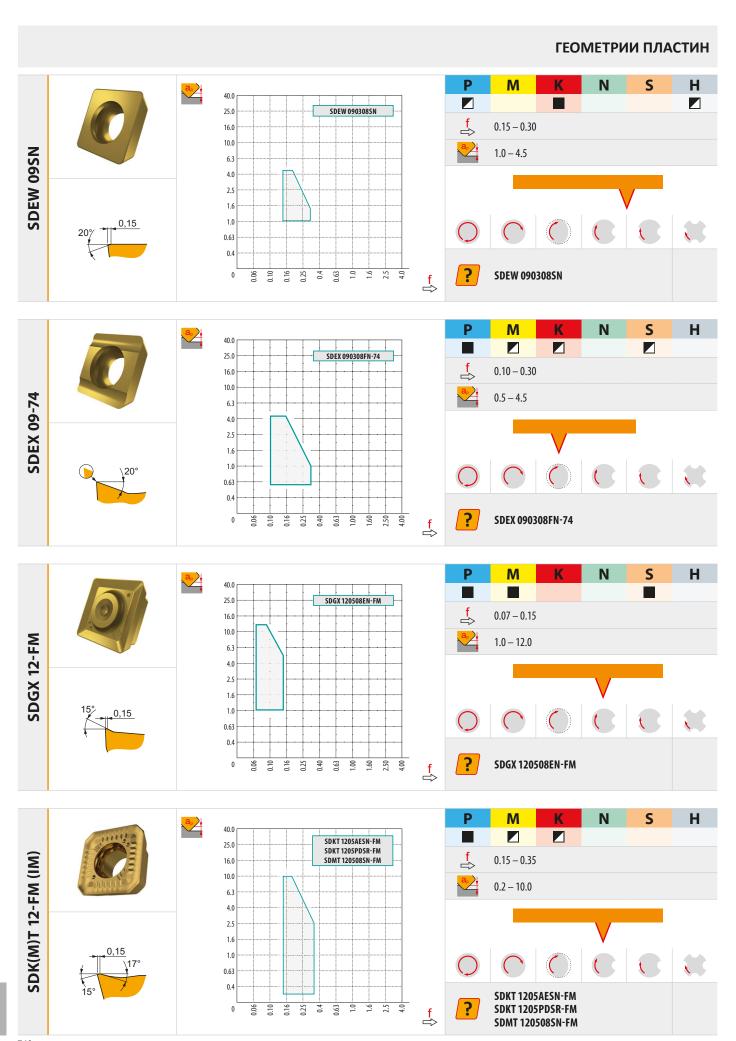


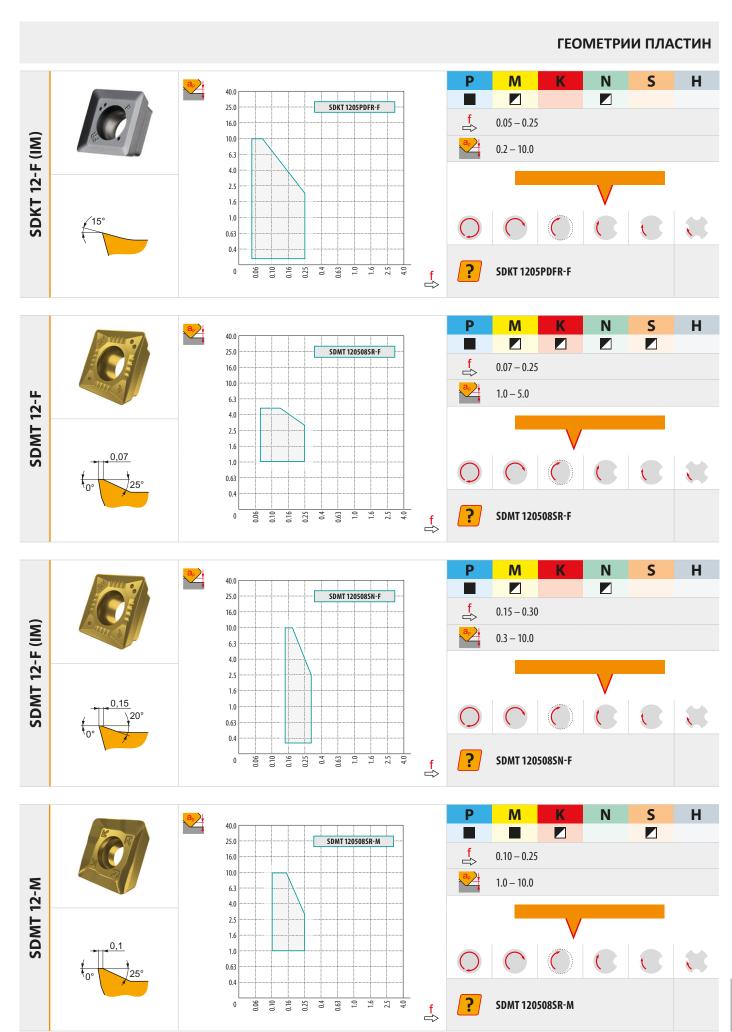


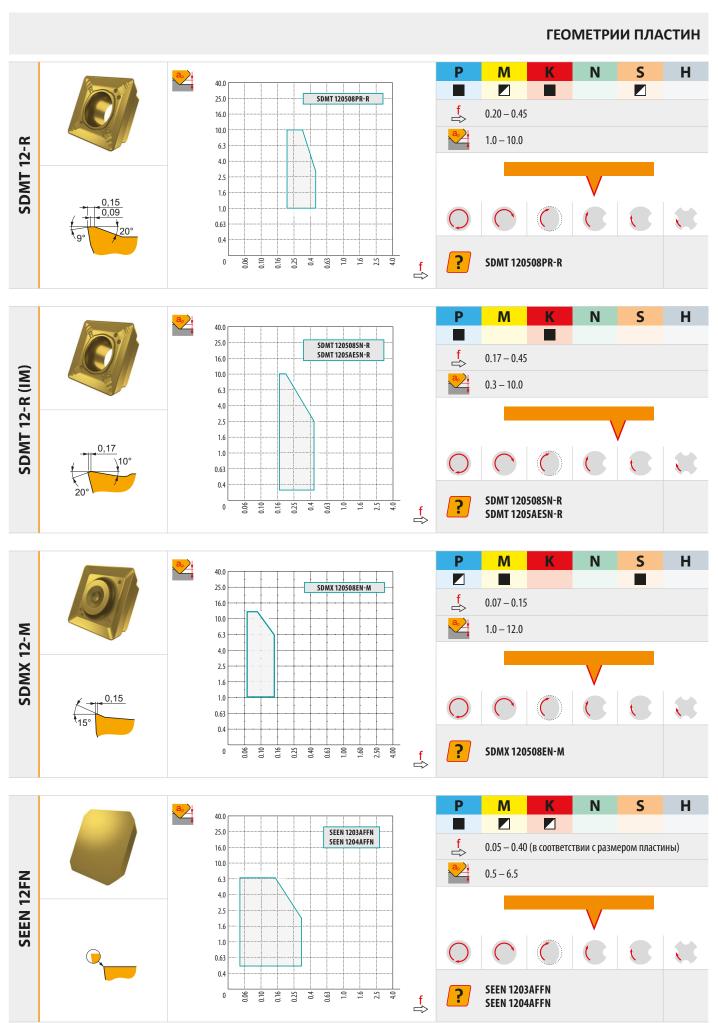


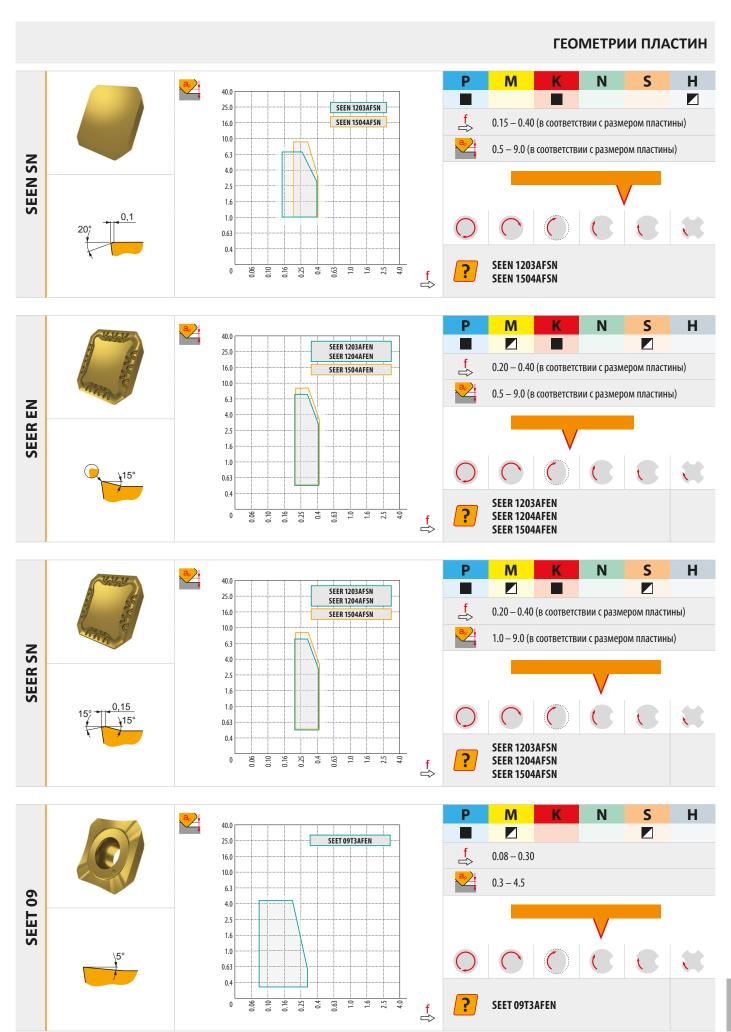


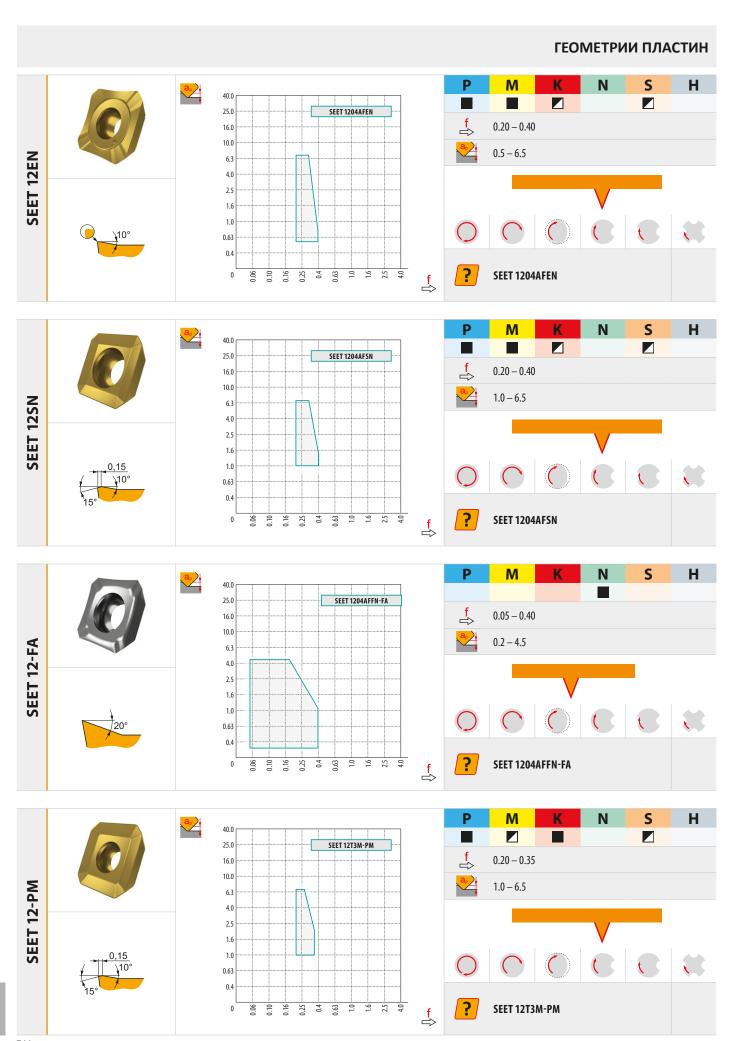


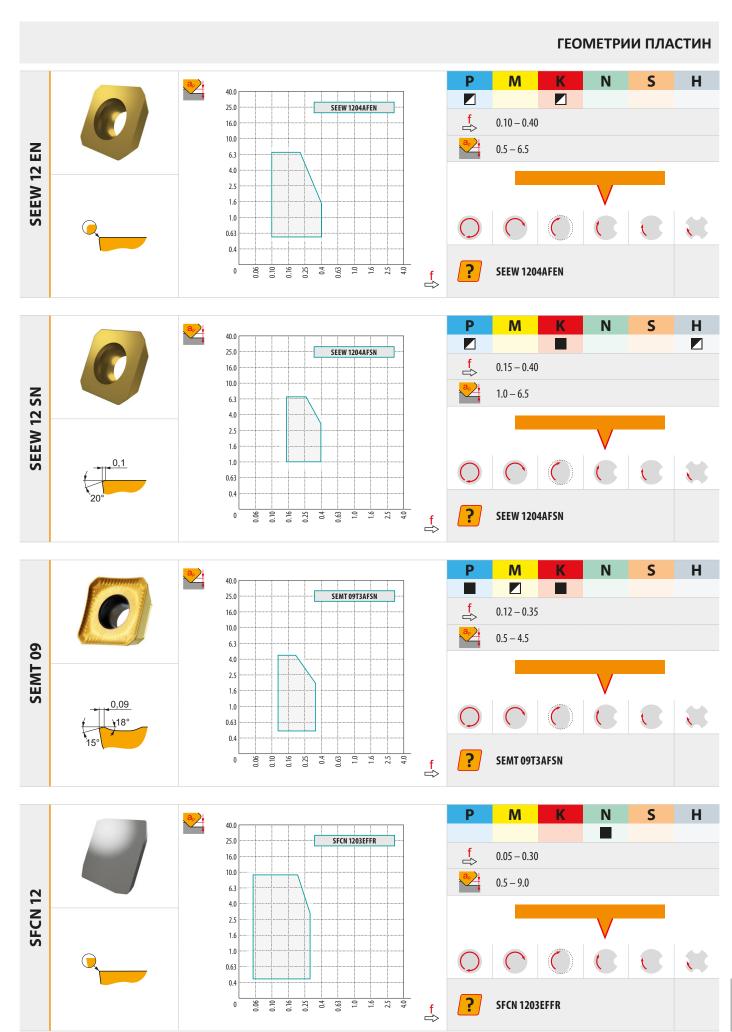


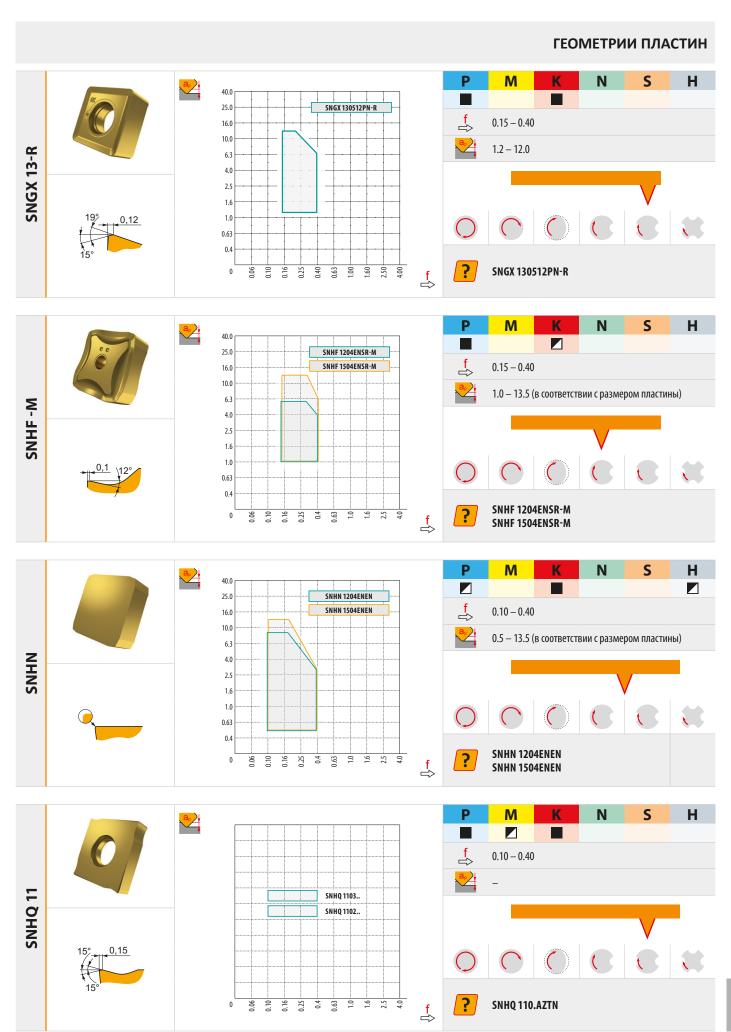


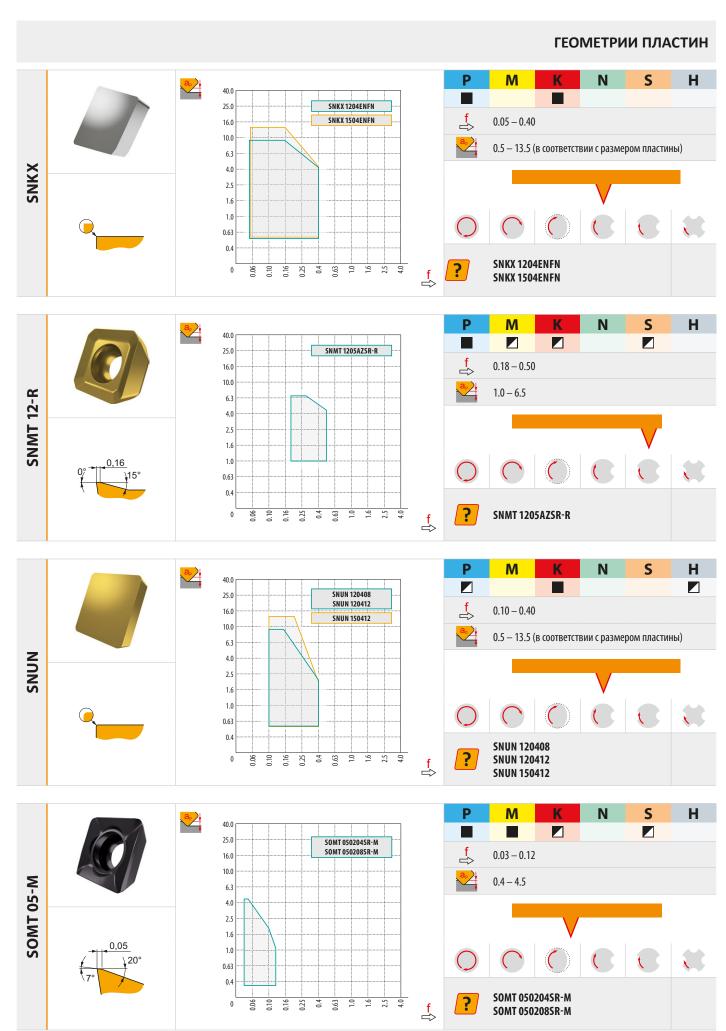


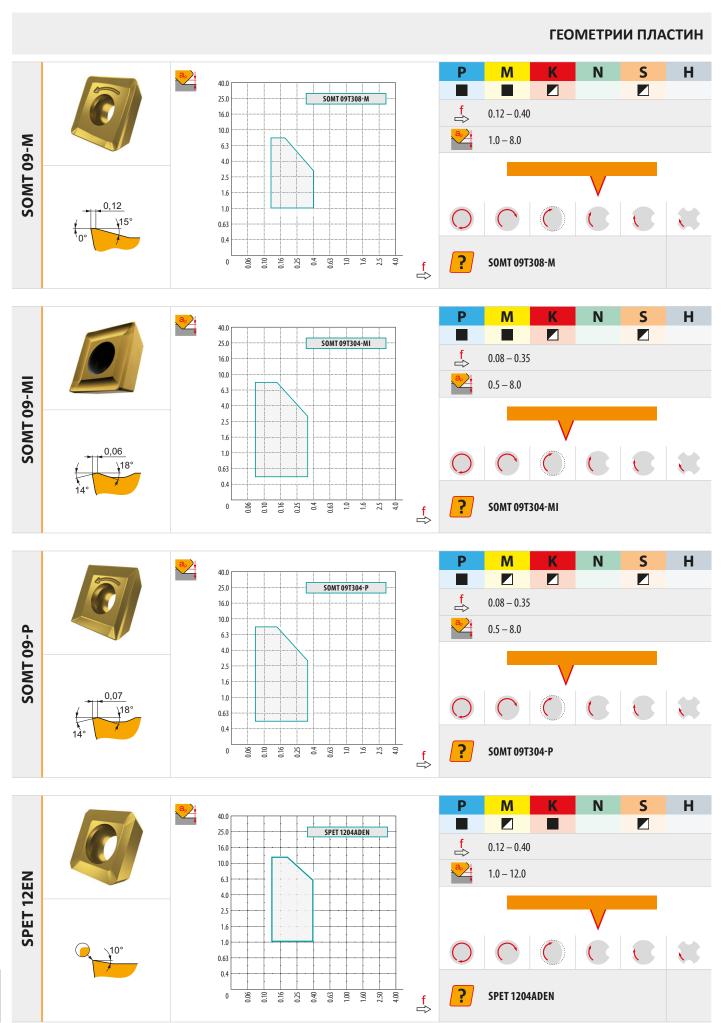


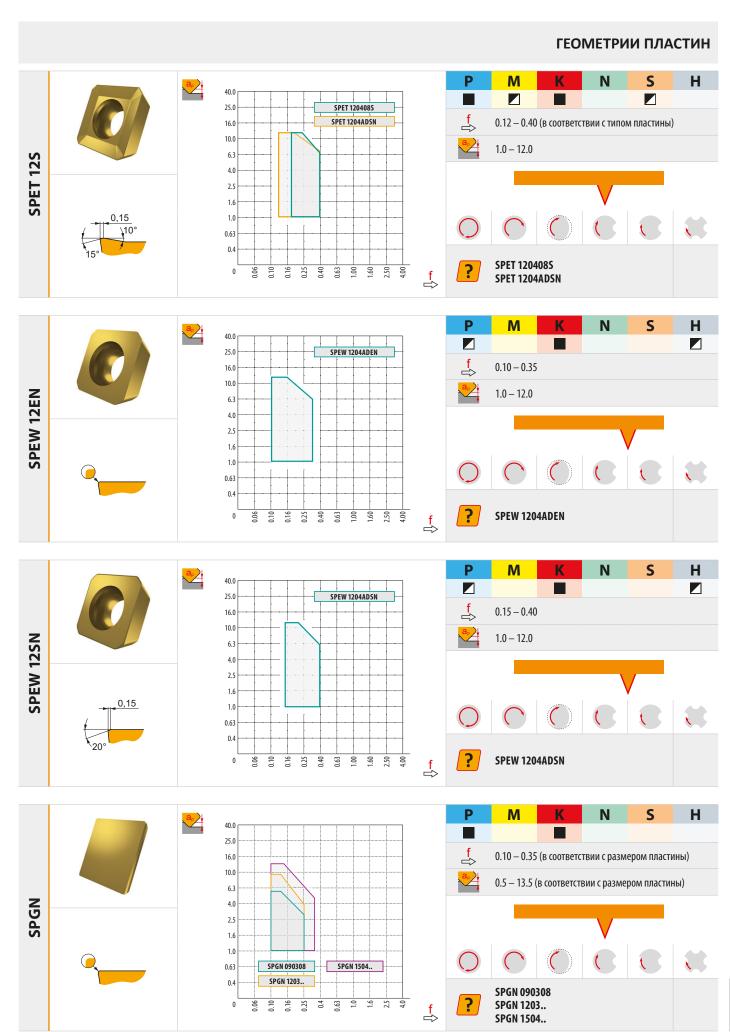


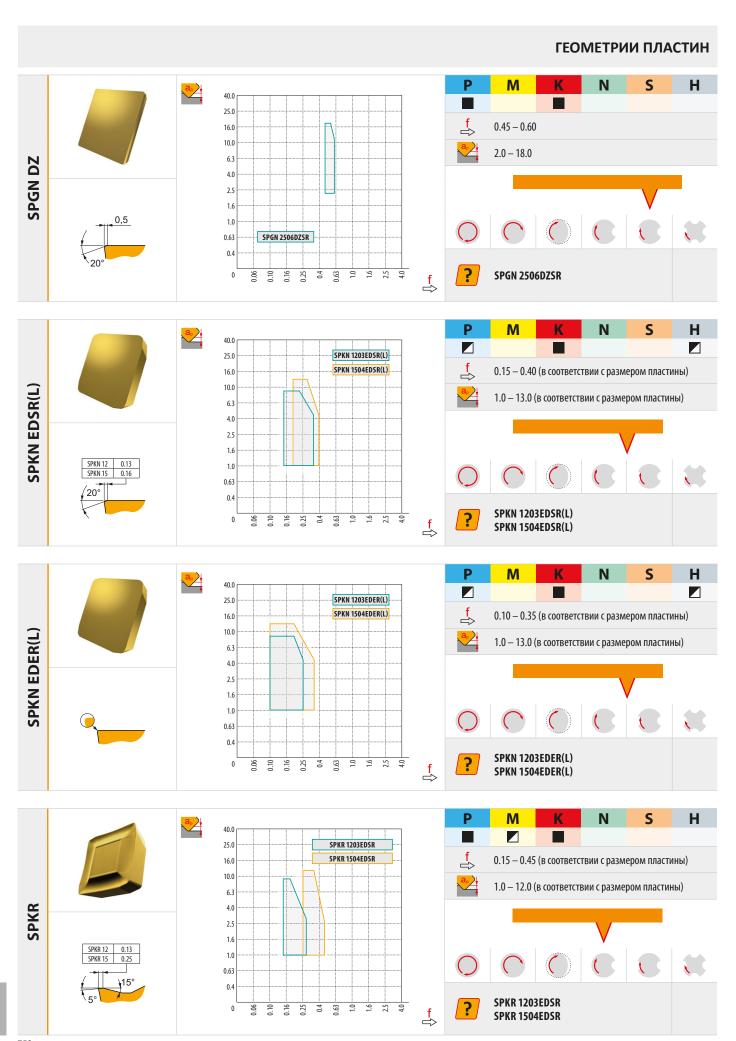


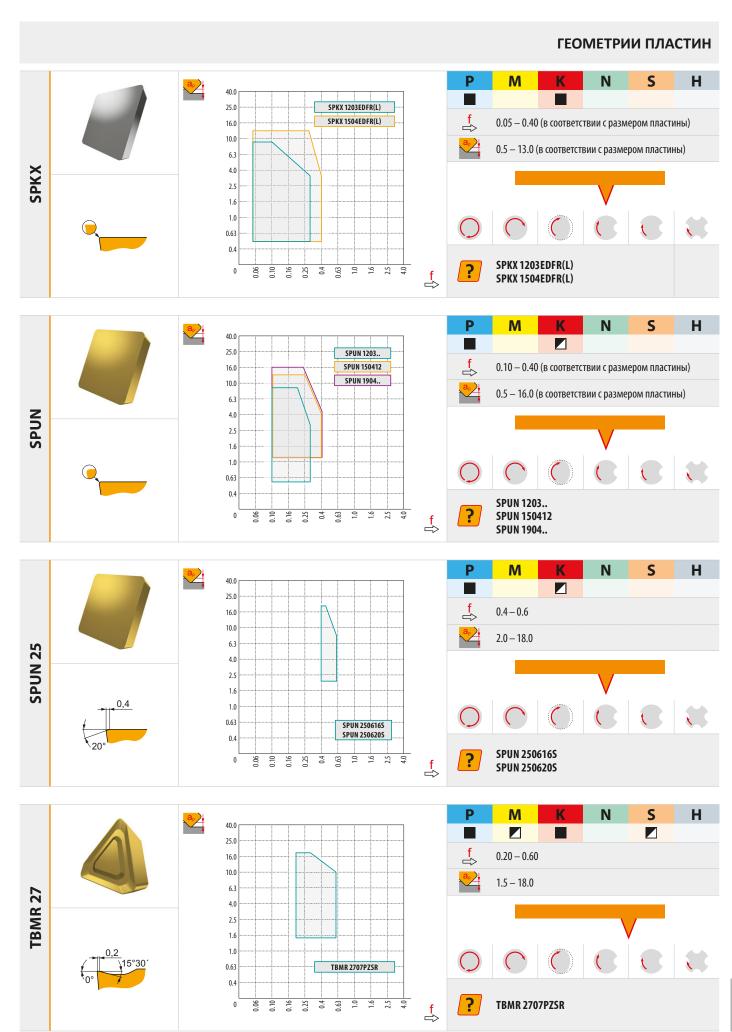


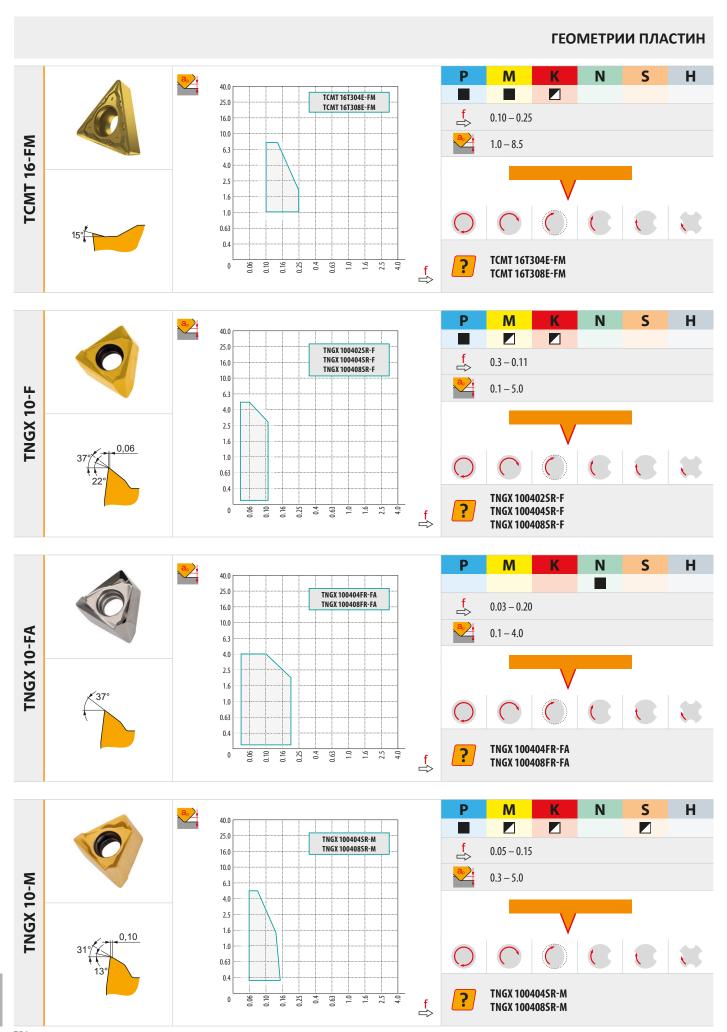


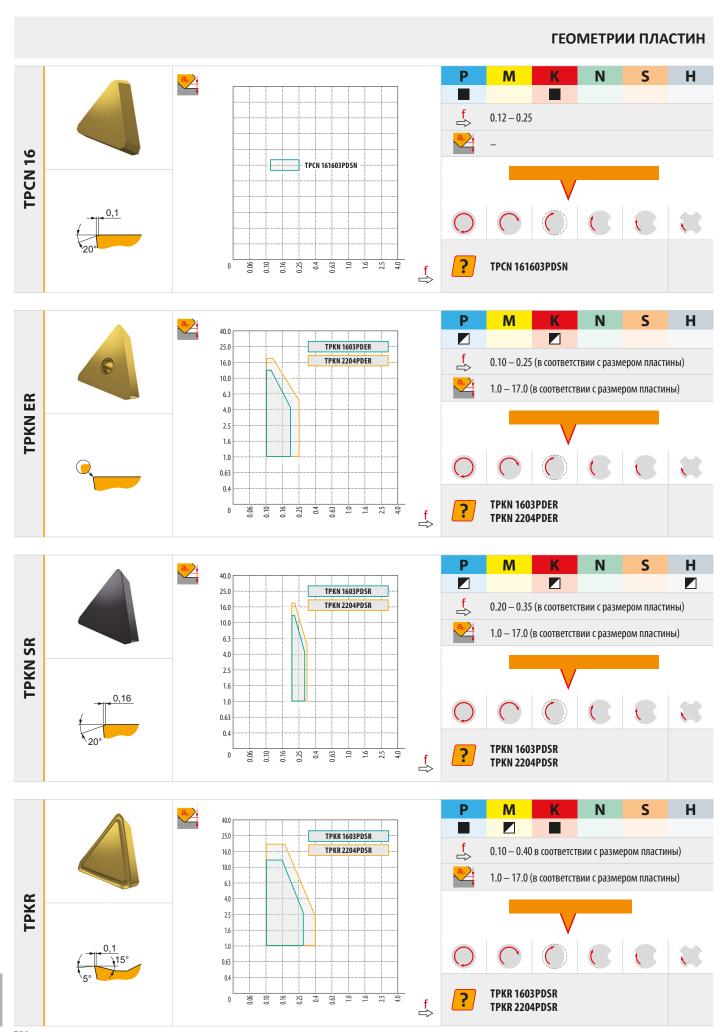


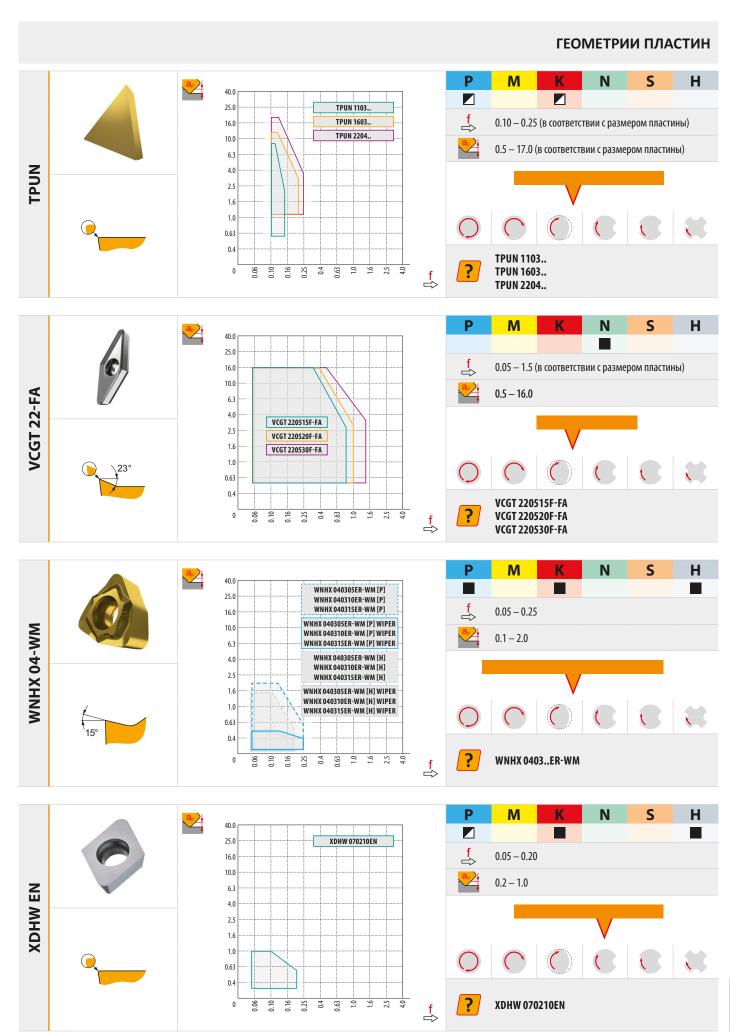


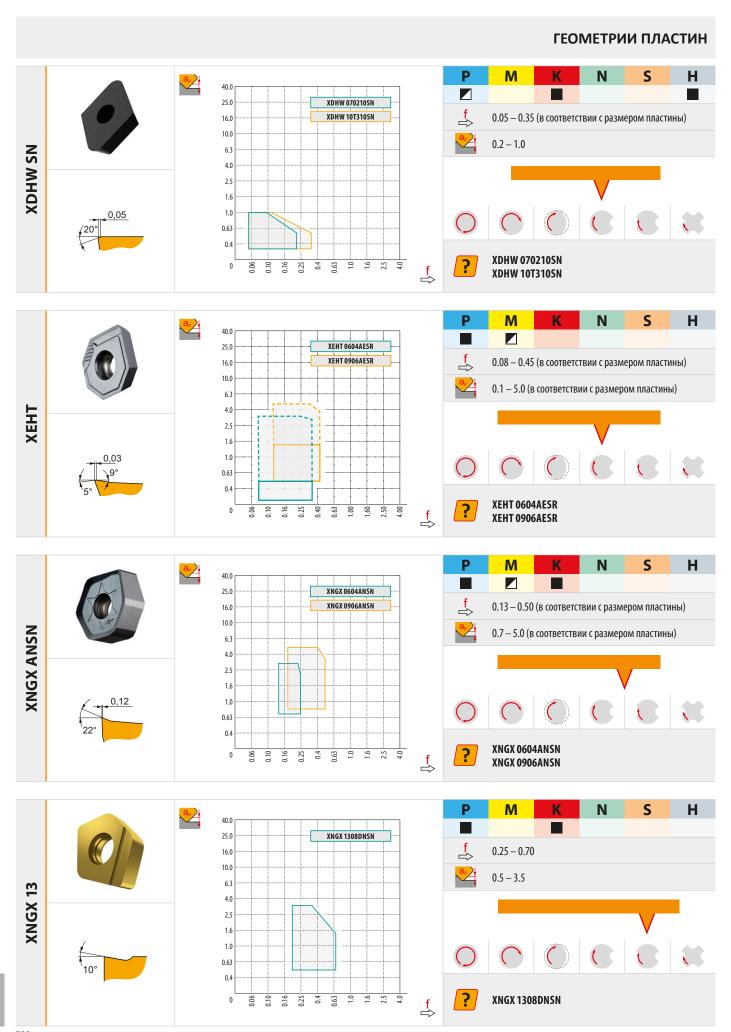


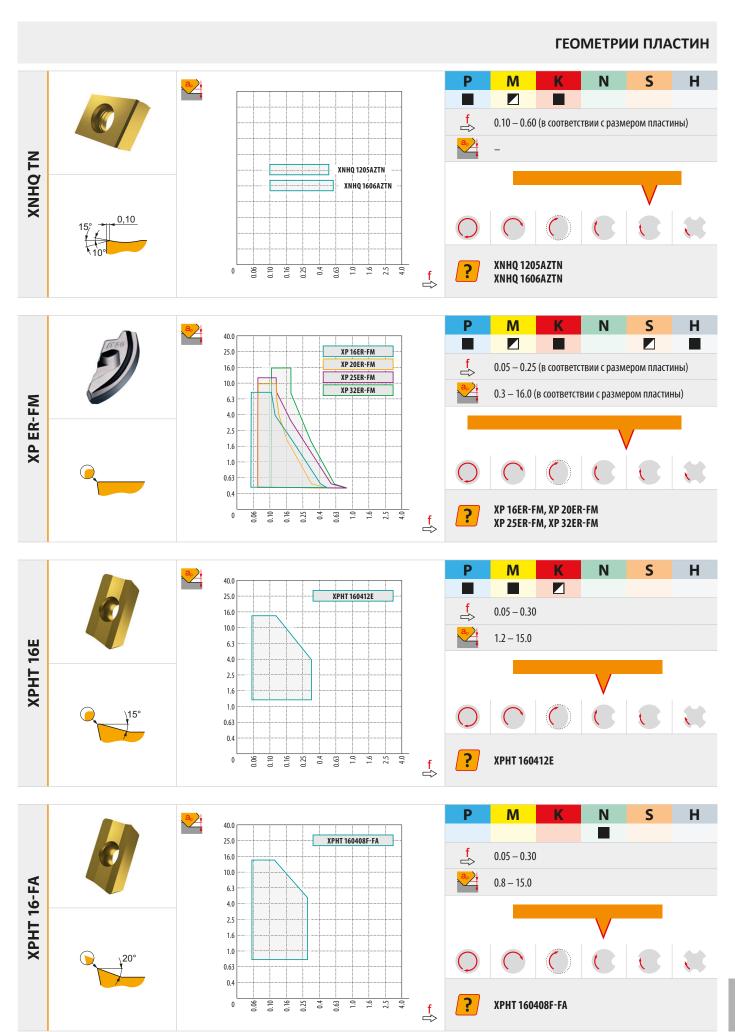

ГЕОМЕТРИИ ПЛАСТИН M S Н 0.10 — 0.50 (в соответствии с типом пластины) SNHQ 1203.. **SNHQ 12T3.. SNHQ 12TN** SNHQ 1204.. SNHQ 1205.. SNHQ 1207.. SNHQ 1203AZTN, SNHQ 12T3AZTN SNHQ 1204AZTN, SNHQ 1205AZTN 0.10 0.4 1.6 2.5 4.0 _f **SNHQ 1207AZTN** M S 0.10-0.50 (в соответствии с типом пластины) SNHQ 1203.. **SNHQ 12EN** SNHQ 1204.. SNHQ 1205.. SNHQ 1207.. SNHQ 1203AZEN, SNHQ 1204AZEN 0.25 0.4 0.63 $\stackrel{\mathsf{f}}{\Rightarrow}$ SNHQ 1205AZEN, SNHQ 1207AZEN S Н M 0.10 — 0.50 (в соответствии с типом пластины) SNHQ 1203..TRL **SNHQ 12TRL** SNHQ 1204..TRL SNHQ 1205..TRL SNHQ 1207..TRL 0,15 SNHQ 1203..TRL, SNHQ 1204..TRL 0.4 0.63 2.5 0.25 $\stackrel{\mathsf{f}}{\Rightarrow}$ SNHQ 1205..TRL, SNHQ 1207..TRL S M Н 25.0 SNKT 1205AZSR-M SNMT 1205AZSR-M 0.15 - 0.5016.0 **SNK(M)T 12-M** 10.0 1.0 - 6.56.3 4.0 2.5 1.6 1.0 0.63 SNKT 1205AZSR-M 0.00 0.63 SNMT 1205AZSR-M

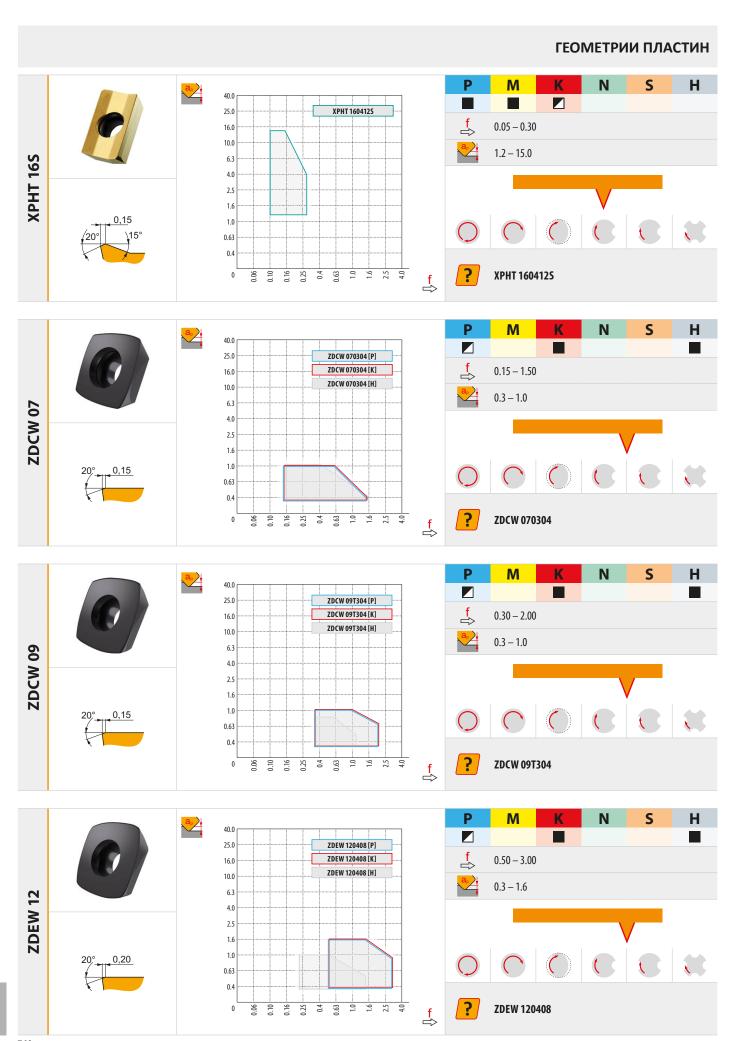


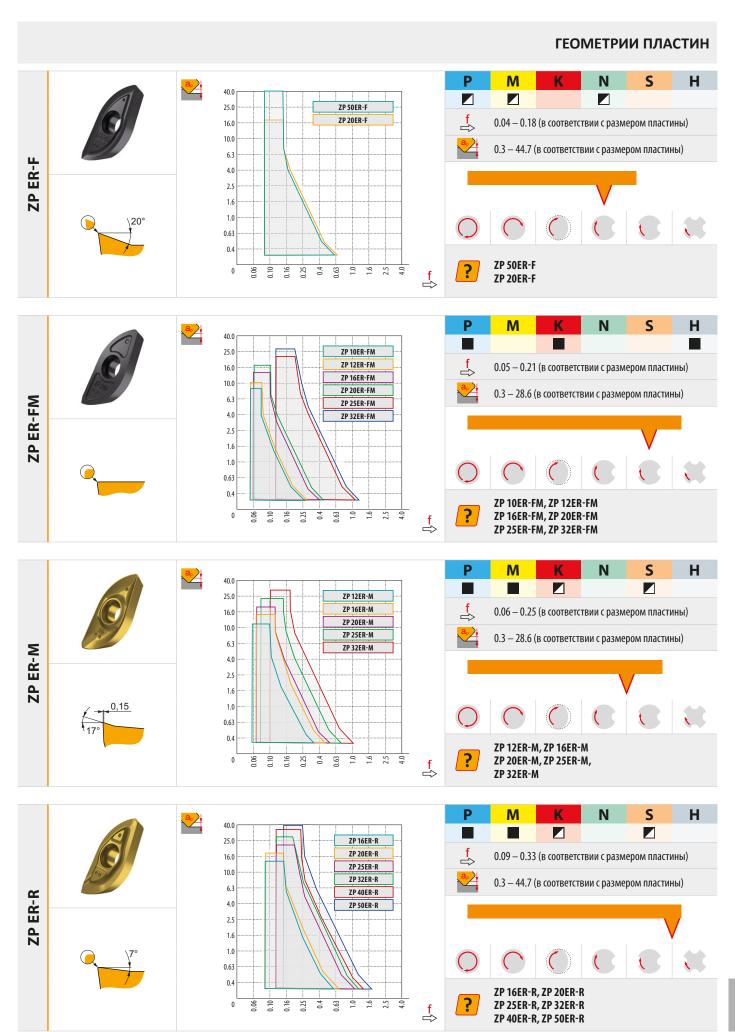












Маркировка твердых сплавов

Марка твердого сплава	Область применения	Применимость	Подача	Скорость резания	Устойчивость к неблагоприятным условиям	Покрытие	Цвет	Субстрат	Использование СОЖ	Описание сплава
M9315	P05 - P25 K10 - K30 H10 - H20					MT-CVD		王		Твердый сплав для фрезерования, который отличается высокой износостойкостью даже при больших термических нагрузках. Основная область применения - обработка на высоких скоростях с небольшой глубиной резания.
M9325	P10 - P30 K10 - K30 H15 - H20			-11		MT-CVD		Ξ		Твердый сплав с идеальным балансом между износостойкостью и прочностью. Предназначен для высокопроизводительных операций фрезерования с удалением большого объема материала. Обладает хорошей износостойкостью при высоких температурах. При использовании следует отдавать предпочтение высокой скорости резания с ограниченной подачей на зуб.
M9340	P35 – P50 M30 – M40 S15 – S20					MT-CVD		н		Очень прочный твердый сплав для фрезерования в особо неблагоприятных условиях при экстремальных нагрузках. Благодаря покрытию МТ-CVD, сплав имеет довольно высокую износостойкость и стабильно работает при использовании СОЖ.
M5315	P05 - P20 K05 - K25 H05 - H20				- 0011	MT-CVD		н		Один из самых износостойких сплавов для использования только в стабильных условиях. Основным преимуществом является устойчивость к термическим нагрузкам и абразивному износу, что делает сплав идеальным для обработки твердых материалов и чугуна.
M8310	P01 – P10 M01 – M10 K01 – K10 H05 – H15			-41		PVD		ультра- субмикронный Н	-	Сплав специально разработан для копировального фрезерования, имеет очень высокую износостойкость. Рекомендуется применять на высоких скоростях резания в стабильных условиях при фрезеровании практически всех групп материалов, особенно прочных и твердых.
8215	P10 – P20 M10 – M20 K10 – K25 N10 – N25 S10 – S15 H10 – H15		-41	.41		PVD		субмикронный Н	+/-	Один из самых универсальных твердых сплавов в отношении разнообразия обрабатываемых материалов, типов операций фрезерования и режимов резания. Имеет хорошую износостойкость, прочность режущих кромок и непревзойденную устойчивость к термотрещинам. Благодаря этим свойствам, сплав является одним из основных в ассортименте.
M8325	P20 – P40 M15 – M30		_411		_44	PVD		S	-	Главной особенностью этого сплава является обработка всех типов стали (включая нержавеющие стали) в отпущенном состоянии. Можно также использовать для фрезерования чугуна с невысокой твердостью. Для работы с умеренными скоростями резания и невысокими нагрузками на режущие кромки.
M8330	P20 – P40 M20 – M35 K20 – K40 N15 – N30 S15 – S25 H15 – H25		_441		-41	PVD		субмикронный Н	+/-	Самый универсальный твердый сплав для фрезерования практически любых материалов. Обладает стабильностью в неблагоприятных условиях обработки, применяется на умеренных скоростях резания, требует особого внимания при использовании с СОЖ.
M8340	P25 – P50 M20 – M40 K20 – K40 S20 – S30		_441	-	-44	PVD		субмикронный Н	+/-	Сплав имеет высокую прочность и надежность. Рекомендуется применять на умеренных скоростях резания в нестабильных условиях при фрезеровании практически всех групп материалов, особенно прочных и твердых.

Марка твердого сплава	Область применения	Применимость	Подача	Скорость резания	Устойчивость к неблагоприятным условиям	Покрытие	Цвет	Субстрат	Использование СОЖ	Описание сплава
M8345	P30 - P50 M30 - M40		_411	000		PVD		王	-	Сплав специально разработан для обеспечения надежной обработки со снятием припуска большого сечения в самых неблагоприятных условиях. Благодаря своей прочности, сплав подходит для фрезерования труднообрабатываемых и высокопрочных материалов.
M6330	P20 – P35 M20 – M35 S20 – S30		_41		_411	PVD		Ξ	+/-	Сплав имеет очень высокую надежность особенно при фрезеровании труднообрабатываемых материалов. Подходит для операций с неблагоприятными условиями и высокими нагрузками.
M4303	P01 – P10 K01 – K10 N01 – N10 H01 – H10			_411		PVD		ультра- субмикронный Н	-	Самый износостойкий сплав для обработки штампов и пресс-форм. Имеет высокую производительность при высоких скоростях резания, низких подачах и стабильных условиях. Подходит для чистовой обработки твердых заготовок.
M4310	P05 – P15 M05 – M15 K05 – K15 S05 – S10 H05 – H15		_441	-41 1		PVD		ультра- субмикронный Н	-	Универсальный сплав для обработки штампов и пресс-форм. Подходит для чистовых и получистовых операций фрезерования. Сплав сочетает в себе высокую износостойкость и стабильность.
2003	P01 – P10 M01 – M10 K01 – K10 S05 – S10 H05 – H15					PVD		ультра- субмикронный Н	<u>-</u>	Сплав с очень высокой износостойкостью, который подходит для фрезерования твердых и очень прочных материалов в стабильных условиях обработки на средних и высоких скоростях резания. Сплав подходит для обработки всех типов материалов, кроме цветных сплавов.
M0315	N05 – N25		_411			PVD		субмикронный Н	-	Субмикронный твердый сплав обладает сбалансированными свойствами твердости и прочности. Подходит для обработки цветных сплавов и имеет уникальное тонкое покрытие с низким коэффициентом трения, которое сохраняет остроту режущих кромок.
M8326	P20 – P40 M15 – M30		_411		_41	PVD		Ξ	-	Специальный материал для тяжелых условий эксплуатации. Основная область применения этого материала — обработка всех видов стали (включая нержавеющую) в "мягком состоянии". Его также можно использовать для обработки более мягкого чугуна. Подходит для обработки М15 — М30 на средних скоростях резания в умеренных условиях фрезерования.
M8346	P30 – P50 M30 – M40		_411			PVD		Ξ	-	Специальный сплав для тяжелой обработки, который обладает исключительной эксплуатационной надежностью и предназначен для интенсивного фрезерования сложных и прочных материалов в неблагоприятных условиях.
S26	P15 – P30			- 001		_		S	++	Непокрытый твердый сплав с высокой стойкостью к эрозии на передней поверхности. Используется исключительно для фрезерования конструкционных сталей при низких скоростях резания.
S45	P30 – P45		-41	- 0001		-		S	++	Непокрытый сплав для фрезерования на низких скоростях резания при неблагоприятных условиях.
HF7	M10 – M20 K10 – K25 N10 – N25		.41	- ad0[-		субмикронный Н	++	Непокрытый твердый сплав был разработан преимущественно для обработки цветных сплавов. Однако его можно использовать для обработки других материалов, кроме стали. Сплав применяется в точении, фрезеровании и растачивании.

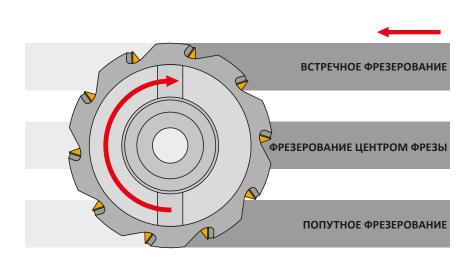
Субстрат								
Н	H Твердый сплав на основе WC-Co							
субмикронный Н Мелкозернистый твердый сплав на основе WC-Co (< 1 мкм)								
ультрасубмикронный Н Особо мелкозернистый твердый сплав на основе WC-Co (< 0.5 мкм)								
S	Твердый сплав с кубическими карбидами							

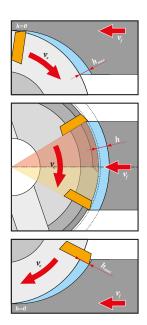
	Покрытие							
MT-CVD	МТ-CVD Покрытие CVD, нанесенное при помощи химического осаждения из газовой фазы при средней температуре							
PVD Покрытие PVD, нанесенное при помощи физического осаждения из газовой фазы при низкой температуре								
×	Без покрытия							

Использование СОЖ						
 – – Сильно негативное влияние на стойкость инструмента, применение СОЖ не рекомендуется 						
-	Негативное влияние на стойкость инструмента					
+/-	Влияние СОЖ не определено, решающим фактором применения могут оказаться специфические условия обработки					
++	Позитивное влияние на стойкость инструмента, применение СОЖ рекомендуется					

	Уровень применения
Уровень от 1 до 5	

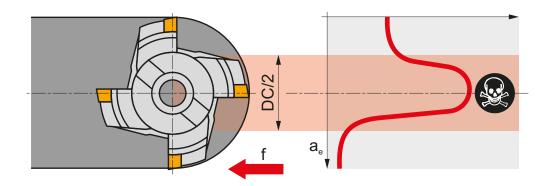
УСЛОВИЯ ФРЕЗЕРОВАНИЯ


В процессе фрезерования режущая кромка сменной пластины всегда работает в условиях прерывистого резания: как минимум, один раз врезается и один раз выходит из заготовки за один оборот фрезы. Кроме того, во время фрезерования периодически изменяется (в течение полного оборота фрезы) толщина снимаемой стружки.


Следствием этого является колебание величины и направления тангенциальной составляющей силы резания. В результате режущая кромка фрезы подвергается циклической нагрузке, которая ведет к специфическому виду износа режущей кромки. На время стойкости режущей кромки сменной пластины огромное влияние оказывают условия, при которых она врезается и выходит из материала заготовки. Правильный выбор этих условий влияет на результат процесса фрезерования с точки зрения производительности и качества обработанной поверхности.

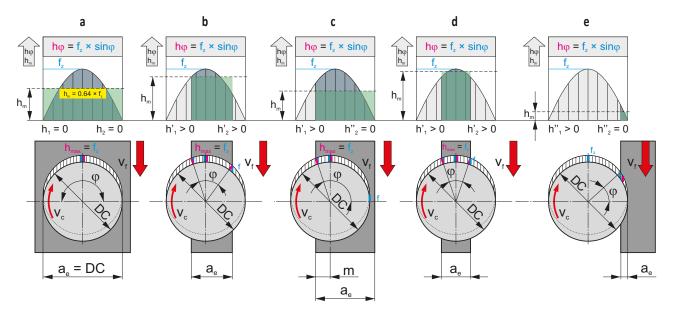
В момент врезания в заготовку режущая кромка подвергается удару, который вызывает ее механическое напряжение. При неправильно выбранных условиях врезания этот удар может вызвать разрушение режущей кромки в виде ее скола или выкрашивания.

При использовании инструмента, оснащенного сменными режущими пластинами, рекомендуется применять попутное фрезерование, чтобы сечение стружки при врезании находилось в рекомендуемом диапазоне подач, и было больше на входе фрезы, чем на выходе.


Однако существуют исключения, когда предпочтительно выбирать стратегию встречного фрезерования (обрабатываемая заготовка имеет твердую корку, механизмы подачи станка имеют повышенный износ и значительные зазоры...).

Если ширина фрезерования $a_{_e}$ совпадает с диаметром фрезы, то следует выбирать значения, рекомендуемые для пластин. Если ширина фрезерования меньше, то определяющим фактором станет стратегия обработки — фрезерование центром фрезы или краем. Всегда следует вводить корректировку скорости резания

и подачи (стр. 697). В любом случае при назначении стратегии обработки необходимо стремиться к тому, чтобы точка входа, а в особенности точка выхода, инструмента находились как можно дальше от центральной оси.


При выходе из заготовки режущие кромки подвергаются резкому снятию механической нагрузки и охлаждению поверхностного

слоя режущего клина, что неминуемо приводит к снижению стойкости режущего инструмента.

УСЛОВИЯ ФРЕЗЕРОВАНИЯ

Толщина стружки h меняется в течение одного оборота в зависимости от угла ϕ согласно зависимости $h_{\phi} = f_z \times sin\phi$. Максимальная толщина стружки, равная подаче на зуб f_z , достигается в зоне резания, расположенной в точке пересечения осевого сечения фрезы с припуском. Средняя величина толщины стружки h_m , которую снимает 1 зуб за 1 оборот, представляет собой высоту прямоугольника, а в качестве

его ширины выступает радиальная глубина резания a_{ϱ} . Величина средней толщины стружки h_{m} зависит от типа фрезы и от условий врезания, прежде всего от соотношения a_{ϱ}/DC , подачи на зуб f_{z} и, естественно, от главного угла в плане $KAPR-\kappa_{r}$.

Средняя толщина стружки h_m при фрезеровании центром фрезы (эскизы a, b, d) определяется по формуле:

$$h_m = f_z \cdot \sin \kappa_r \cdot \left[57.3 \frac{a_e}{DC \cdot \arcsin \cdot \left[\frac{a_e}{DC} \right]} \right]$$

Средняя толщина стружки h_m при фрезеровании краем фрезы (эскизы c, e) определяется по формуле:

$$h_m = f_z \cdot \sin \kappa_r \cdot 114.6 \cdot \left[\frac{a_e}{DC \cdot \arccos \cdot \left[1 - \frac{2a_e}{DC} \right]} \right]$$

При фрезеровании краем фрезы (эскиз е) и условии, что соотношение a_e/DC очень мало < 0.2, среднее значение толщины стружки h_m можно рассчитать по упрощенной формуле:

$$h_m = f_z \cdot \sin \kappa_r \cdot \sqrt{\frac{a_e}{DC}}$$

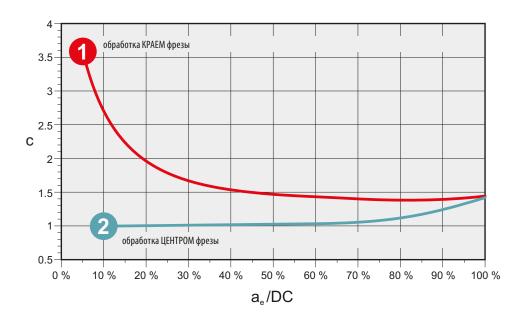
гле.

h_ Средняя толщина стружки, мм

f_____ Подача на зуб, мм/зуб

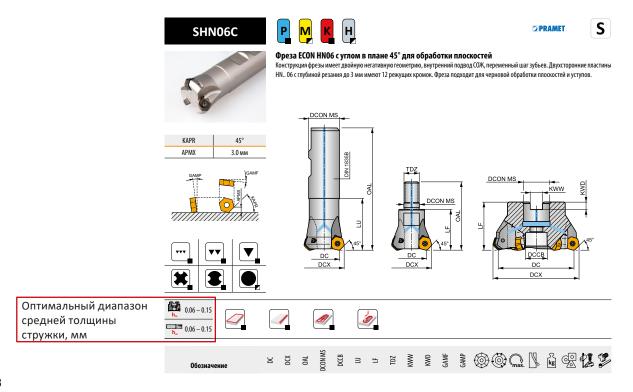
Ширина фрезерования, мм

DC Диаметр фрезы, мм


к, Главный угол в плане *KAPR*, °

УСЛОВИЯ ФРЕЗЕРОВАНИЯ

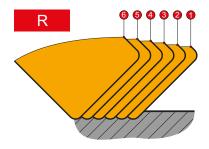
Для достижения оптимальных условий применения любых фрез рекомендуется проверить необходимое значение толщины стружки или выбрать подходящую подачу на основе рекомендованного диапазона h_m . Необходимо также учесть

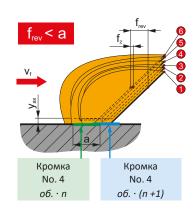

геометрию пластин. Для расчета $f_{_{2}}$ можно использовать формулу, приведенную выше, или следующую формулу. Значение коэффициента с можно определить по графику:

$$f_z = \frac{h_m}{\sin\left(\kappa_r\right)} \cdot c$$

Каждый тип фрезы в данном каталоге имеет свой рекомендуемый диапазонзначений средней толщины стружки. Использование значений ниже указанного диапазона может привести к прекращению процесса резания, значительному повышению износа пластин или их полному разрушению. Превышение значений может привести к перегрузке инструмента и его разрушению. Диапазон значений средней толщины стружки указан непосредственно на главной странице выбора корпуса фрезы.

Полный диапазон значений может быть использован при обработке материалов групп Р и К. Нижний предел диапазона следует повышать при обработке вязких материалов групп М и S, а также более прочных материалов группы N. Верхний предел необходимо снижать при обработке материалов групп Н и S, а также более прочных материалов группы М. При обработке мягких материалов группы N верхний предел следует повышать на 10...15%.

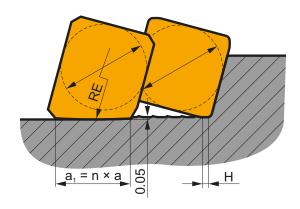


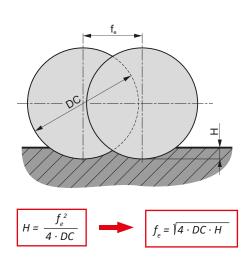

КАЧЕСТВО ОБРАБАТЫВАЕМОЙ ПОВЕРХНОСТИ


Одним из ключевых критериев чистового фрезерования является качество получаемой поверхности заготовки.

Фрезерование плоскости

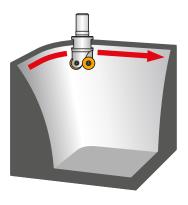
При фрезеровании поверхность заготовки формируется несколькими режущими кромками. Но микрогеометрия поверхности заготовки может быть получена только одной пластиной, имеющей наибольший вылет в осевом направлении. Если вершина пластины имеет радиус без зачистной кромки, то произойдет копирование радиуса на поверхность заготовки в виде волнистости, величина которой будет зависеть от значения радиуса пластины и от подачи при обработке. Для пластин с зачистной режущей кромкой подача на зуб не должна быть больше 80% ширины зачистной кромки. Для крупных фрез с большим количеством зубьев выполнение этого требования оказывается проблематичным, так как подача на зуб ($f_z = 0.8 \cdot a/z$) может быть слишком малой для используемой геометрии пластин, что, в свою очередь, может привести к снижению стойкости инструмента.

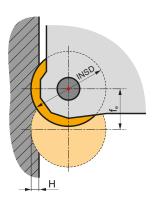




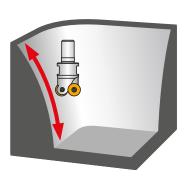
В этом случае следует применять фрезы с меньшим количеством зубьев или снижать количество пластин, устанавливая их через один зуб (для фрез с четным количеством зубьев). При этом возрастаетриск снижения производительности. Альтернативным решением может быть использование фрез со специальными пластинами, имеющими широкие зачистные кромки. Однако применение таких пластин может иметь свои недостатки: на фрезах малых диаметров (63 мм и меньше) широкая зачистная кромка оказывается в условиях широкого интервала скоростей резания, ближе к центру вращения фрезы скорость будет слишком низкой, что может привести к повышенному износу пластины (наростообразование).

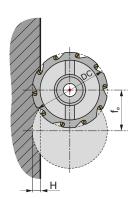
Значение ширины зачистной кромки указано в технических разделах для каждого типа фрез.

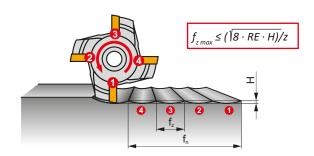

Для тороидальных фрез максимальное значение высоты микронеровностей может быть рассчитано с учетом диаметра пластины.

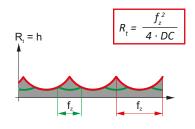


КАЧЕСТВО ОБРАБАТЫВАЕМОЙ ПОВЕРХНОСТИ

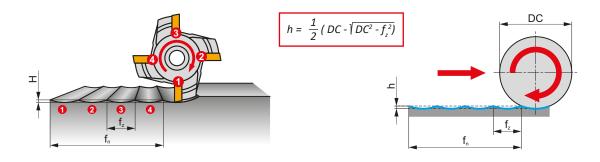

Расчетную формулу можно применять:


- 1) Для определения шага между проходами при фрезеровании копировальными фрезами.*
- * Используется диаметр пластины *INSD*.



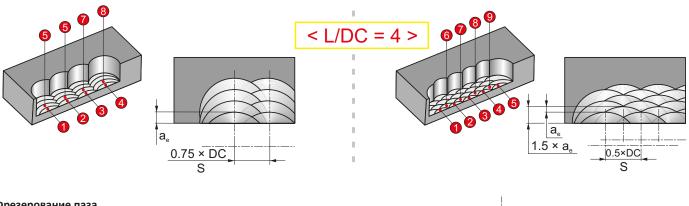

- 2) Для определения шага между проходами при плунжерном фрезеровании.**
- ** Используется диаметр фрезы *DC.*

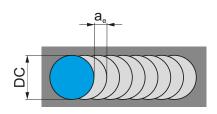
- 3) Для определения подачи на зуб при контурном фрезеровании цилиндрической частью фрезы.***
- *** Используется диаметр фрезы DC по отношению к количеству зубьев фрезы.

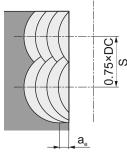


КАЧЕСТВО ОБРАБАТЫВАЕМОЙ ПОВЕРХНОСТИ

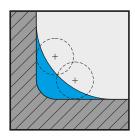
Теоретическая высота микронеровностей при фрезеровании цилиндрической частью фрезы рассчитывается по формуле:

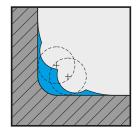

Используется диаметр фрезы *DC*.

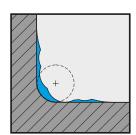

Плунжерное фрезерование

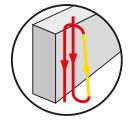

Для данной стратегии обработки существуют рекомендации максимальной ширины фрезерования для всех фрез. В этом случае большую роль играет вылет инструмента L. При использовании фрез с большим вылетом (L/DC > 4) и обработке широких уступов рекомендуется применить стратегию согласно следующему изображению:

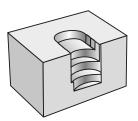
Фрезерование контура



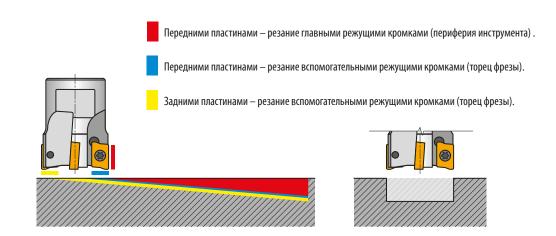

Фрезерование паза



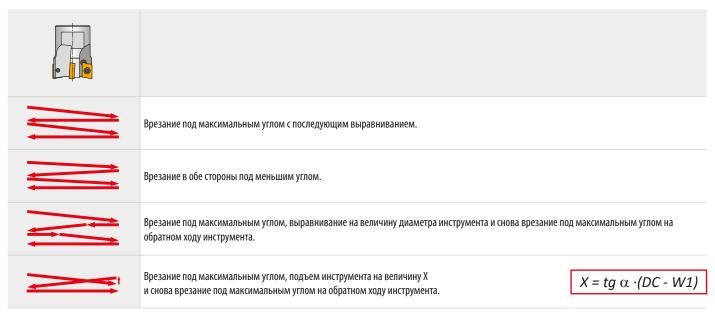

Фрезерование кармана



При фрезеровании кармана взаимное перекрытие проходов не должно превышать ¾ от диаметра фрезы и должно последовательно уменьшаться при приближении к углу кармана.



При разработке программ для данной стратегии следует избегать проходов по уже обработанным поверхностям. Другими словами, не рекомендуется вводить цикл "сверления". При выборе условий следует убедиться, что в обработке постоянно задействуется больше одного зуба фрезы. Рекомендуется постепенно уменьшать глубину обработки, создавая структуру обработанных поверхностей в виде лестницы. Также следует помнить о том, что при плунжерном фрезеровании скорость резания и подача на зуб будут меньше в сравнении с традиционными методами обработки.


СТРАТЕГИИ ОБРАБОТКИ

Врезание под углом

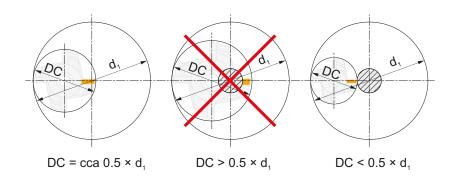
При такой стратегии обработки резание осуществляется:

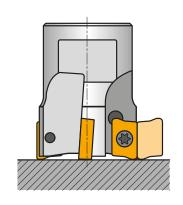
Особо важным параметром здесь является угол, под которым инструмент входит в заготовку, что обеспечивается перемещением по оси Z. Некоторый инструмент способен врезаться под меньшим углом, но с большой подачей (высокоподачные фрезы). Углы врезания индивидуальны для каждого корпуса фрезы и могут быть найдены в техническом разделе соответствующего типа фрез.

При выборе подачи рекомендуется следовать значениям для обработки паза. Если паз глубокий (например, первое врезание под углом, затем выравнивающий проход), то необходимо выбрать один из четырех базовых вариантов обработки.

Где:

Х подъем инструмента, мм


α угол врезания, °
DC диаметр фрезы, мм
W1 ширина пластины, мм

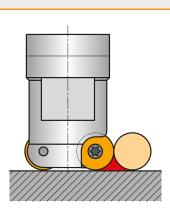

СТРАТЕГИИ ОБРАБОТКИ

Фрезерование с винтовой интерполяцией

Этот метод обработки аналогичен врезанию под углом, фрезы должны иметь возможность обработки вспомогательными режущими кромками на торце фрезы. Важным фактором здесь будет соотношение размеров фрезы и отверстия. Если диаметр фрезы слишком большой, то траектория движения режущих зубьев не будет перекрывать центр отверстия — образуется

бобышка, которая может повредить корпус инструмента. Если диаметр фрезы слишком мал, то в центре отверстия останется несрезанный металл, который можно будет удалить отдельно.

 D_{max} — Диаметр отверстия


DC – Диаметр фрезы

INSD – Диаметр пластины

RE — Радиус при вершине пластины

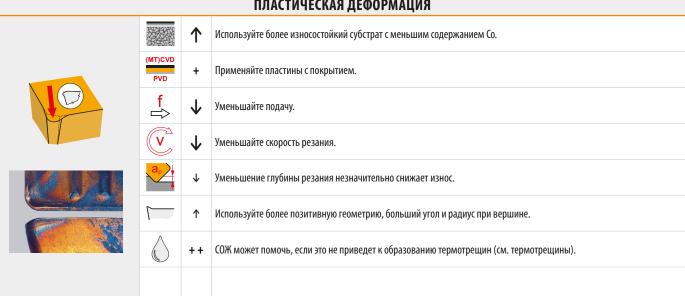
BS – Ширина подчищающей кромки

b — Максимальная ширина фрезерования a_e для паза

Максимальный диаметр отверстия

Для глухих отверстий плоское дно достигается при полном перекрывании сечения отверстия режущими зубьями.

Для сквозных отверстий: $D_{max} = 2 \cdot DC$		Для сквозных отверстий: $D_{max} = 2 \cdot DC$
	Минимальный диаметр отверстия	
Для сквозных отверстий: $D_{min} = (DC - b) \cdot 2$		Для сквозных отверстий: $D_{min} = (DC - 0.8 \cdot INSD) \cdot 2$
Для глухих отверстий: $D_{min} = (DC - (RE + BS)) \cdot 2$		Для глухих отверстий: $D_{min} = (DC - 0.5 \cdot INSD) \cdot 2$


Рекомендации включают таблицы со значениями минимального и максимального диаметра отверстия, а также угла, под которым осуществляется погружение инструмента (в некоторых случаях будет две таблицы — для стандартной геометрии и для высокоподачной).

ОБРАЗОВАНИЕ НАРОСТА						
		Не влияет.				
(MT)CVD	++	Любое покрытие снижает эффект налипания.				
f ⇒	↑	Увеличение подачи вызывает рост температуры в зоне резания и, следовательно, снижает наростообразование.				
V	↓ ↑	Увеличение скорости резания позволяет избежать нароста за счет повышения температуры.				
a _p		Не влияет.				
	↓ ↑	Используйте более позитивную режущую геометрию (нарост не образуется, если передний угол больше 40°).				
	-	Используйте СОЖ с более высокими смазывающими свойствами.				
		HOUGE DO DA BUIFĂ DODEDVIIOCEM				
		ИЗНОС ПО ЗАДНЕЙ ПОВЕРХНОСТИ				

ИЗНОС ПО ЗАДНЕЙ ПОВЕРХНОСТИ						
			Используйте более износостойкий субстрат.			
	(MT)CVD	++	Применяйте пластины с покрытием.			
	$\stackrel{f}{\Rightarrow}$	↑	Увеличивайте подачу.			
	V	\	Уменьшите скорость резания.			
	a _p		Не влияет.			
		↑	Используйте инструмент с большим задним углом.			
		+	СОЖ может помочь, если это не приведет к образованию термотрещин (см. термотрещины).			

	+	СОЖ может помочь, если это не приведет к образованию термотрещин (см. термотрещины).	
		ИЗНОС ПО ПЕРЕДНЕЙ ПОВЕРХНОСТИ (ЛУНКА)	
	1	Используйте более износостойкий субстрат с кубическими карбидами.	
(MT)CVD	++	Применяйте пластины с покрытием MT-CVD с толстым слоем $lpha$ Al $_2$ O $_3$.	
f ⇒	1	Подача влияет на форму и положение лунки.	
V	\	Уменьшайте скорость резания.	
a _p	\	Уменьшение глубины резания незначительно снижает износ.	
	1	Используйте более позитивную геометрию.	
	++	СОЖ может помочь, если это не приведет к образованию термотрещин (см. термотрещины).	
			775

ПРОТОЧИНА НА ВСПОМОГАТЕЛЬНОЙ РЕЖУЩЕЙ КРОМКЕ ↑ Используйте более износостойкий субстрат с кубическими карбидами. ↑ Применяйте пластины с покрытием МТ-СVD с толстым слоем сх Al₂O3. ↑ Подача влияет на форму и положение проточины. ↑ Уменьшайте скорость резания. ↑ Уменьшение глубины резания незначительно снижает износ. ↑ Используйте более позитивную геометрию и/или другой утол в плане. ↑ НСОЖ может помочь, если это не приведет к образованию термотрещин (см. термотрещины).

Carried Name		'	используние облес позитивную теометрию, облыший угол и радиус при вершине.
		++	СОЖ может помочь, если это не приведет к образованию термотрещин (см. термотрещины).
			ПРОТОЧИНА НА ГЛАВНОЙ РЕЖУЩЕЙ КРОМКЕ
		↑ ↓	В зависимости от природы происхождения проточины используйте более износостойкий сплав при истирании и более прочный сплав при выкрашивании.
	PVD	++	Применяйте пластины с покрытием MT-CVD с толстым слоем $lpha$ Al $_2$ O $_3$.
	f ⇒	1	Снижение подачи уменьшает интенсивность износа, но в меньшей степени, чем снижение скорости резания.
	V	1	Уменьшайте скорость резания.
	a _p	Λ√	Работайте с проходами неравной глубины.
		4	Используйте менее позитивную геометрию.
		+	СОЖ может помочь, если это не приведет к образованию термотрещин (см. термотрещины).
			Уменьшите главный угол в плане.

ВЫКРАШИВАНИЕ РЕЖУЩЕЙ КРОМКИ Используйте однокарбидный субстрат. + Рекомендуется покрытие PVD. \downarrow Рекомендуется снижение подачи, но минимизация вибрации важнее. Отрегулировать скорость резания с целью минимизации вибраций. Важно уменьшить при большом вылете. 1 Увеличение переднего угла снижает силы резания. СОЖ не применяется (стружка удаляется сжатым воздухом). Обеспечивайте благоприятные условия обработки, снижайте подачу при врезании, используйте оптимальные стратегии врезания.

		Г	10ВРЕЖДЕНИЕ РЕЖУЩИХ КРОМОК СТРУЖКОЙ
		V	Используйте однокарбидный субстрат
	(MT)CVD	+	Рекомендуется покрытие PVD.
	f ⇒	↑ ↓	Важно обеспечить формирование благоприятной стружки.
	V	↑ ↓	Выберите скорость, обеспечивающую минимальные вибрации и надежное ломание стружки.
	a _p	↑ ↓	Уменьшение глубины резания снижает нагрузку.
		\	Используйте менее позитивную геометрию.
Francis Land			Удаляйте стружку потоком СОЖ высокого давления.
			Обеспечивайте лучшие условия обработки.

ТЕРМОТРЕЩИНЫ							
		\downarrow	Используйте более прочный субстрат				
	(MT)CVD	++	Рекомендуется покрытие PVD.				
	f ⇒	\	Снижение подачи уменьшает интенсивность износа, но в меньшей степени, чем снижение скорости резания.				
	V	\	Меньше скорость резания — ниже температура — меньше трещин.				
1 han to the last said to the	a _p		Не влияет.				
Company Dept. Section 1.		↑	Используйте более позитивную геометрию, больший угол и радиус при вершине.				
			Не используйте СОЖ, для эвакуации стружки используйте сжатый воздух.				
			Обеспечивайте благоприятные условия обработки, снижайте подачу при врезании, используйте оптимальные стратегии врезания.				

ПОЛОМКА ПЛАСТИНЫ Используйте более прочный субстрат. Не важно обеспечить формирование благоприятной стружки. Т У Выберите скорость, обеспечивающую минимальные вибрации и надежное ломание стружки. Уменьшение глубины резания снижает нагрузку. Используйте менее позитивную геометрию. Не влияет.

ПЛОХОЕ КАЧЕСТВО ОБРАБОТАННОЙ ПОВЕРХНОСТИ

Обеспечивайте лучшие условия обработки (a_e/DC).

Описание и причины:

На величину шероховатости обработанной поверхности влияет масса причин, среди которых можно назвать: материал заготовки, охлаждающая среда, исполнение и состояние режущей кромки инструмента, режимы резания (в первую очередь, подача и скорость резания) и жесткость системы СПИД.

- Неправильный выбор инструмента
- Неправильная толщина снимаемой стружки
- Неправильно выбрана скорость резания
- Обработка материала требует применения СОЖ
- Высокая подача

Меры по устранению:

- Применить чистовую пластину или пластину с зачистной фаской
- Применить пластину с подходящей геометрией резания
- Снизить подачу
- Изменить, по большей части, повысить скорость резания
- Применить охлаждение или смазку (MQL)
- Устранить причину возникновения вибраций
- Применить инструмент с возможностью более точной установки и регулировки положения отдельных пластин (при фрезеровании)
- Изменить толщину снимаемой стружки (изменить условия врезания)

НЕРОВНОСТЬ ПОВЕРХНОСТИ ВСЛЕДСТВИЕ ВИБРАЦИИ

Описание и причины:

Это весьма частое явление, к главным причинам которого относится несбалансированность инструмента, нежесткое закрепление обрабатываемой детали и высокие значения усилий резания.

- Низкая жесткость системы СПИД
- Слишком большие режимы резания
- Биение плохая сбалансированность заготовки или же инструмента
- Большой вылет инструмента

Меры по устранению:

- Проверить надежность закрепления заготовки
- Проверить надежность закрепления инструмента
- Уменьшить глубину резания
- Применить инструмент с меньшим вылетом
- Отрегулировать скорость резания
- Уменьшить толщину стружки (изменить условия резания или врезания)
- Изменить геометрию резания на максимально острую и положительную (минимизировать усилия резания), выбрать другой материал инструмента
- Применить, в случае фрезерования, инструмент с меньшим углом в плане

ОБРАЗОВАНИЕ ЗАУСЕНЦА

Описание и причины:

Данное явление весьма распространено, однако ему не всегда можно воспрепятствовать. Заусенец возникает, в первую очередь, при обработке мягких сталей и пластически деформируемых материалов.

Меры по устранению:

- Применить пластину с острой режущей кромкой
- Применить пластину с положительной геометрией
- Применить инструмент с меньшим углом в плане

НЕТОЧНОСТЬ РАЗМЕРА И ФОРМЫ ЗАГОТОВКИ

Описание и причины:

Это явление возникает в результате большого количества факторов, или же свойств системы СПИД.

Меры по устранению:

- Выбрать пластину с достаточной износостойкостью
- Проверить надежность закрепления заготовки
- Проверить надежность закрепления инструмента (уменьшить вылет или же устранить дисбаланс)
- Выбрать подходящий размер припуска на обработку

НЕПРИЕМЛЕМАЯ ФОРМА СТРУЖКИ

Описание и причины:

Приемлемая форма стружки является в настоящее время таким же важным критерием, как и срок службы самой пластины. На процесс дробления стружки оказывают влияние: материал заготовки, подача, глубина резания, и, конечно, соответствующий выбор геометрии резания (стружколомающей геометрии). Длинная (несформированная) стружка является неприемлемой по многим причинам также, как слишком короткая — очень мелко "раздробленная" стружка нежелательна (это свидетельствует о перегрузке режущей кромки и о процессе возникновения вибраций).

Меры по устранению:

- Изменить подачу и глубину резания
- Выбрать более подходящую геометрию
- Изменить условия врезания

КОНТРОЛЬ ПРАВИЛЬНОГО ПРИЛЕГАНИЯ ПЛАСТИНЫ В ГНЕЗДЕ

Перед установкой новой пластины или сменой режущей кромки необходимо очистить посадочное место, проверить его состояние на отсутствие повреждений. Подкладная пластина и сменная пластина не должны иметь повреждений со стороны посадочных поверхностей.

КОНТРОЛЬ И РЕМОНТ КРЕПЕЖНЫХ ЭЛЕМЕНТОВ

Важным является контроль самих крепежных элементов: углового рычага, винта, прихвата или прижимного клина. Для крепления следует применять только неповрежденные элементы, в случае их замены применять только запасные части, которые приведены в каталоге данного инструмента. Необходимо регулярно смазывать резьбу и коническую опорную поверхность винтов смазкой, устойчивой к повышенным температурам, например, MOLYKOTE. При монтаже или демонтаже следует применять лишь отвертки и ключи, указанные в каталоге и рекомендуемые производителем инструмента. Необходимо производить подтяжку всех винтов, применяя при этом динамометрический ключ.

КОНТРОЛЬ ЗАКРЕПЛЕНИЯ

При закреплении пластины необходимо проверить ее плотное прилегание по всей опорной поверхности и в упор — как в радиальном, так и в осевом направлениях. Инструмент и все элементы закрепления должны быть всегда чистыми и неповрежденными.

ФОРМУЛЫ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ РЕЗАНИЯ

Параметр	Единица	Формула для расчета
Частота вращения фрезы	об/мин	$n = \frac{v_c \cdot 1000}{DC \cdot \pi}$
Скорость резания	м/мин	$v_c = \frac{\pi \cdot DC \cdot n}{1000}$
Подача на оборот	мм/об	$f_{rev} = \frac{f_{min}}{n} = f_z \cdot z$
Минутная подача	мм/мин	$f_{min} = v_f = f_{rev} \cdot n = f_z \cdot z \cdot n$
Подача на зуб	мм/зуб	$f_z = \frac{f_{rev}}{Z} = \frac{f_{min}}{n \cdot Z}$
Площадь сечения стружки	MM ²	$A = f_z \cdot a_p$
Толщина стружки (для пластин с прямолинейной режущей кромкой)	ММ	$h = f_z \cdot \sin \kappa_r$
Толщина стружки (для круглых пластин)	ММ	$h = f_z \cdot \sqrt{\frac{a_p}{INSD}}$
Объем снимаемого материала в минуту	см ³ /мин	$Q = \frac{a_p \cdot a_e \cdot f_{min}}{1000}$
Требуемая мощность	кВт	$P_{c} = \frac{a_{p} \cdot a_{e} \cdot f_{min}}{60 \cdot 10^{6} \cdot \eta} \cdot k_{c} \cdot k_{\gamma}$
Приблизительная мощность резания	кВт	$P_{c} = \frac{a_{p} \cdot a_{e} \cdot f_{min}}{x}$

Примечание:

	Параметр	Единица
n	Число оборотов	об/мин
DC	Диаметр (инструмента или заготовки)	MM
V _c	Скорость резания	м/мин
f _{rev}	Подача на один оборот	мм/об
Α	Сечение (площадь) стружки	MM ²
a _p	Глубина резания	MM
a _e	Ширина фрезерования	MM
к,	Угол в плане	0
f _{min}	Минутная подача (скорость подачи)	мм/мин
f _z	Подача на зуб	мм/зуб
z	Количество зубьев	-
INSD	Диаметр пластины	MM

	Параметр	Единица
h	Толщина стружки	мм
Q	Снятый объем материала за 1 минуту	см ³ /мин
Pc	Расчетная мощность	кВт
k _c	Удельное сопротивление резанию на мм ²	МПа
k_{γ}	Коэффициент влияния угла в плане γ_0	o
η	Эффективность обработки $\eta=0.75$	-
х	Коэффициент, зависящий от типа материала	-

Материал	Сталь	Чугун	Алюминий	
Коэффициент x	24 000	30 000	120 000	

РЕКОМЕНДУЕМЫЕ ЗНАЧЕНИЯ МОМЕНТА ЗАТЯЖКИ ВИНТОВ

Винт	Момент	Резьба	Длина
	Н∙м	-	MM
US 20	0.9	M 2	3
US 2205-T07P	0.9	M 2.2	5
US 25	1.2	M 2.5	5 5
US 2505-T08P US 2506-T07P	1.2 1.2	M 2.5 M 2.5	6
US 3006-T09P	2	M 3	6
US 3007-T09P	2	M 3	7
US 3504-T09P	3	M 3.5	4
US 3507-T15	3	M 3.5	7
US 3509-T15	3	M 3.5	9
US 3511-T15	3	M 3.5	11
US 3512-T15P	3	M 3.5	12
US 4008-T15P	3.5	M 4	8
US 4011-T15P	3.5	M 4	11
US 4511-T20 US 5012-T15P	5	M 4.5 M 5	11 12
US 70	5	M 4	5
US 71	5	M 4	7
US 72	5	M 4	9
US 73	5	M 4	11
CS 3007-T08P	1.2	M 3	7
CS 4008-T15P	3	M 4	8
CS 42506-T07P	1	M 2.5	6
CS 43008-T08P	1.2	M 3	8
CS 43509-T10P CS 44013-T15P	3	M 3.5	9 13
CS 45016-T20P	5	M 4 M 5	16
CS 46020-T25P	7.5	M 6	20
CS 48025-T40P	15	M 8	25
CS 5009-T20P	5	M 5	9
CS 5013-T20P	5	M 5	13
CS 5015-T20P	5	M 5	15
CS 6020-T20P	7.5	M 6	20
CS 8025-T30P	15	M 8	25
US 2505-T07P	1.2	M 2.5	5
US 2506-T07P US 3007-T09P	1.2	M 2.5 M 3	6 7
US 3505-T09P	3	M 3.5	5
US 4011A-T15P	3.5	M 4	
US 4011-T15P	3.5	M 4	11
US 44010-T15P	3.5	M 4	10
US 44012-T15P	3.5	M 4	12
US 45011-T20P	5	M 5	11
US 45012-T20P	5	M 5	12
US 5011-T20P	5	M 5	11
US 5018-T20P US 52506-T07P	5 0.8	M 5 M 2.5	18 6
US 54511-T15P	5	M 4.5	11
US 62003A-T06P	0.6	M 2	3
US 62004A-T06P	0.6	M 2	4
US 62004-T06P	0.6	M 2	4
US 62505-T07P	1.2	M 2.5	5
US 62506-T07P	1.2	M 2.5	6
US 62506-T08P	1.2	M 2.5	6
US 62508-T08P	1.2	M 2.5	7
US 63009-T09P US 63509-T15P	1.2	M 3	9
US 63510-T10P	2	M 3.5	10 9
US 63511D-T15P	3	M 3.5	9 11
ונווי עוונטטט	J	141 7.7	

Винт	Момент Н·м	Резьба —	Длина мм
US 63513-T15P	3	M 3.5	12
US 64014-T15P	3.5	M 4	14
US 65013-T20	5	M 5	13
US 65014-T20P	5	M 5	14
US 65017-T20P	5	M 5	17
US 66015-T25P	7.5	M 6	15
US 68020-T30P	15	M 8	20
US 68026-T30P	15	M 8	26
US 74016-T15P	3.5	M 4	16

Динамоментрические отвертки

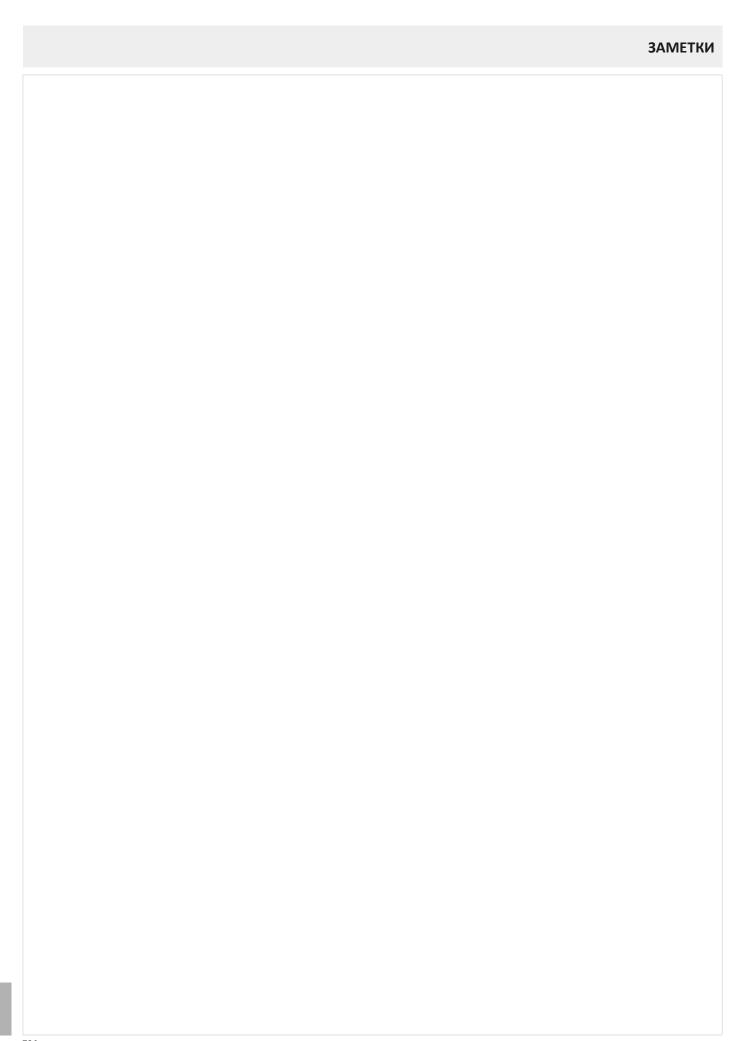
Рукоятка	Момент Н-м	Резьба винта
MR-0.8-2.0 Vario	0.5 - 2.0	M 2 - M 3
MR-1.0-5.0 Vario	0.8 - 5.0	M 2.5 - M 5
MR-0.9 fix	0.9	M 2
MR-2.0 fix	2.0	M 3
MR-3.0 fix	3.0	M 3.5
MR-3.5 fix	3.5	M 4
MR-5.0 fix	5.0	M 5

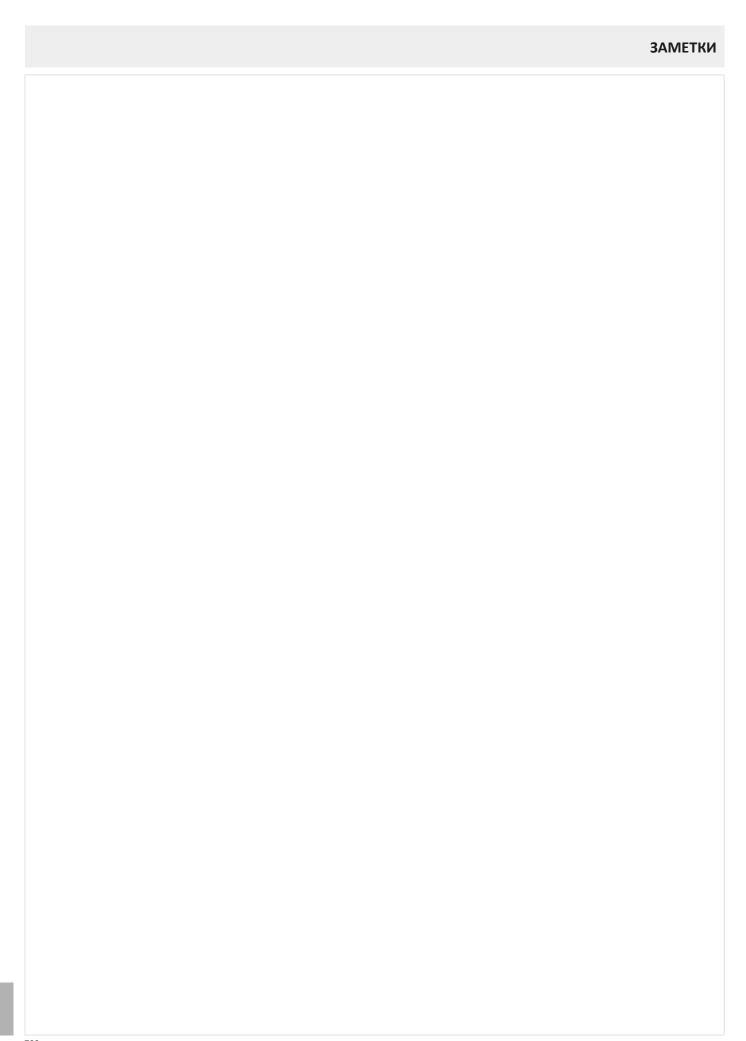
Сменные стержни отвертки

Сменные	6
стержни	*
D-T6	
D-T6P	
D-T7	
D-T7P	
D-T8	
D-T8P	
D-T9	
D-T9P	
D-T15	
D-T15P	
D-T20	
D-T20P	

Смазка винтов

Учитывая большое тепловое воздействие на зажимные винты, рекомендуется смазывать их качественной смазочной пастой MOLYKOTE 1000.


ОБОЗНАЧЕНИЯ НА УПАКОВКЕ С ПЛАСТИНАМИ


ТАБЛИЦА ТВЕРДОСТИ

Твердость				Твердость		Твердость			
Прочность МПа	BRINELL	VICKERS	ROCKWELL	ROCKWELL	Прочность МПа	BRINELL	VICKERS	ROCKWELL	ROCKWELL
R _m	НВ	HV	HRB	HRC	R _m	НВ	HV	HRB	HRC
285	86	90	1190	_	1190	352	370	_	37.7
320	95	100	56.2	_	1220	361	380	_	38.8
350	105	110	62.3	_	1255	371	390	_	39.8
385	114	120	66.7	_	1290	380	400	_	40.8
415	124	130	71.2	_	1320	390	410	_	41.8
450	133	140	75.0	_	1350	399	420	-	42.7
480	143	150	78.7	_	1385	409	430	_	43.6
510	152	160	81.7	_	1420	418	440	_	44.5
545	162	170	85.8	_	1455	428	450	_	45.3
575	171	180	87.1	_	1485	437	460	_	46.1
610	181	190	89.5	_	1520	447	470	_	46.9
640	190	200	91.5	_	1555	456	480	_	47.7
675	199	210	93.5	_	1595	466	490	_	48.4
705	209	220	95	_	1630	475	500	_	49.1
740	219	230	96.7	_	1665	485	510	_	49.8
770	228	240	98.1	_	1700	494	520	_	50.5
800	238	250	99.5	_	1740	504	530	_	51.1
820	242	255	_	23.1	1775	513	540	_	51.7
850	252	265	_	24.8	1810	523	550	_	52.3
880	261	275	_	26.4	1845	532	560	_	53.0
900	266	280	_	27.1	1880	542	570	-	53.6
930	276	290	_	28.5	1920	551	580	-	54.1
950	280	295	_	29.2	1955	561	590	-	54.7
995	295	310	_	31.0	1995	570	600	-	55.2
1030	304	320	_	32.2	2030	580	610	-	55.7
1060	314	330	_	33.3	2070	589	620	_	56.3
1095	323	340	_	34.4	2105	599	630	_	56.8
1125	333	350	_	35.5	2145	608	640	_	57.3
1155	342	360	_	36.6	2180	618	650	_	57.8

ЗАМЕТКИ

ЗАМЕТКИ

SIMPLY RELIABLE

Будучи профессионалом, вы можете оценить качество обработки, просто взглянув на стружку. Чистая и ровная форма стружки говорит сама за себя. Стружка - это точный индикатор стабильности технологического процесса, вот почему мы используем стружку как символ нашей надежности. Simply Reliable.

DORMER > PRAMET

Austria

T: +31 10 2080 240 info.at@dormerpramet.com

Belgium & Luxembourg T: +32 3 440 59 01

info.be@dormerpramet.com

Brazil

T: +55 11 5660 3000 info.br@dormerpramet.com

Canada

T: (888) 336 7637 En Français: (888) 368 8457 cs.canada@dormerpramet.com

T: +86 21 2416 0508 info.cn@dormerpramet.com

Croatia

T: +385 98 407 489 info.hr@dormerpramet.com

Czech Republic

T: +420 583 381 111 info.cz@dormerpramet.com

Denmark

T: 808 82106 info.se@dormerpramet.com

Finland

T: 0205 44 7003 info.fi@dormerpramet.com

T: +33 (0)2 47 62 57 01 info.fr@dormerpramet.com Germany

T: +49 9131 933 08 70 info.de@dormerpramet.com

T: +36-96 / 522-846 info.hu@dormerpramet.com

T: +91 11 4601 5686 info.in@dormerpramet.com

T: +39 02 30 70 54 44 info.it@dormerpramet.com

Kazakhstan

T: +7 771 305 11 45 info.kz@dormerpramet.com

T: +52 (555) 7293981 cs.mexico@dormerpramet.com

Netherlands

T: +31 10 2080 240 info.nl@dormerpramet.com

Norway

T: 800 10 113 info.se@dormerpramet.com

T: +48 32 78-15-890 info.pl@dormerpramet.com

Portugal

T: +351 21 424 54 21 info.pt@dormerpramet.com Romania

T: +4(0)730 015 885 info.ro@dormerpramet.com

T: +7 (495) 775 10 28 info.ru@dormerpramet.com

Slovakia

T: +421 (41) 764 54 60 info.sk@dormerpramet.com

Slovenia

T: +385 98 407 489 info.si@dormerpramet.com

T: +34 935717722 info.es@dormerpramet.com

Sweden responsible for Iceland T: +46 35 16 52 96 info.se@dormerpramet.com

Switzerland

T: +31 10 2080 240 info.ch@dormerpramet.com

T: +90 533 212 45 47 info.tr@dormerpramet.com

Ukraine

T: +38 067 566 38 80 T: +38 067 566 81 51 info.ua@dormerpramet.com

United Kingdom responsible for Ireland T: 0870 850 4466 info.uk@dormerpramet.com

United States of America T: (800) 877-3745 cs@dormerpramet.com

Other countries

South America T: +55 11 5660 3000 info.br@dormerpramet.com

T: +420 583 381 527 info.rcee@dormerpramet.com

Rest of the World

Dormer Pramet International UK T: +44 1246 571338 info.int@dormerpramet.com

Dormer Pramet International CZ T: +420 583 381 520 info.int.cz@dormerpramet.com

СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ

instagram.com/dormerprametsocial

